
PHYSICAL REVIEW B VOLUME 36, NUMBER 8 15 SEPTEMBER 1987-I

Theory of the absorption of electromagnetic radiation by hopping
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Absorption of polarized electromagnetic waves at 0 K in the wavelength region from 1.4 to 5

mm in p-type narrow-gap Hg& Mn„Te has been investigated in a magnetic field within the
quantum-limit regime. The model of photon-induced hopping transitions of electrons between the
ground states of the acceptors was used. An integral formula for the absorption coefficient is de-
rived. In addition to this, numerical results for electromagnetic waves with the electric vector per-
pendicular and parallel to the applied magnetic field are presented. The range of validity of our
results is discussed. We obtain an absorption coefficient of the order of 10 cm ' for a range of
concentration of acceptors up to 1)& 10' cm and compensation ratios up to 0.2.

I. INTRODUCTION

In the last few years dc and ac impurity hopping con-
duction in narrow-gap p-type Hg, Mn Te has been
studied both experimentally and theoretically. ' In the
presence of a magnetic field a strong decrease of the hop-
ping resistivity was observed. ' This effect was interpret-
ed on the basis of an increase of the transverse radius of
the acceptor wave function in the applied magnetic field.
This occurs in p-type narrow-gap diluted magnetic serni-
conductors as a result of the very strong exchange-
induced anisotropy of the valence band (decrease of the
transverse mass). The anisotropy of the overlap integrals
of neighboring acceptors makes the p-type hopping con-
ductivity anisotropic, which was also observed experimen-
tally. ' For magnetic fields stronger than 5 —6 T an in-
crease of resistivity was observed. This effect is due to an
increase of the binding energy of the acceptor [the energy
difference between the ground-state impurity level and the
uppermost valence Landau level b, ( —1)] and is always
observed in nonmagnetic semiconductors. Gawron has
used a model of phonon-induced hopping of an electron
from an ionized acceptor center to a neutral one in order
to explain dc hopping conduction in p-type Hg &

„Mn Te.
The purpose of the present work is to study the

photon-induced transitions as a hopping mechanism and
their effect on the absorption of electromagnetic radiation
in narrow-gap p-type Hg& „Mn„Te at 0 K. This model
of the absorption process was proposed by Tanaka and
Fan to explain some experimental results concerning the
ac impurity conduction in p-type Si at wavelengths of the
order of 1 cm. According to this model photons induce
transitions between the ground states of singly ionized
two-acceptor pairs in the presence of an electrostatic field
of ionized donors (the compensation must be different
from zero in order to have ionized acceptor centers).

The wavelength region of interest is from 1.4 to 5 mm
where other absorption mechanisms such as lattice vibra-
tions, free carriers, or excitations of neutral impurity
centers are absent at 0 K. We shall neglect the electron-

phonon interaction because the deformation-potential
constants of the l s heavy-hole band in Hg Te (and
Hgi Mn„Te with low x) are very small.

The organization of our paper is as follows. First, we
shall present the acceptor ground states of the two-center
Hamiltonian, in the presence of an external magnetic
field, in the quantum-limit regime with an additional elec-
trostatic field provided by the ionized donor center.
Then, we calculate the transition rate for photon-induced
hopping. Finally, the formula for the absorption
coefficient is reported and the range of validity of our re-
sults is discussed. Numerical results are presented for
electromagnetic waves with the electric vector perpendicu-
lar and parallel to the applied magnetic field. Unfor-
tunately, we cannot compare our results with experiment
because to our knowledge, no experimental data have
been reported.

II. TWO-CENTER ACCEPTOR STATES

For Hg &
Mn Te, the presence of an external magnet-

ic field makes the effective mass of the valence bands an-
isotropic. The effective mass in the direction perpendicu-
lar to the magnetic field is much lower than that in the
direction parallel to it. As a consequence, in the case of
narrow-gap Hg, Mn„Te (i.e., open-gap Hg, ,Mn„Te
with low x) for an external magnetic field sufficiently
strong, the wave function of the shallow acceptor state
may be constructed from the wave functions of the upper-
most valence level b, ( —l) as the Landau-level spacing is
much larger than the binding energy of the acceptor
("quantum limit" ). The quantum-limit regime in narrow-
gap semimagnetic semiconductors is already achieved for
slightly strong magnetic fields (of the order of a few tesla).
Experimental data suggest the onset of the quantum-limit
regime at 5 —8 T in Hg, Mn„Te (Refs. 2 and 4) (Gawron
used a somewhat smaller value of 4 T in his theoretical
calculations of acceptor binding energy and hopping
magnetoresistivity ).

The acceptor ground state in the quantum-limit regime
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U(g) F(g)=EF(g), (2)

where

U(g)=2' ~' [1—erf(
f g f

)]exp(g ) . (3)

Here erf(x) is the error function and g=z/2'~ A, .
aff ——A e/e rnff is the effective Bohr radius calculated with
the longitudinal effective mass (e is the dielectric constant)
and E=2(E&

~ &~ Ez )/Ra)~~, w—here Et, ~ &~ is the energy

of the uppermost Landau level b, ( —1), Ez the acceptor
ground-state energy, and off ——e8/cuff the cyclotron fre-
quency for the longitudinal effective mass. The envelope
function in the z direction, F(z), used in this work is a
numerical solution of Eq. (2). A computer program
developed by Gawron was used for this. Recently,
Wrobel et al. have shown that the acceptor binding ener-

gy calculated numerically from (2) is in quite good agree-
ment with the transport and optical experimental results.
It should be stressed that the wave function given by (2) is
appropriate for calculating the hopping transition rate
since it has a correct asymptotical behavior.

Now we have to obtain the two highest electron states
(in the two-center acceptor problem) which are the eigen-
states of the Hamiltonian

was observed by Mycielski and Mycielski and investigat-
ed theoretically by Cxawron and Mycielski. The normal-
ized wave function of the acceptor ground state has the
form

P(r)=(2vrk, )
'~ exp( —p /4X )F(z/2' l, l@(r),

where the magnetic induction B is parallel to the z direc-
tion and the symmetric gauge with the vector potential
A= ,'B( —y—,x, 0) was used. A. =(Pic/eB)' is the mag-
netic length and p =x +y . 4(r) is the Bloch function
corresponding to the band extremum (for total angular
momentum equal to ——,') and F(z) is the normalized en-

velope function in the z direction which fulfills the follow-
ing effective one-dimensional wave equation

lij, (r)=c, u(r, )+cpu(r$),
P&(r)=c, u(r, )+cq u(r&),

where
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8'z is the resonance energy; it is complex when the exter-
nal magnetic fields is present because of the phase factors
which appear in integrals L and S containing the wave
functions from different acceptor centers. For the same
reason, Z is complex too; J and 6 are real. If we select
the acceptor a as the closest one to the donor center, we
have b, (0. The functions P, (r) and P&(r) have larger
amplitudes near the acceptors a and b, respectively, and
the higher energy corresponds to the state g&(r). The en-

ergy difference between the two states is

EE=(1—
f

S
f

) '[b. +4
f

W
f

+4k Re(S*W')

+ + +
Cg =X Cb

cs+ = [1+
f

x—
f

'+ 2 Re(Sx**) ] (8)

x +—=(6/2W')(1+[ I+4Re(S'W)/b, +4
f

W
f

'/b, '

—4[Im(S" W)] /b, ]' )

+i Im(S*W)/W* .

We are using the following abbreviations, similar to those
used in the paper of Blinowski and Mycielski" (Paper I):

H =Hp+ V+e /er, +e /orb . (4) —4[1m(S*W)) ]'

Hp is the valence-band electron Hamiltonian of the ideal
crystal in the presence of an external magnetic field and
includes the exchange interaction of the valence electron
with the 3d electrons of the magnetic Mn + ions. V
denotes the potential mainly due to the positively charged
donor, the nearest one to the acceptors a and b. The posi-
tion of the two acceptor centers are given by R, and Rb,
and the vectors r, and rb are given by

I =I'—R, Ib =I —Rb

The two last terms in Eq. (4) give the interaction between
the valence electron and the negative ions a and b. Fol-
lowing Miller and Abrahams, ' we shall apply the varia-
tional procedure, choosing the two variational orthonor-
mal functions (for the highest two-center acceptor states)
as a linear combination of the ground-state wave functions
u (r, ) and u(rb ) of acceptors a and b:

It is easy to show that the expression AE becomes that re-
ported in I when L and S are real. The next step is to
calculate the photon-induced, transition between the two
states described above and then to derive the formula for
the absorption coefficients.

III. ABSORPTION COEFFICIENT

We are interested in the case of small compensation,
when the compensation ratios K fulfill the condition

E(0.2 . (12)

In this case at 0 K only the acceptor nearest to the com-
pensating ionized donor is ionized (in our case the accep-
tor a). Let us take the origin of the spatial coordinate sys-
tem at the donor center and investigate its vicinity. The
electron jumps from an ionized acceptor a situated at R,
to neutral acceptor b situated at Rb. The potential V is
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N exp( 4i—rNR, /3 )d V, d Vb, (13)

the Coulomb potential of the ionized donor, and we shall
neglect the dipole potentials of other ionized-
acceptor —donor pairs presented in the crystal (this as-
sumption will be discussed later).

The probability that the acceptor nearest to the donor
center is in the element of volume d V, and that there is a
neutral acceptor in the element d Vb (Ri, & R, ) is equal to

where n denotes the unit vector parallel to the electric
vector of radiation and I(co) the intensity of the radiation
per unit interval of the angular frequency ~. The expres-
sion for the frequency ~0 is

o=aE
where bE is given by (11). For sufficiently low acceptor
concentrations, it happens that for most acceptors pairs

where N is the concentration of acceptors. If we multiply
expression (13) by a transition rate W, b, integrate over R,
and Rb (where Rb & R, ) and finally multiply the result by
the concentration of donors KN, then the total number of
jumps per unit time and volume will be obtained. The
transition rate at 0 K from an arbitrary electron bound
state a to the electron bound state b with the absorption
of a photon can be written as

1S
1
(0.03,

where

1S
1

= exp[ —R (1 —x )/4X ]

X f" dz F(z/2' A, )F((z —Rx)/2'~2/) .

Thus, we can simplify expression (11) as follows:

AE=(b, +41W1 )'~

(15)
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Here k is the unit vector in the magnetic field direction and R =Rb —R, . Now, we will replace
I(co o)=I[(b, +41 W

1

)' /iri] in expression (14) by 5(m —(b, +41 W
1

)' /A'). In this way, expression (14) becomes

W.b
=(4~'e'/cubi'e' ')[(1 Wii 1'+ 1Z 1')(&'+41 W1') '(R.n)'

+b, Im(WS*)(h +41 W1 ) '(R n)[(R)&n).k]]5(co—(b, +41 W1 )' /A') . (17)

The absorption coefficient o. is the product of the total number of jumps per unit time and volume and energy Ace of the
photon

cc=gcoEN f dV, exp( 4vrNR, /3) —f dVb W, i, ,Rb)Ra
(18)

where W, b is given by (17). It is easy to verify that the contribution of the second term of the expression [ ) in formula
(17) becomes zero when we try to evaluate the integrals in expression (18).

In the next step we will neglect the terms which contain 1Z 1. It means that the jump across the donor region cannot
be taken into account (this assumption will be discussed later). As a consequence, we can consider the donor s field in

good approximation as homogeneous in the region of the two acceptors a and b. It enables us also to set

5= —(e /e)(1/R, —1/Ri, ) .

After the change of variables it is possible to evaluate three of the six integrals in (18), and finally we have

a=(16ir e' KN /cubi) (R' +6~ ) f dx(1 —x )L (x)+2h', f dx x L(x)
0 0

(19)

(21)

where

where O'„, R~, 6, are the components of n. Besides,

L(x)= f dR R'1 Wii
1

(iri'~ —41 Wi, 1') ' l(R, (A''co —41 Wii
1

)' ), (20)
R (x, co)

where x =cos9, 9 being the angle between R and the z axis of our coordinate system. The function l (R, 6 ), in expression
(20), has the form

R
l(R, A')= f dR, R, (1—eR, 6/e ) exp( 4nNR, /3), —

R
1

and

R, i
——e le@+R /2 —(e le 6 +R /4)

R, i (e Rle@+R /4)' R/2——. —
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The lower limit in the integral over R results from the condition

2~ W„(R,x)
~

&m,
where

~
Wii(R, x)

~

has the form

~
Wii

~

=(e /e) exp[ —R (1 —x )/4A, ] (vr/2)' A,
' I dz F(z/2' k)F((z Rx—)/2'~ A, ) exp(z /2A, )

&&[1—erf(
~

z /2'~ A. )]

—R ' I dz F(z/2' A, )F((z —Rx)/2' A, )

(22)

(23)

In expression (23) we have substituted the matrix element
Jby e /eR.

Now we will discuss the assumption which permits us
to neglect the elements which contain Z in (17). This as-
sumption was already discussed in I, where the following
restriction was found:

N (8/vrR (co) . (24)

It was shown that if condition (24) is fulfilled, the contri-
bution of jumps across the donor region to integral (21) is
insignificant. Consequently, their contribution to the ab-
sorption coefficient is also insignificant. This is not exact-
ly our case. First of all, we have R (x, co) instead of R (co)
because we do not average over all directions of R as it
was done in I ~ However, the main difference between the
problem treated in I and ours comes from the phase effect
introduced by the presence of external magnetic field. '

The phase effect makes Z complex and even if the field of
the donor is homogeneous in the region of the two accep-
tors (a and b), Z reduces to

i (2e /e)S [R && (R, + Rb )].k/
~
R, +Rb

~

(25)

and not to zero as is the case treated in I. The term (25)
does not contribute significantly to the absorption
coefficient if the function R, exp( 47rNR, /—3) in integral
(21) has its maximum at R, ~R (x, co) [the angular aver-
age (

~

Z
~

) is less than 10 '
~

Wz
~

for R, ~R(x,co)].
It imposes the following restriction on the concentration
of acceptors:

N & I /7r[maxR (x,co)] (26)

which is stronger than (24).
It was shown in I that the main contribution to the in-

tegral (21) is given by R, &(mN) ', where (mN) ' is
the position of the maximum of the function
R,"exp( 4~NR, /3). Then—, if we take into account con-
ditions (12) and (26), the main contribution to the absorp-
tion coefficient is given by R, & 1/2(KN)' and
R (x,co) & 1/2(KN) i~ . Thus, we can say that the hopping
occurs predominantly between the acceptors within the
volume which contains one donor and less frequently be-
tween acceptors from different volumes.

In this work we have also used the assumption that the
dipole potentials of ionized donor-ionized acceptor pairs

can be neglected. This assumption was analyzed in I and
leads to the following restriction:

K ( [epics/e maxR (x,co)]N (27)

IV. NUMERICAL RESULTS

Our numerical calculations of the ratio a/K given by
formula (19) were performed for Hg, Mn Te with the
composition x =0.14. Following Gawron, "' we have as-
sumed the following material parameters: e = 18,
mo/m~~

——2. 5 (where mo is the free-electron mass). The
calculations were performed for two values of the magnet-
ic induction (4 and 6 T) and two concentrations of accep-
tors (0.5X10' cm, 1.0X10' cm ).

In Fig. 1 we give the ratios a~~/K and ai/K (for n~~B

and nlB, respectively) as a function of the wavelength A.

of radiation, for 8=4 T and for the two concentrations
mentioned above. In Fig. 2 we compare these ratios for
the two values of magnetic induction (4 and 8 T) and for
X =1.0&&10' cm . We can see that the dichroic ratio
az/a~~ is larger for the case of smaller magnetic fields.
Thus, for A, = 3 mm this ratio has the values 1.68 and
1.48 for 8 =4 and 6 T, respectively.

The short-wavelength limitations in our numerical cal-
culations were given by assumption (15) and the long-
wavelength one by assumptions (26) and (27). In the case
of the ratio ai/K, assumption (15) is fulfilled quite well
only for A, ~ 2 mm. For a smaller value of A, our results are
rather semiquantitative, and for A, & 1.4 mm the contribu-
tion of terms with

~

S
~

larger than 0.2 starts to be
significant. In the latter case our expression of the absorp-
tion coefficient is no longer meaningful.

In the case of the ratio a~~/K, contrary to the case of
az/K, the main contribution to the result is given by

where maxR (x, co), for a given co, stands for R (co) in I.
The validity of formula (19) for the absorption

coefficient requires assumptions (12), (26), and (27). Be-
sides, the pairs of R and x which contribute mostly to (19)
must fulfill condition (15).

The last assumption made by us is T =0 K. This
means that kT «Ace. In turn, Ace must be much smaller
than the ionization energy of an acceptor and the intensity
of radiation must be small enough if we want to avoid the
"saturation effect" (significant change of electron state oc-
cupation).
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FIG. 1. The dependence of the absorption coefficient per unit
compensation on the wavelength of radiation for Hg& Mn Te
for x=0. 14 at two concentrations of acceptors (0.5&10' and
1.0)& 10' cm ), and for magnetic induction B =4 T.

FIG. 2. The dependence of the absorption coefficient per unit
compensation on the wavelength of radiation for Hgl . Mn, Te
with x =0.14, for two values of magnetic induction (4 and 6 T),
and for the concentration of acceptors N = 1.0&& 10' cm

terms with x near to one and for this value of x, the value
of

~

S ~, for a given R, is the largest one. Then we have
to set a stronger short-wavelength limitation for the ratio
a~~/E, and the results for A. & 3 mm are rather semiquanti-
tative.

In our ranges of wavelength, assumption (27) is quite
well fulfilled for both concentrations. For Hg& Mn Te
with the composition x =0.14, the ionization energy of an
acceptor is more than 4 times higher than Ace permitted
by the assumptions discussed above. Thus, we could
avoid the inhuence of the excited states of acceptors. The
maximum value of the absorption coefficient in our ranges
of wavelength, concentration, and compensation ratio is
47 cm ', for N =1.0)&10' cm, K =0.2, and X=1.4
rnm.
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