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In calculating the elastic constants of itinerant electron magnets the two apparently different
methods, the dynamical response approach and the total-energy differentiation approach, are shown
to give the same result within the mean-field approximation. We show quite generally that there is a
discontinuous drop in the bulk modulus at a magnetic phase transition induced by a change in

volume.

I. INTRODUCTION

The mechanism of the observed close relation between
elasticity and magnetism in metals is not yet satisfactorily
understood despite its rather long history of studies (for
references see Shimizu et al.!). Such a relation has been
noted predominantly in transition metals, but recently it
is being noticed among much wider classes of metals such
as the heavy-fermion compounds.2 For instance, elucidat-
ing their unusual elastic properties in these strongly
exchange-enhanced metals is thought to be an important
clue to the total understanding of the heavy-fermion sys-
tem. We would like to find a practical method of calcu-
lating elastic moduli and phonon spectra in metals and in-
vestigate the effects of magnetism on these properties.

The usual experimental method used to determine the
elastic constant in a metal is to measure the velocity of
sound in it. Therefore a natural way of calculating the
elastic constant is to calculate the acoustic-phonon fre-
quency w, and to obtain the sound velocity, s, directly as

lim w, =sq . (1.1)

qg—0
Since the calculation of the phonon frequency involves the
dynamics of the coupled system of electrons and ions, we
shall call such a method of calculating the elastic constant
the dynamical approach.

In the dynamical approach the screening of the bare
ion-ion interaction of the conduction electrons is essential.
There, the magnetic properties of a metal are reflected in
the screening constant. In this way, as will be briefly re-
viewed in Sec. II, it was recently shown that the elastic
constant or the sound velocity in the paramagnetic state
of a metal is very directly related to the exchange-
enhanced susceptibility X, as

2
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is the Bohm-Staver sound velocity, Qp, and N (0) being,
respectively, the ionic plasma frequency and the electronic
density of states per spin at the Fermi surface in the
paramagnetic state. The parameter & is introduced to
represent corrections to the jellium model arising from the
nonhomogenous nature of actual charge distributions. In
the simplest case this is equivalent to writing

Q2 —Q4=&s3q?,
where (1, is the bare-phonon frequency. Similarly for the
ferromagnetic state it was shown that
2
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N_(0)
1—IN, (0)

where I is the exchange interaction between electrons and
N+(0) is the density of states of * spin electrons at the
Fermi surface. In the spin-unsplit state N, (0)=N_(0)
=N (0).

The interplay between elasticity and magnetism is clear-
ly manifested in the results of Eqgs. (1.2) and (1.5). The
magnetic properties of a metal in the paramagnetic state
are embodied in the magnetic susceptibility X, and Eq.
(1.2) shows how directly the elastic constant of the metal
is related to X. In the ferromagnetic state of a metal, the
fundamental quantity to represent its magnetic properties
is the magnetization, and Eq. (1.5) shows how the elastic
constant is directly related to the spin-split electronic den-
sity of states at the Fermi surface, caused by the magneti-
zation. Note that Eq. (1.5) is equivalent to Eq. (1.2) when
the spin splitting of the bands vanishes since the Stoner
susceptibility (at T =0) is given by X=2u’N(0)/
[1—IN(0)].

There is, however, an entirely different way of calculat-
ing elastic constants. If we set the total energy of a metal
to be E, the elastic constant (bulk modulus) C is calculat-
ed as

2
c=v>_k,

e (1.6)

V being the volume of the system. Then the sound veloci-
ty® of the system is obtained as
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where D is the mass density of the metal. We call this
method of calculating elastic constants via Eq. (1.6) the
total-energy approach.

If the calculations are carried out exactly, the above
two different approaches, the dynamic and the total ener-
gy, are expected to give the same result. However, two of
us have shown,* with a simple quantum-mechanical mod-
el, that this apparently obvious equivalence may not al-
ways be correct. The paradox appears to stem from the
fact that in the total-energy approach the volume deriva-
tives of the energy are taken with both the number of elec-
trons and the number of ions constant and equal, whereas
in the dynamical approach the number of ions is kept
constant but the number of electrons is allowed to vary to
minimize the energy. However, if the electron-electron
interaction is long range the two quantities calculated
reduce to the same value. In addition, actual calculations
necessarily involve some approximations and there are
different kinds of approximation. If some approximation
is made in the calculation, the two approaches may pro-
duce different results even if the approximations taken are
of the same nature. Such situations have been well
known for the paramagnetic state of an electron gas, the
simplest model of a metal, once the effects of the
electron-electron interaction are included.’ Similar situa-
tions are noted also for some more realistic models of a
metal in the paramagnetic state.®

Recently a number of very elaborate calculations have
been done on the elastic constants of transition metals
with the total-energy approach,’ but from the observations
as above on the discrepancy of the two approaches, such
results are viewed to have nothing to do with the general
physical picture given in Egs. (1.2) or (1.5) as obtained
from the dynamical approach. This is clearly an unsatis-
factory state of affairs—especially since the total-energy
method is not feasible for calculating the shear modulus
for which the dynamical method is most suited. In this
paper we wish to address the problem of, given a particu-
lar model and approximation in the total-energy ap-
proach, what is the corresponding consistent approxima-
tion, if any, in the dynamic approach. Since we intend to
show explicitly the equivalence of the dynamical and
total-energy approaches we must choose a model which is
analytically tractable. Within the jellium model we
demonstrate explicitly the equivalence of these two
different approaches in calculating the bulk modulus with
both Hubbard- and Xea-type interactions. The explicit
demonstration hinges on the volume dependence of the
effective interaction constant. We show that the
equivalence is valid for any volume dependence provided
that the effective interaction parameter satisfies Eq. (A.5)
where we can include correlations as well in the quantity
E.

In fact, an example of such an equivalence was earlier
given by Brovman et al.® for a pseudopotential model of a
metal, but in that example the exchange interaction be-
tween electrons was not considered explicitly and thus it
bears little on the subject of the relationship between elas-

ticity and magnetism. As will be shown in Sec. III, the
model we use for a metal is a much simpler but more gen-
eral one including the exchange interaction between elec-
trons. Our new finding in this paper indicates the general
validity of the results of Egs. (1.2) and (1.5). Such an ob-
servation would be useful in many ways in understanding
the interplay of magnetism and elasticity in metals. It can
be argued that the jellium model is not a very realistic
model for magnetic systems such as transition metals.
We feel that a demonstration of the equivalence between
the total-energy and dynamical approaches is a prelimi-
nary and necessary step toward the treatment of the mag-
netic and elastic properties of magnetic metals since in a
more realistic band-structure model certain calculations
are only feasible in one or other of the two approaches.

First, in Sec. II we briefly summarize how the results of
Egs. (1.2) and (1.5) were obtained from the dynamical ap-
proach. Then in Sec. IIT we show how the total-energy
approach also leads to the same results, for the Hubbard-
type constant-exchange-interaction model. The corre-
sponding proof for the Xa model is given in the Appen-
dix. Concluding remarks are given Sec. IV.

II. DYNAMICAL CALCULATION
OF THE ELASTIC CONSTANTS

Starting from the basic model of a metal whose Hamil-
tonian consists of four terms—the one-particle energy of
the electrons, the Coulomb repulsion between electrons,
the bare interaction of the ions, and the electron-phonon
interaction—the screening of the phonon frequencies
from Q, to w, is obtained as®

wi =02~ |g(q@)|*X.(q) . 2.1)

Here g(q) is the electron phonon-interaction constant
and X.(q) is the electron density-response function. In
the present discussion we neglect the lattice structure of
the ions (jelliumlike model) and accordingly, we consider
only the longitudinal-acoustic phonons. Equation (2.1) is
an exact result; approximations are introduced only
through the calculation of X,.(q).

In the mean-field approximation, including the ex-
change effects, we obtain the following result for the elec-
tron density-response function,’

B F (@Q+F_(q)
140 (QF (Q+F_(q@]

where v(g)=4me?/Vq? is the Fourier transform of the
Coulomb repulsion between electrons and

- Fi(g)
Fela=7"7"@

X.(q) (2.2)

(2.3)

is the exchange-enhanced Lindhard response function of
+ spin electrons which is given in terms of the ordinary
Lindhard function

( )—f( +)
Falq)=— zf &, +)—f €k+q,+ i

k €k, + —Ek+4q,+

(2.4)

ex+ and f(e) being, respectively, the one-particle energy
of * spin electrons and the Fermi distribution function.
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Note that Eq. (2.2) is valid both for the paramagnetic and
ferromagnetic state, and that

lin})Ft(q)zNi(O) . (2.5)
q‘D
Inserting Eq. (2.2) in Eq. (2.1),we obtain'®
i g2 lg@]’ glq@)|*/v(g) .
? 7 v(q) 1+v(Q[F,(q+F_(q)]
(2.6)

In the smeared-out point-charge ion model (pure jellium)
the first term on the right-hand side of Eq. (2.6) vanishes
since there (©,)*=(Q,)’ and

sz g(g) 2 .

2.7
! viq) @.7)

We, however, account for deviations from the pure jellium
model by the parameter & as in Eq. (1.4). Note that if we
assume the pure jellium model (i.e., £=0) and confine at-
tention to the paramagnetic state [F, (q)=F _(q)=F(q)]
and neglect the effects of the exchange interaction on the
electron density response or the screening (i.e., I =0), Eq.
(2.6) reduces to the familiar result’

Q3
1+2V(g)F(q)
The Bohm-Staver sound velocity so, Eq. (1.3), is obtained
from Eq. (2.8) by the procedure of Eq. (1.1) and similarly,
the results of Egs. (1.2) and (1.5) are obtained from Eq.

(2.6). Note the Stoner susceptibility at finite temperature
is given as X =2u2F(0)/[1—IF(0)].

wk= (2.8)

III. TOTAL-ENERGY CALCULATION
OF THE ELASTIC CONSTANTS

The total energy of a metal at T =0 in the Hartree-
Fock approximation is given in standard texts on many-
body theory.®!! Here we shall write it as follows

E=3 e~ 3 (WV3 +02 +1 S Uglin)

k,o i#j

=Eo+Ee+Es . @3.1)

In the one-particle energy Eq of electrons ny,, the number
of electrons in the state with wave number k and spin o
(4+or—), is 1 or O depending on whether k <kp, or
k > kpo, kp, being the Fermi wave number of o-spin elec-
trons. Note that we have chosen to shift the chemical po-
tential instead of shifting the energy.

Under our assumption of the uniform distribution of
both the negative electron charge and the positive ion
charge, the three kinds of (direct) Coulomb interaction
energy—between electron and electron, ion and ion, and
electron and ion—cancel each other and do not appear in
Eq. (3.1). Note that such a cancellation persists through
uniform change in the volume of the system and magneti-
zation of the electrons. The last two terms in Eq. (3.1)
are outside of such classical Coulomb interactions.

For the exchange energy E., we have replaced the
relevant matrix element of the Coulomb potential by I,

which is the same effective exchange interaction as ap-
peared in Egs. (1.5) and (2.3). WN,=3,nk, is the total
number of electrons with spin o. The last term in Eq.
(3.1) represents the energy of ion-ion interaction beyond
that of smeared-out point-charge jellium ions.

In calculating the elastic constant from Eq. (3.1) with
the prescription of Eq. (1.6), we first treat the paramagnet-
ic as in (3.1) and then in (3.2) we treat the ferromagnetic
case.

A. Elastic constant in the paramagnetic state

Let us carry out the required volume differentiation of
the total-energy equation (3.1), term by term. First, in the
paramagnetic state, since ny, =ny_ =ny, the one-particle
part of the electron energy is written as

EO:ZEEknk . (3.2)
k

Now, we are required to know how €, depends on the
volume V and there seems to be no simple general answer
for realistic electronic levels. In this paper, corresponding
to the assumption of the uniform distribution of the ionic
charge, we assume the following free-electron-like disper-
sion,

(3.3)

where m is the effective mass of an electron. In this case
Eq. (3.2) reduces to

Eo=3Ner (3.4)
where ep=#’k#/2m is the Fermi energy with
krp , =kp_ =ky related to the volume as

32N 1/3
kp= iV— : (3.5

N=WN, +N_ being the total number of electrons.

Note that the entire volume dependence of E, comes

only through that of kr given in Eq. (3.5). Thus the elas-

tic constant Cy originating from Ej is obtained as
d? 2 Ner

Co=V-2—F
AT T

(3.6

The corresponding sound velocity s, is obtained from Eq.
(1.7) with D=NM;/V, N and M, being, respectively, the
total number and the mass of the ions, as

1/2 1/2
2./‘/8[:

mZ
INM, UF , 3.7)

3M;

So=

where we set N=NZ and vg =#kg/m is the Fermi veloci-
ty of the electrons. This sound velocity coincides with
that of Bohm-Staver, Eq. (1.3), as can be checked if we
note

Vmk F
2m

2

QZ _ 47T.NZ€2
P M,

|

and N (0)=

’ (3.8)

N
™
o

corresponding to Eq. (3.3).
Thus, for the electron-gas model of a metal with Eq.
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(3.3), we have confirmed that the elastic constant in the
paramagnetic state calculated without considering the ex-
change interaction (I =0) or deviations from the
smeared-out point-charge jellium model (§=0 or E;=0),
using two different methods, the dynamic and total-energy
approaches, give the same answer. This result is well
known. However, it is only up to here that the
equivalence of the two different approaches has been
demonstrated explicitly.

Let us now proceed to calculate the effect of the ex-
change energy on the elastic constant. In the paramagnet-
ic state the exchange energy given by Eq. (3.1) is rewritten
as

Eex=—1IN* . (3.9)

Obviously the total number of electrons, W, is indepen-
dent of the volume of the system. As for the effective ex-
change interaction I, the volume dependence depends on
the approximation used for the effective exchange. In this
section we consider a Hubbard-type short-range interac-
tion employed in magnetism, whereas in the Appendix we
consider a density-dependent exchange interaction used in
the Xa or local-density approaches. We first note that it
is the Fourier transform of the distance-dependent ex-
change interaction I (r),
_1 irq

H@=; [ Ire'dr. (3.10)
If I (r) is short ranged the integral would not depend on V
and, further, on q, as in the case of the Hubbard model.
Thus, I(q)=I«<1/V, or

d 1 d? 2
—I=——=I, I=—1I 3.11
av v:oavt p? G40
With the relation of Eq. (3.11), we obtain, from Eq. (3.9),
d*? I ., 2 Ner
V——FEu=——7 = ——= N s 3.12
T E. 8V./\/ 3V IN (0) ( )

where we have used the relationships of Egs. (3.5) and
(3.8). Adding this contribution to Eq. (3.6) we arrive at
d? 2 Nerp

V Eo+E)=—
de( o+ e) 3 v

[1—-IN(0)] . (3.13)
It is obvious that this result reproduces the dynamical ap-
proach result of Eq. (1.2) with £=0.

Finally, let us consider the effect of E; on the elastic
constant. If we write the effective non-Coulombic ion-ion
interaction as U:(R;—R;), R; being the position of the
ith ion, the corresponding energy is given as

1

E§:2

S U:(R;—R;)

i#j

— 1 [ UAR—RN (RIN(RdRdR’

(3.14)

o=

S U:(qQIN(QIN(—q) ,
q

where N (R) is the density of ions, N(q) is its Fourier
transform,

N(g@)= | N(rle™dr, 3.15
(q f y (r)e r ( )
and the Fourier transform of U, is defined similarly to
Eq. (3.10) with the same V dependence as in Eq. (3.11).
Extracting the N dependence from the Fourier transform
N (q), we obtain

E:=1NU:Q), (3.16)
where Q is a representative wave vector. It corresponds
to the inverse of the dominant range of the non-
Coulombic interactions. In a real lattice this may entail a
sum over the reciprocal lattice. Accordingly,

V;%%Eg:ivl;ijg(()). (3.17)
If we include this contribution to Eq. (3.13), we obtain
V-l ot EatEo— 2 Y iNvo+E], GaB)
av? 3V
with & defined as
@3:%@(@. (3.19)

It is obvious that the result of Eq. (3.18) reproduces that
of Eq. (1.2). That the definition of £ as given by Eq.
(3.19) is equivalent to that of Eq. (1.4) can be checked
from the general formulation relating the ion-ion interac-
tion to the phonon frequency.®

B. Elastic constant in the ferromagnetic state

In dealing with the ferromagnetic state of a metal we
define the relative magnetization as

N, —N_  Ny—N_

M= =N, N

(3.20)

which is determined from the condition of the total-
energy minimum

oE

aM =0 (3.21)
and

d’E

s "0 (3.22)

For the total energy of Eq. (3.1) the condition of Eq.
(3.21) gives

EF+—81:,—’=1./VM ’ (3.23)

where €r, is the Fermi energy of the o-spin electrons
measured from the bottom of each spin band. For the
present free-electron-like energy dispersion of Eq. (3.3),
ero =1k, /2m with

Vk}
Ne=—E N iy (3.24)
6 2
Thus Egs. (3.21) and (3.23) become
0E N 23 (1 _ MV ITACM —
——aM—zsp[(1+M) (1—M)**1—3IN°M =0,

(3.217)
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)2/3]= IN

[(A+MPP—(1—M T—M=3IN(OM .
F

(3.23)

Since €r and I change with volume by the relations of
Egs. (3.5) and (3.11), Eq. (3.23') reminds us that changes
in ¥ induce changes in M: dM /dV=0. Because of this,
for the elastic constant in the ferromagnetic state we are
required to calculate

dE 9 0K |dM 2+2V PE  |dm
av: = av? ' aM? | dv VoM | dv |-
(3.25)

The last two terms do not appear in the paramagnetic
state.

If we note that in the ferromagnetic state the energy of
Eq. (3.1) is rewritten as

E=3(Niers+N_er_)— %NZ( 1+M%)4+E;,  (3.26)

the first term on the right-hand side of Eq. (3.25) is calcu-

lated as

’E 2 Ner
av: 3 v

%[(]+M)5/3+(1—M)5/3]

—INOO)(14+M)+E L. (327

As mentioned already, E; is independent of magnetiza-
tion. Obviously if we set M =0 in Eq. (3.27) it reduces to
Eq. (3.18).

In calculating the two remaining terms in Eq. (3.25),
from Eq. (3.23’) first we obtain

2
a _ 3VIM (3.27")
dv ~ [(1/N.(0)+1/N_(0)]—-2I"’ ’
where we used
mGpg
N,(0)= ) (3.28)
2 H
]
28+ +&)25_+8 1) N(0)

together with Eq. (3.24).
The other necessary two derivatives are obtained from
Eq. (3.21%),

PE NP M| 1

OE _Np N1 —2r|, (329

aM2~ Xur 4 |N.00) T N_0 )
PE —1..,

avam — v VM B30

where Xyr is what is the so-called high-field susceptibility,
the condition of Eq. (3.22) being equivalent to requiring
Xur >0, and in Eq. (3.30) the relation of (3.23') was used.
Combining these results in Eq. (3.25), we finally obtain
the elastic constant (bulk modulus) or the sound velocity
in the ferromagnetic state

2

S = L(14+M) P (1—M)*3]—IN (0)(1+ M)+ £

S0

M?
[(1/N_(0O)+1/N_(0)—2D] °

The result of Eq. (3.31) which is obtained by the
present total-energy calculation looks quite different from
that of Eq. (1.5), which is obtained by the dynamical ap-
proach, except the case of M =1, where the last term van-
ishes in Eq. (3.31). (As for the case of M =0, see discus-
sion below.) Quite pleasingly, however, we can show the
equivalence of Eq. (3.31) and Eq. (1.5) for general values
of M. A procedure to prove this equivalence is to rewrite
the quantities M and IN (0) appearing in both of these re-
sults in terms of {4+ which is defined by

—2IN(0) (3.31)

N+ (0)=N (0)1£M)'"3=N(0)¢+

and using the following relations:

M=L& -3 )=0E, —E NEE+E,6-+EC2),  (3.32)

INO=3 e (3.33)
2 44646 +8%

Equation (3.33) is derived from Eq. (3.23). In this way

we finally see that both Egs. (1.5) and (3.31) reduce to the
following same expression:

[2N L (0)+N_(0O)][2N_(0)+N . (0)]

2
S| e L —E—
'So ] I RN

Discontinuity. One important point to note about Eq.
(3.34) is that it does not reduce to Eq. (1.2) for M =0. If
we set N, (0)=N _(0)=N(0) corresponding to M =0 in
Eq. (3.34), we obtain (s/sg)>=£—2. On the other hand,
if we set IN(0)=1 corresponding to M =0 in Eq. (1.2),
we obtain (s/sg)>=£&. Since Eq. (3.34) is equivalent to
Eq. (1.5), this implies that for M —0 Eq. (1.5) does not
continuously reduce to Eq. (1.2). Such a jump in the elas-
tic constant of an itinerant-electron ferromagnet at M =0
was earlier noted from the dynamical approach!? and our
present findings show that the jump is not due to any

(3.34)

2 [N,(0)+N_(0)][N,(02+N,(0OIN_(0)+N_(0)*]

f
inadequacy inherent only in the dynamical approach.
Note that such a jump in the longitudinal elastic constant
persists even in a more elaborate treatment of electron en-
ergy.’’

We can get a physical picture of the origin of the jump
in the bulk modulus across the magnetic phase transition
as follows. Consider the critical region where the system
becomes ferromagnetic upon varying the volume. We
may expand the energy in a Landau fashion:

E(V,M)=E,(V)+ A(V)M*4+B(V)M*+ - - -
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We may replace 4 (V) by a(V —Vy) and B(V) by B(Vy),
where Vj is the volume at which the system becomes fer-

romagnetic. Differentiating with respect to volume we
have
2
d’E _,d’E, | ¥E |dM
dv? dv? oM? | dV

Thus the discontinuity arises from the fact that M? is
nonzero in the magnetic phase and has nonzero slope,
whereas M? vanishes identically in the paramagnetic
phase and therefore its slope also vanishes identically.
This is similar to the A discontinuity in the specific heat in
second-order phase transitions. There the abruptness
comes from extra entropy due to magnetic degrees of free-
dom.

Since E is a function'* of M? (denoted here by z), one
can show quite generally that
—1

I’E_,d°E, | n? PE |PE | OE
dv? av? V 9ndz | 3z2 dz dn
J’E | dz
= —_— s 3.35
dz% | dV ( )

the discontinuity then arises from nonzero 3°E /3z%. One
can convince oneself that this quantity corresponds to the
change in the effective Hamiltonian or force with magneti-
zation and hence the discontinuity is seen to be a truly
magnetoelastic effect.

Furthermore, thermodynamic stability requires that this
quantity is positive definite and hence the discontinuity is
always negative. In the dynamical approach, this is un-
derstood as the overscreening of the ion-ion interaction by
the negative screening constant of electrons. Now we
have seen how the total-energy approach also leads to the
same result.

IV. CONCLUDING REMARKS

The dynamical response approach gives us the compact
and transparent expressions of Egs. (1.2) and (1.5) for the
longitudinal sound velocity or bulk modulus. Indeed it
can be generalized to obtain not only other elastic con-
stants but also the dynamical matrix.!> Our present paper
demonstrated how such results of the dynamical approach
can be reproduced from the total-energy approach with
the standard mean-field approximation. In other words,
we explained which kind of approximation in the total-
energy approach corresponds to the results of the dynami-
cal approach. Such a correspondence between these two
approaches is not obvious at all. For instance, at no time
in the dynamical calculation did we need the volume
dependence of the effective exchange interaction explicitly,
but in the total-energy approach it was essential to invoke
the correct volume dependence of the effective exchange
[e.g., (3.11) or (A2)] to obtain the same results of Egs.
(1.2) and (1.5).

From our present study we learn the importance of
referring to both approaches in understanding the various
contributions to the elastic constants. One such example
is the above volume dependence of the effective exchange

interaction. A second example is the correction due to
the nonhomogenous or nonjellium nature of actual ma-
terials. The discussion in Sec. III around Eq. (3.14) gives
a general introduction to the correction £ in Eq. (1.2).
For a more detailed discussion one needs to go to the
dynamical approach. According to Ami, Cade, and
Young!® we have two terms to the effective ion-ion in-
teraction, (i) the bare ion-ion interaction and (ii) that
mediated by the electrons which depends on the (dielec-
tric) susceptibility. A closer analysis shows that, in an ac-
tual metal, besides the exchange enhancement given by
Eq. (2.3) and the renormalization by the long-range
Coulomb v (q) in Eq. (2.2), there is also a renormalization
due the short-range components of the Coulomb potential.
In fact, the contribution to & from this source is
~2N(0)3g0(G), where 0(G) is the Fourier transform of
the Coulomb interaction (suitably modified by the ap-
propriate from factors) at the reciprocal-lattice vectors G.

In the paragraph titled Discontinuity we show quite
generally that, in a magnetic phase transition induced by
changes in volume, there is a discontinuous drop in the
bulk modulus or sound velocity. The origin of this
discontinuity is the onset of an effective interaction in-
duced by the magnetization. This is reminiscent of the A
discontinuity in the specific heat in a second-order phase
transition. Note, however, that in a complete discussion
of the elastic constants it is necessary to include that of &
discussed previously. Since £ represents the short-range
part, outside of the long-range Coulomb part, of the
effective ion-ion interaction, it may also be sensitive to the
thermal expansion of the metal.

The total-energy approach necessarily involves the cal-
culation of the electronic density of states, which is re-
quired in the dynamical approach. Our present work
demonstrates the usefulness of referring to the dynamical
approach results [such as Egs. (1.2) and (1.5)] even when
carrying out a total-energy calculation.

Our discussion in this paper is based on a simplified
model of a metal as given by Eq. (3.1) with the free-
electron-like dispersion of Eq. (2.3). It is an interesting
problem to extend the present discussion explicitly to
more realistic situations with a periodic ionic lattice.
Another interesting problem would be to extend our dis-
cussion to antiferromagnetic metals where currently quite
different results are obtained by the two approaches.'®

APPENDIX

In the appendix we give another model for which both
the total-energy and dynamic approaches give the same
result for the bulk modulus. In this model the exchange
energy is taken to be precisely that given by the Hartree-
Fock approximation. The exchange energy may still be
written in a form similar to Eq. (3.1), viz.,

Eo=—3T, N4y +T_N2), (A1)
where
B re? v 23 N 2/3
=—(6 24173 =7
£=73 ) A SN (A2)
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We note that the effective interaction depends on the spin
and that the volume dependence is now ¥ ~!/3 (instead of
1/V as in the Hubbard case).

In the paramagnetic case we have an exchange energy

Eoo=—2TN? . (A3)

Comparing this to Eq. (3.9) we have an extra factor of 3.
However, this factor is cancelled precisely by those arising
from the two volume differentiations of I with the result
that we again obtain Egs. (3.12) and (3.13) with T replac-
ing 1.

For the spin-polarized case the sound velocity is given
by the following generalization of Eq. (1.5),

: 2N (0)
N, (0)/[1=T, N, (0)]+N_(0)/[1-T_N_(0)]"

(A4)

N

So

where, as noted above, the effective exchange interaction
depends on spin. We note that although Eq. (A4) is an
obvious generalization of Eq. (1.5), Eq. (Al) is not ob-
tained from Eq. (3.1) by splitting the I into 7, and 1_.
This is because, to satisfy conservation requirements” we
must have, for the effective electron-hole interaction'®

1o—(— s (AS)
T AN
The total energy corresponding to Eq. (3.26) is
3Ne
E== C I M) 4+ (1-M)¥)
3Neg -
—ZEINOLI+M*3 +(1—=M)*3] . (A6)

The equilibrium magnetization is then determined by the
vanishing of the quantity

oE Nep
oM 2

{(14+M)?3 —(1-M)*?

—2INO)[(1+M)'"3—(1—=M)'3]} . (AT

To calculate s we require the three derivatives correspond-
ing to Egs. (3.27), (3.29), and (3.30), viz.,

PE _ Ner
av: 3V

{(1+M)5/3+(1—M)5/3

—INO)[(1+MP*3+(1—-M)*?]} , (A8)

2 N
O°E _ JNEr ((14+M)" 31—~
oM? 3
—TN(O)[(1+M)_2/3+(1_M)‘2/3]}
.N2 1 1 _ _
T4 ~I,— A9
4 N+(O)+N7(0) 1,-1_1, (A9)
and
82E NEF_ - s
avom ~ a3y INOM+M)T—(1=M)"].  (Al0)
Using the above we may evaluate dM /dV to give
d_M_(_ aZE azE -1
dv VM | aM?
I 1/3_(1__agy1/3
TRy (A11)

T V1/N.(O)+1/N_(0)—T, T 1"

Substituting these into Eq. (3.25) we obtain for the bulk
modulus

2

S :%[(1+M)5/3+(1_M)5/3]

So

—INO)[(14+M)*3+(1—M)*?3]

_ 7 1/3 (1 __aq\1/312
LN (0) a+m'"2—a-m)'"p
[1/N,(0)+1/N_(0)—T, —T_]

(A12)

To prove the equivalence of this and Eq. (A4) we recall
the definitions £+ given above Eq. (3.32) and note that

I,62=1, IN(O)=L¢&, +6) . (A13)
We find
s 2 1
;; :m . (A14)
We again obtain a jump (=1) in the bulk modulus.

Since this is equivalent to Eq. (3.35), the positive value in-
dicates that 3°E /dz> <0 and the magnetized state is un-
stable. This is a well-known result for the Hartree-Fock
state.
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