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In this theoretical study, the quasichemical approximation for an 4,_,B, alloy is formulated for
an arbitrary lattice and choice of cluster. The statistical problem of the average number of each class
of clusters is collapsed into a polynomial equation. An n-atom cluster of type j is characterized by
an excess energy €;, the number of B atoms n;(B) and a degeneracy g;. If €; is a linear function of
n;(B) and g; is a binomial coefficient of n and n;(B), then the cluster populations are random. Strains
due to lattice-size mismatches, chemical (electron-ion interaction) differences, and differences between
the electron-electron Coulomb interactions of the alloy constituents drive nonlinear variations of &;
on n;(B). The g; is modified by coherent, externally applied stresses and temperature gradients
present during crystal growth. We derive the conditions under which compounds are formed or spi-
nodal decomposition occurs. We also discuss the possibility of materials consisting of arrays of two
kinds of domains: one a random alloy and the other an ordered compound. The theory is special-
ized to semiconductor alloys A,_,B,C in a distorted zinc-blende structure; numerical results are
presented for Ga; _,In,As and GaAs,_,Sb, alloys. A major conclusion is that semiconductor alloys
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are almost never truly random.

I. INTRODUCTION

In a binary alloy 4,_,B, or alloy 4,_,B,C, the 4
and B atoms assume some configuration on a crystalline
lattice.! Computation of the partition function divides
naturally into the statistical part, i.e., the number of ways
to configure the 4 and B atoms on the lattice with a given
energy, and the computation of the energies themselves. >*
It is well known that precise computation of the statistics
is notoriously difficult, even for the simplest of Hamiltoni-
an.*~7 For realistic Hamiltonians, an alloy is usually ap-
proximated as an ensemble of statistically independent,
few-atom clusters. In the so-called cluster approxima-
tions, the lattice is (arbitrarily) divided into clusters of
small size. In the fcc lattice, for example, a popular
choice of cluster is the tetrahedron of four atoms, in
which case the possible “‘species™ of clusters>3~ 1% are 4,,
A;3B, A,B,, AB;, and B,. The Hamiltonian must be so
constructed that the energy of each cluster is independent
of its environment. In general, this requires some approx-
imation to the true Hamiltonian. Because the choice of
cluster affects both the statistics and the energetics, the
approximations for these two aspects of the theory are
closely linked and must be treated on an equal footing.
This point has not been fully appreciated, and one aim of
the present work is to illustrate its significance.

We formulate the partition function Z for an arbitrary
lattice and cluster in the general quasichemical approxi-
mation, the simplest of the cluster approximations. We
shall demonstrate that for the special case of the zinc-
blende lattice, the combinatorial analysis reduces identi-
cally to results!® obtained from an early version of the
cluster variation method of Kikuchi.!! The statistical

36

problem then collapses into a single polynomial equation
whose solution yields a chemical potential that constrains
the average number of 4 (or B) atoms to a fixed value.?
All thermodynamic quantities, including the mixing
enthalpy and the cluster populations, are essentially trivi-
ally obtained once the chemical potential is known. Al-
though we shall formulate the theory generally, we will
focus on the tetrahedrally coordinated zinc-blende lattice,
for which the quasichemical approximation (QCA) is par-
ticularly suited. Besides the thermodynamic quantities,
our theory yields information about local correlation, e.g.,
the distribution of atoms and local bond lengths within
clusters. Our results show that a realistic semiconductor
alloy is never truly random. This information is impor-
tant for studying alloy properties that are sensitive to the
local environment, such as local phonon modes, defects,
NMR spectra, and the like.

A genuine QCA is equivalent to a grand ensemble of
clusters in equilibrium with the alloy as a reservoir. The
distribution of different cluster configurations is governed
by the cluster energy, the number of A4 (or B) atoms, and
the degeneracy. Because QCA is strictly correct only for
homogeneous alloys and does not properly account for all
statistical correlations among clusters, its applicability has
limits. However, the theory can be extended with addi-
tional approximations to inhomogeneous phases. All
pseudobinary alloys grown from equilibrium processes are
believed to fall within the scope of this theory. To optim-
ize the accuracy of the predictions, the cluster size should
be comparable to the correlation length in the alloy. Thus
caution must be exercised in applying QCA predictions to
alloys with long-range order. However, for a given cluster
size, the energy and the statistics are treated on an equal
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footing. A related cluster approximation, the cluster vari-
ation method (CVM) of Kikuchi,>® represents an im-
provement over QCA in the statistical counting of the
number of cluster arrangements corresponding to a given
alloy energy, in which some statistical correlations be-
tween clusters are included. Therefore, CVM is more pre-
cise for alloys in which long-range correlation is impor-
tant, e.g., systems near the order-disorder transition. For
general lattice structures, however, the solution in CVM is
considerably more difficult than our present formulation
of the QCA. The far simpler QCA is to be preferred in
those instances where the counting schemes in CVM and
QCA are equivalent (e.g., pair clusters), the Hamiltonian
is sufficiently crude that errors in the statistical approxi-
mation are not significant, or the long-range order is not
important. The physically important zinc-blende lattice
with five-atom, 16-bond clusters proves to be one of the
exceptional cases in which QCA and CVM yield identical
results.

For an alloy with long-range order, there is an addi-
tional complication beside the combinatorial analysis.
There are extra many-body long-range contributions to
the total energy of the alloy that are not simply expressed
as a sum of cluster energies. These extra energy contribu-
tions arise from electron-electron Coulomb interactions
that are enhanced by Madelung sums.* A way to treat
this problem is as a nearly perfect crystal, for which
band-structure techniques work best. The disorder may
then be treated as a perturbation. Some recent calcula-
tions®!2 on semiconductor alloy statistics have adopted a
hybrid procedure that uses the cluster energy obtained
from a “‘crystalline” calculation, but employs the cluster
statistics—the CVM. Because this approach includes
long-range effects, it is doubtful that it accurately de-
scribes disordered phases of an alloy, but it should be use-
ful near and below order-disorder transition temperatures
where long-range order is present. This paper presents
details of the quasichemical approximation in Sec. II.
Section III concentrates on pseudobinary semiconductor
alloys, and Sec. IV presents concluding remarks.

II. STATISTICAL THEORY

A. Quasichemical approximation and constraints

We use the term quasichemical approximation (QCA) in
a precise sense, namely that the crystal is (arbitrarily) di-
vided into an ensemble of clusters each of which is taken
to be independent-—statistically and energetically—of the
surrounding configuration. The term originally derives
from a treatment of the lattice as a series of chemical reac-
tions between clusters. In the example of the four-atom
tetrahedron, there are three reactions:

A4+B4:A3B +AB3 :2A2B2: A4+B4 .

The mass-action equations (three in this case) and the two
constraints that fix the number of 4 and B atoms deter-
mine the concentration of the different molecular species.
Our formalism can be shown to be equivalent to this point
of view; it makes evident the essential nature of the as-
sumption the QCA embodies.
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The essence of the QCA is the assumption of statistical
independence of the different clusters. We shall first
derive a combinatorial formula in this approximation.
Using the method of steepest descents, we exploit our par-
ticular form of the combinatorial expression to collapse
the partition function into a single polynomial for an
effective activity coefficient, which bears a simple relation
to the chemical potential. All cluster approximations con-
strain the material to be spatially homogeneous every-
where. To describe a spatially inhomogeneous alloy in a
cluster approximation, the free energy must be minimized
with respect to the relative populations of the various
compositions, subject to the constraints that the total
number of atoms is fixed and the population distribution
yields the correct composition.

Consider a lattice of N sites on which the 4 and B
atoms assume some configuration. If the alloy composi-
tion is expressed as A4,_,B,, the numbers of 4 and B
atoms are N 4=(1—x)N and Nz=xN. We first decom-
pose the lattice into M n-atom microclusters, which will
be treated independently. We classify the various species
of microclusters into groups of distinct cluster energies €.
For a particular configuration of the entire lattice, there
are M; clusters of energy ¢;, with M = 3, M;. This can
also be written as

J

where x;=M; /M is the fraction of clusters of energy ¢;.
The index j =0,1, ... ,J ranges over the different species
of microclusters identified by energy ¢;, the number of A
and B atoms [n;( A), n;(B), respectively], and degeneracy
g;- There is additionally a constraint on the composition:

> nj(Axj=nN,/N=n(l—x), (2a)
j

or

> nj(B)x;=nNg/N =nx . (2b)
J
To give an example, consider the tetrahedron of four
atoms in the fcc lattice. In the absence of forces breaking
the cubic symmetry, there are five distinct cluster ener-
gies, €;, depending only on the number of A4 atoms, j=0,
1, 2, 3, or 4. The number of distinguishable ways, g, of
arranging the A4 or B atoms on the four sites are g; =1, 4,
6, 4, and 1 for j=0,1,2,3,4. These degeneracies can be
split by mechanisms that lower the symmetry, such as a
coherent strain, in which case the number of distinct ener-
gies would increase. In general, the g; must satisfy
3,8 =2" In this example the number of clusters M
equals the number of atomic sites M =N.

B. Partition function

In a cluster approximation, the partition function Z can
be written generally as

Z({Mjl): E(I'Z)G({Mjl)
(M}

e—E({Mjl)/kT, 3)

where E({M,}) is the energy of the solid configured with
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the set of microclusters {M;}=M,,M,,... and can be

written

Equation (4) follows from the second assumption of the
QCA, that the energy of each cluster is independent of its
environment. The superscript on the sum in Eq. (3) indi-
cates that the set {M 7} is constrained to satisfy Egs. (1)
and (2). G({M;}) is the number of ways to configure the
alloy w1th the set of {M;}] microclusters. The number of
configurations G({M;}) is the total number of ways in
which N, indistinguishable atoms and Njp indistinguish-
able atoms can be placed on N sites, multiplied by the
fraction of all configurations with N, and Ny atoms that
have {M;} microclusters. The QCA to G can be obtained
in terms of the variables x , defined to be the fraction of

microclusters of type j found in all possible configurations

of N, and N atoms. That is,
xjozgjxnl-(B)(l_x)nj(A) , (5)
where n;(B) and n;( 4) are the number of B and A4 atoms,

respectively, with n =n;(B)+n;( A). Here, x}) is obtained
from a product of the separate independent probabilities
of finding a specified atom at a given site.

With the assumption that the various clusters are in-
dependent, the joint probability of finding the set of { M}
clusters factors into a simple product of the separate prob-
abilities x , so that

N! M! 0)M;

0"
GUM =5 IIMj!I,I(x’ . ()
J

IT; (x JQ)M’ is the probability of finding a given set of clus-
ters {M;} in the lattice, and M!/ []; M;! is the number of
distinguishable ways of arranging that set of clusters on M
sites. This is a general statement of the quasichemical ap-
proximation, or QCA.

If the total energy E({M;}) were improved from that
expressed by Eq. (4) to include cluster-cluster interactions
of the form 1M i z—:”xjxj, where x;=M;/M, then it
would also be necessary to modify the expression for

G ({M;}). In this case, a more complex version of the Ki-
kuchi expression for G ({M;}) would be more appropriate
than the one we are usmg However, there is no
justification for inserting a more complete expression for
G into the partition function without the corresponding
modification of E({M,}), since the physical interpretation
of G is that it is the number of ways the clusters can be
arranged to reach the energy E. It is intuitively obvious
that, as the cluster size increases, typical energy ratios
€, /€; will become progressively smaller.

If one defines an entropy S =k InG, then this entropy
becomes

S=—kN [(l—x)ln(l—x)—{—x Inx + 3 (x;Inx; —x;Inx}) ]
i
=kN [3[ (1—x)In(1—x)+x Inx]— Ex In(x; /gj)] .

)

The second form of Eq. (7) is identical with that derived
from an early version of the CVM (Ref. 11) for a zinc-
blende lattice [see Eq. (5) in Ref. 11]. The first form of
Eq. (7) differs from that of Czyzyk et al.,® who have

lnx in the final term in place of our X; ln)c0 Notice
that for a random alloy in which x; _x Eq (7) reduces
to the regular solution model expressmn

An instructive special case is the classic Bethe-Peierls
7

approximation.’ It uses a two-atom cluster and three
species (A A, AB, and BB bonds), with n;(B)=j. Then
Eq. (6) becomes
G N M! L Mas
X [2x (1—x)]" 48 (1 —x)*M2 ||
(8)

and can be shown to be identical, in the limit of large N,
with the Bethe-Peierls approximation, the classical QCA,’
and the cluster variation statistics for arbitrary coordina-
tion number z,.

Returning to the QCA, the partition function can be ex-
pressed as

1
d (nxM +1)
27Tl N 'N ! ﬁ £6°
é_n (B) —€; /kT)M
Z(I)M‘H ,
EAR M;!

9

where the constraint of Eq. (2) has been incorporated into
Z as a Kronecker delta, represented as a Cauchy integral:

’2/" (B)M

fan+1

83 n,~<B)M,-,an)=—:; $des
J

(10)

The summation in large parentheses in Eq. (9) can be per-
formed exactly to yield

1 (nxM + 1)
27TIN 'NB ¢d§§

n; (B) —€; /kT M
e

3 %8

(11)

Equation (11) is most easily shown to be equivalent to Eq.
(9) by expanding the sum over j repeatedly with the bino-
mial theorem.

Because the integrand of Eq. (11) is highly peaked at its
maximum (actually, the complex plane shows a sharp sad-
dle point), we can employ the customary arguments'?
the method of steepest descents to evaluate the Cauchy in-
tegral. Define up as

xé_max
1—x

="/ (12)

The location of the saddle point introduces a constraint
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equation on the average populations {X;}, so that up must
satisfy

kT : [nj(B)uB~Ej]/kT

=2

qaﬂs ;

nx =n;(B)=

j /q,

(13)

where the “single cluster” grand partition function is

4‘21

B),u —Ej]/kT . (14)

Z is then evaluated to an excellent approximation as

N! (1—x)onx, —nxpp/kT ag

Z—NA'NB [g(1—x)" x e . (15)
Equation (13) is a polynomial of order n in the un-
known e”"/ Once this equation is solved for pg, the
partition function and all thermodynamic quantities are
simply obtained. With the substitution.of Eq. (12), ¢
manifestly has the form of the grand partition function for
a single cluster, with up the chemical potential for the B
species. Here, up and P df are intimately related be-
cause both impose the constraint, Eq. (2), that fixes the
number of B species. This differs from the usual quasi-
chemical treatment’ where a separate chemical potential is
assigned for each cluster species, so that there are n poly-

nomial equations to be solved simultaneously.

C. Helmbholtz free energy

Because the volume dependence on alloy composition is
negligible, the Helmholtz free energy F is essentially inter-
changeable with the Gibbs free energy; we shall work with
F. In the QCA the free energy is

F(x,T)=—kT InZ
=Mnxug
+kT(N —Mn)[x Inx —(1—=x)In(1—x)]—MIng.

(16)

D. Population distributions

It is evident from Eqgs. (3) and (4) that the expectation
values of the M; are

dlnZ
de;

J

M;=—kT (17
With the aid of Eqgs. (12)-(15), the average probability
X; of finding cluster j can be expressed as

X;=M;/M =gexp{[n;(Bjup—¢;1/kT}/q ,  (18)

which is evident from Eq. (14) if g is recognized as the
cluster grand partition function.

While the total energy of a cluster €; is the quantity
that enters into Egs. (13), (14), and (18) for the average
cluster populations X;, we shall demonstrate that only the
excess energies A; actually influence the population distri-

butions. Define the excess energy relative to the energies
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€ 4,€p of an n-atom cluster composed of all 4 atoms in an
AC host (or all B atoms in a BC host) as

Aj=¢g;—(1—x)e 4 —x¢ep . (19)

Since Eq. (19) amounts to changing a constant reference
energy for a given x, Egs. (13), (15), and (18), are left un-
changed, except that A; replaces ¢; and the free energy in
Eq. (16) becomes the excess free energy. Thus only excess
energies drive the cluster populations. Rather than intro-
ducing extra notation, we shall continue to use the symbol
g; in Egs. (13), (15), and (18) but we now refer to it as the
excess energy. The excess energies evaluated numerically
in Sec. III will be denoted as A; because they are the
differences given by Eq. (19). Since A; is calculated
directly, the accuracy of our results is not limited by tak-
ing a small difference between two poorly known large
numbers.

It is also worth noting that if, in Eq. (19), € 4, and ¢
are replaced by the equivalent quantities €5 and €, in the
alloy and they are weighted by the number of appropriate
species in the cluster, then the populations {x;} depend
only on the differences

go——1—¢y, (20)

but with a different chemical potential, up=pz—(g;
—egg)/n. It is occasionally instructive to keep this fact in
mind. In particular, we always have Ag=A; =0, so there
are only J-2 nonvanishing A} energies.

E. Random distribution

One instructive special case is the case in which the g;
is linear in n;(B), i.e., €; =¢go+(Ag)n;(B) for constants g,
and Ae. The total energy of the lattice is independent of
the cluster populations M; because the exchange of two
alloy atoms from different clusters changes the energy of
each cluster by an equal and opposite amount. [Any
change in configuration that satisfies the constraint of Eq.
(2) can be broken down into a sequence of exchange of
atom pairs.] Expectation values X; will, therefore, be
governed completely by the entropy and will be identical
to the cluster populations of the random alloy, given in
the QCA by Eq. (5). The nonlinearity in the cluster ener-
gies is thus a measure of the degree of nonrandomness a
distribution will exhibit. This is proved in the QCA by
finding a value of up that satisfies the constraint in Eq.
(13) and also makes the X; equal to the xjo. Making the
ansatz that up satisfies

X _,~up—8el/kT

1—x ’
then, using Eq. (5) and the relation Ej x;’: 1, it is easily
shown that
—eo/kT

o Bp —Be/KT _ | —eq/kT

2 gje (I—x)"",
and that Eq. (18) reduces to Eq. (5).
(13), becomes

The constraint, Eq.
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nx =7y nj(B)xjQ ,
J

which is obviously satisfied, showing that the ansatz is
correct. The free energy in this example is

F=NkT[x Inx +(1—x)In(1—x)]+¢gy+nx Ac , (21)

which is the entropy of a random alloy plus a
concentration-weighted average of the internal energy of
the pure materials.

F. Nonrandom distributions caused by coherent strains

We have demonstrated in Sec. ILE that as long as ¢; is
a linear function of n;(B) [no matter how large
de;/dn;(B) may be] and the degeneracy g; is not lifted,
then the alloy will always be driven by the entropy terms
into a random distribution. However, if €; is a nonlinear
function of n;(B) or g; is lifted, then the atoms in the al-
loy will experience some correlations.

There are several mechanisms that cause €; to be non-
linear functions of n;(B). The principal ones we have
identified to date are strains caused by lattice constant
differences between the AC and BC constituents, potential
differences between the constituents that cause ‘“‘chemical
shifts” in €;, and local electron-electron and Madelung in-
teractions driven by charge shifts between the anions and
cations. One mechanism that lifts the degeneracy is a
long-range coherent strain field introduced by an external-
ly applied stress. One practical example of a case in
which there is a large stress source is an epitaxial layer
grown on a substrate with a lattice mismatch. In the fol-
lowing sections mechanisms that cause nonlinearities in €;
and their consequences on X; will be treated quantitative-
ly, but here we shall examine a simple model to illustrate
the nature of the effects caused by lifting the degeneracy
gj-

First, examine the classic Bethe-Peierls two-atom clus-
ter mentioned earlier. Then, in the case normally treated,
we have J=2, j=n;(B)=0,1,2, g;=12,1, and ¢
=gy, €1,€2. As we have demonstrated in the argument
leading to Eq. (21), if €; =&(+(Ae)j, then X; =x), and the
distribution is random. We now examine a case where
the degeneracy of the state n;(B)=1 is split by an energy
28. Here, in our notation, J=3 and for j=0,1,2,3 we
have n;(B)=0,1,1,2, g;=1,1,1,1, and g;=¢;, g+A—3,
€o+A+06, and g5+2A. Putting these values into Eqgs.
(13), (14), and (16) yields

To=(1—x)* W[(l—x)closhS—i—xW] ’ (22a)
o®

Xi=x(1—x) (1—x)cosh8 +xW ’ (226)
o b

X, =x(1—x) (1 —x)coshd - xW (22c¢)

%3 =x w (22d)

(1—x)coshd+xW ’
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(2x —1)coshd+[1—(2x — 1)%sinh?8]!/2

Wi(x,0)= 7%

(23)

First, note that when 6=0, W (x,0)=(2x —1)/2x, and X;
becomes the expected random population distribution. It
is useful to define the ratio (a short-range order parame-
ter)

1+X2  2x(1—x)coshd
Xo+X; (1—x)?
w

This quantity serves as an indicator of the trends in the
overall order. If r(%,8)< 1, there is a tendency toward

spinodal decomposition; r(1,8)=1 is indicative of a ran-

dom alloy, and r(%,8)>1 indicates a tendency towards

the formation of a long-range ordered compound.
Examining two cases

. (24)
+ Wx?

Wi(x,0)=1
so that
2x(1—x)
r(x,0)=—""———= and r(1,0)=1,
(1—x)2+x2 n (2 )

and
W({,8)=1 so that r(},8)=coshd>1

7
demonstrates that any splitting of the degeneracy in this
pair interaction case always causes a tendency toward
compound formation. There is no circumstance where
there is tendency toward spinodal decomposition.

We have also examined the case of five-atom clusters in
a zinc-blende crystal structure with a uniaxial strain in
the (111) direction, and found that in the limit of large
strains, the degeneracy splitting again always tends to
form long-range ordered compounds. This tendency to-
ward compound formation is, in fact, independent of the
geometry. Any strain field that splits the degeneracy
must decrease the energy of some configuration with a
given n;(B) relative to other possible configurations. If
the splitting is large enough, the favored configuration’s
population will grow at the expense of all others, so that
an ordered compound is the preferred arrangement. This
predicted tendency is in agreement with recent experi-
ments'* in which a Si;_,Ge, (x=0.5) was grown epitaxi-
ally on a Si substrate and the resulting layer was found to
be ordered rather than random.

G. Spatial fluctuations

The free energy in a cluster approximation has no free-
dom for allowing spatial fluctuations in the cluster popu-
lations X;. Practical calculations of phase diagrams and
other thermodynamic quantities must provide for this ad-
ditional freedom in some approximate way. The approxi-
mation most commonly used implicitly is to express the
free energy as the cluster approximation free energy at the

local composition x (7). In this approximation
F= [dF[x(r], (25)

where F[x(r)] is the cluster approximation F(x) to the
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free energy evaluated at the ‘“local” composition x () and
the integral is over a ‘“‘unit volume.” The average compo-
sition is constrained to be f d3r x(r)=x. Approxima-
tions to the free-energy functional more sophisticated than
Eq. (21) are necessary to treat important classes of prob-
lems, such as concentration waves or other fluctua-
tions.'>!®  Sophistication, however, requires more infor-
mation than is available in the cluster approximation to
the free energy, and will not be considered here in detail.

III. PSEUDOBINARY SEMICONDUCTOR ALLOY

The pseudobinary alloy in the zinc-blende structure (in
which the alloy atoms occupy the fcc sublattice') serves as
an excellent practical illustration of the key points of this
paper. This example, with relatively simple changes to
the statistics, is also suitable for simple binary alloys, e.g.,
Si;_,C,, on a diamond lattice. In many of the alloys, the
incoherent strain fields are believed to be the principal ori-
gin of the alloy mixing enthalpy, and we shall model the
Hamiltonian with a force constant model. Such a model
has a basis in Harrison’s tight-binding bond-orbital ap-
proximation,”’18 which treats each two-center bond as
uncoupled from the neighboring bonds. Harrison’s
metallization corrects the bond-orbital approximation for
coupling between the bonds; we include that correction
here as the so-called chemical terms. We have used this
Hamiltonian previously,“9 and some discussion of the
model can be found in Ref. 3.

In order to decouple the statistics, the smallest cluster
that has a bearing on the local correlation in the
tetrahedral structure is a 16-bond cluster (M =N /4).
The cluster unit of this example, shown in Fig. 1, includes
a C spectator at the center, the four 4 or B alloy atoms
surrounding it, and the twelve bonds to the C second
neighbors. This 16-bond cluster has four alloy atoms (as
does the classical tetrahedron of four atoms) but none of
the alloy atoms is shared with neighboring clusters; the
cluster is therefore four times larger than the simple
tetrahedron. The cluster also shares no alloy atom pairs
with neighboring clusters; indeed, the alloy atoms them-

FIG. 1. Cluster unit used in Secs. III and IV. It includes a
central C atom, the four neighboring 4 and B alloy atoms, and
the 12 second neighbors to the central atom (shared with other
clusters).
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selves are not shared between clusters, and therefore the
quasichemical statistics are exact. The only error lies in
the approximation to the Hamiltonian, which must be
constructed to make the cluster energy independent of the
environment.

A. Strain energy

We begin by calculating the strain contributions to the
cluster energies from a Keating force constant model.2
To this are added the chemical terms® for the total ener-
gy. Displacement of an atom from its equilibrium posi-
tion gives rise to strain energies, given by

Estrain:"é% azﬁzri-r,»-i-ﬁz 2 82r,-><rj- , (26)
i i (jj<”

where 8 signifies the square of the difference in the dot or
cross product relative to the unstrained value. The a
terms are two-body radial forces (due to changes in equi-
librium bond length) and the B terms are the weaker
three-body (angular) forces. Typically, B is 5-10 times
smaller than a. In the simplest approximation, every
atom is constrained to sit at its average (virtual crystal)
lattice site, and the strain energy arising from the
difference in bond lengths of the respective pure AC and
BC materials relative to the virtual crystal can be evalu-
ated from Eq. (26). The strain energy so calculated
severely overestimates the true strain energy because nu-
clei can displace from their virtual crystal positions to
minimize the energy. A better approximation is to mini-
mize the strain energy with respect to the possible distor-
tions internal to the microcluster. If the twelve C atoms
at the periphery of the cluster were constrained to sit at
their virtual crystal positions, the Keating Hamiltonian,
Eq. (26), for each cluster would be essentially uncoupled
from its environment. Because the cluster approximation
requires that the energy be uncoupled, such an approxi-
mation is appealing. With such a stiff lattice constraint,
however, the strain energy calculated from Eq. (25) would
still be overestimated, as Appendix A discusses. To ap-
proximate a more relaxed environment, we attach the 16-
bond cluster to a fixed third shell. The bonds connecting
the cluster and the fixed shell assume only the a force
constant and 8=0.

If one assumes that the force constants a and B are the
same for all the bonds and that there are effective forces
connecting the periphery C atoms outward, then it is pos-
sible to obtain an analytic expression for the strain energy,
as shown in Appendix A.

B. Chemical energies

In an earlier paper’ we demonstrated that the energy
minimization procedure that yields the equilibrium lattice
spacings in alloys is affected only in second order by the
small ‘“‘chemical interaction” shifts. These chemical in-
teractions are caused by differences between the atomic
potentials and bond lengths of the constituents, and are
coupled through the terms Harrison named metallization.
Consequently, the bond lengths can first be determined by
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minimizing energy configurations, as described above.
Once these alloy bond lengths are found, they can be used
to calculate the chemical excess energies. It has been
shown that the excess energy associated with bond num-
ber 1 caused by a neighboring bond number 2 of a
different chemical nature is given by

A =f Ad+g AV +h(AdV+w Ad AV, +u (AV;)?,
27

where Ad =d,—d,, AV;=V;3(2)—V;(1), and the
coefficients f, g, h, w, and u are various first and second
partial derivatives of the metallization energies with
respect to d and V3. Details and numerical values for all
semiconductors can be found in Ref. 3. The only chemi-
cal excess energies included in the present calculation are
those among the four bonds that join at the central C
atom.

C. Numerical results

The microcluster excess energies were calculated by
adding the strain energy in the Keating model (Sec. IIT A)
to the chemical energy (Sec. III B). The force constants a
and B were assigned their respective AC and BC pure
crystal values. Energies were minimized to find the equi-
librium local bond lengths.

The microcluster excess energies per 16-bond unit cell
A; from Eq. (19) are given as a function of composition
for the alloy Ga;_,In, As in Fig. 2. The major contribu-
tion to these excess energies stem from strains. For a
given composition x, the clusters that fit most closely

into the average lattice have the lowest energy. Thus,
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FIG. 2. Ga,_,In,As alloy 5-atom, 16-bond cluster excess en-
ergy A;, as a function of the alloy concentration x for clusters
with differing numbers of In atoms, n;(B)=0,1,2,3,4.
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for example, at x=0.5, the n;(B)=2 cluster has the
lowest energy, while at x=0, the n;(B)=0 cluster fits
best. The nonequivalence of these curves arises from
difference in force constants for GaAs and InAs. The
average population deviations X; —xjo from a random al-
loy calculated from Eq. (18) are given in Fig. 3 for

growth temperatures of 600 and 1500 K. Notice that

0.30
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0.20

I 0.10
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FIG. 3. Ga;_,In,As alloy average cluster population X;.
Average deviations, X; —x;, from those of a random alloy x, as a
function of concentration x for clusters with differing numbers of
In atoms n;(B)=0,1,2,3,4. .. and material grown at (a) =300
K, or (b) T=1500 K.
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the shapes of the curves at the two temperatures are
similar, but the amplitudes of the deviation from random
populations are much larger for the lower temperature.
Moreover, some compositions show interchanges among
the preferred populations at the different temperatures.
Deviations from random populations are substantial.
For example, at 7=600 K and x=0.5, instead of the
random population x}, 7,25,37,25,7% for j=0,1,2,3,4,
the values of X; are 2,18,60,18,2 %.

The mixing enthalpy (or average microcluster energy)
per cluster (16 bonds), the mixing free energy per unit cell
(four bonds), and the chemical potential 3 per microclus-
ter are presented as a function of concentration x for four
growth temperatures 300, 600, 1000, and 1500 K in Figs.
4(a), 5, and 6, respectively. The change in the shape of
the mixing enthalpy AE versus composition x curves in
Fig. 4(a) at different temperatures is quite small in this,
our most realistic, model. The excess free energy varia-
tion in Fig. 5(a) is that expected for a material that exhib-
its an order-disorder transition with normal spinodal
decomposition into domains of random alloys. However,
the stiff surrounding lattice case (see Appendix C) in
which the neighbors to the five-atom clusters are all held
rigidly at their Vegard-rule lattice positions has also been
evaluated in two cases. In the first case, the radial and
bond angle restoring elastic constants a and 3 are set
equal to their experimental values; in the second case, a
retains its experimental value but 3 is set to zero. In the
first case, strain energies are too large because the cluster
volume is too highly constrained. In the second case, be-
cause there is no penalty for bond angle distortions, the
clusters relax to lower energy configurations.

Differences between the models are qualitative as well
as quantitative. The shapes of the AE and AF versus x
curves in the realistic case and the two stiff-surroundings
cases are dramatically different, as can be seen from Figs.
4 and 5. The sharp minima in AE in the curves in Fig. 4(c)
and their smoothed-out corresponding features in AF in
Fig. 5(c) at compositions x=0.25,0.5,0.75 (where periodic
stoichiometric compounds are possible), are evident for
these hypothetical materials prepared at low temperature.
These materials would exhibit spinodal decomposition
into domains of ordered compounds and random alloys,
thereby predicting entirely different physical phenomena
from those of Fig. 4(a) and 5(a). Our view of the proper
physics will be reserved to the time when more results
have been placed in evidence.

For completeness, the modified excess energy A} Eq.
(20) for the various clusters is given in Fig. 7. From this
figure, it is evident that the curvatures (nearly parabolas)
for all the €; are related. In this version of the theory,
most of the strain-energy information is carried in the
chemical potential p5.

The variations of the GaAs and InAs bond lengths in
the different microclusters are shown in Fig. 8, and the
concentrated weighted average values of these bond
lengths—along with their root mean square (rms) devia-
tions for alloys grown at 600 K—are given in Fig. 9(a).
We have generated similar curves for alloys grown at
1500 K: they have a slightly smaller rms deviation than
in the 600 K case and a bit smoother average transition
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FIG. 4. Ga,_,In,As alloy. Total excess energy AE in units
of eV/microcluster (16 bonds) as a function of composition x for
four different effective growth temperatures: 300, 600, 1000, and
1500 K. (a) The realistic soft model, (b) the stiff lattice model
with realistic 3, and (c) the stiff lattice model with 8=0.
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four growth temperatures and cases identified in Fig. 4. definition.
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FIG. 8. Ga,_,In,As bond lengths for InAs and GaAs bonds
in S-atom clusters with differing numbers of In atoms
n;(B)=0,1,2,3,4 as a function of concentration x.

For comparison, an anion-substituted alloy
GaAs,_,Sb, with a lattice mismatch of 7.8% similar to
that of Ga,;_,In,As 7.1% was treated. Figures 10-13
are the equivalent ones to compare with Figs. 4, 5, 8, and
9. This result runs counter to the general trend between
the cation- and anion-substituted alloys, pointed out previ-
ously.® The chemical terms smooth the curves in the
cation-substituted case (decrease mixing enthalpy parame-
ters, decrease critical order-disorder temperatures) but
enhance the rough features of the curves in the anion-
substituted case. The difference is easily discerned by
comparing the excess enthalpy curves in Figs. 4(a) and 10.
Despite the fact that the lattice mismatch is larger in
GaAs,_,Sb, than in Ga,_,In,As, the curves in Fig. 10
have a smaller temperature variation than those in Fig.
4(a). Both sets of curves have comparable energy magni-
tudes but, as one would expect, the GaAs,_,Sb, values
are slightly larger. Once again the AF, d, and d variations
are as expected.

In Table I the mixing enthalpy parameter (2 is collected
for several alloys. It is traditional to extract the
temperature-independent part of AF and identify it with
the enthalpy AE, then to fit AE to the functional form
AE =x(1—x)Q. Judging from the present theory (see
Fig. 4), this procedure is clearly flawed, so that compar-
isons among the results in Table I should be made with
caution. However, it is clear that the more realistic soft-
lattice model, in which the surroundings are permitted to
accommodate to the local cluster, yields numbers that are
closer to the experimental results than does the stiff mod-
el, where the theoretical numbers are generally factors of
2 to 3 larger than the experimental results. The nearly
bond-length-matched alloys such as Ga;_,Al,As and
Hg,_,Cd,Te are exceptions. For them, the electron-
electron interactions, neglected in the theory leading to
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FIG. 9. Ga,_,In,As alloy average GaAs and InAs bond
lengths as a function of composition x for material grown at 600
K. The solid curves labeled GaAs and InAs are the average
values, and the dashed curves are the extent of the rms varia-
tions. The heavy solid line is the average bond length corre-
sponding to Vegard’s rule in the three models (a), (b), and (c)
identified in Fig. 4.
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FIG. 10. GaAs,_,Sb, alloy total excess energy AE in units of
eV/microcluster (16 bonds) as a function of concentration x for
four different effective growth temperatures: 300, 600, 1000, and
1500 K.

the results in Table I, are responsible for the observed
mixing properties.*
IV. CONCLUDING REMARKS

We have demonstrated’~*?2 that the atomic distribu-
tion of constituents in semiconductor alloys is never truly
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FIG. 11. GaAs;_,Sb, alloy excess free energy AF in units of
eV/unit cell (4 bonds) as a function of concentration x for the
same temperatures as in Fig. 10.

FIG. 12. GaAs;_,Sb, bond lengths for GaAs and GaSb
bond in 5-atom clusters with differing numbers of In atoms
n;(B)=0,1,2,3,4 as a function of concentration x.

random. There are always interactions causing correla-
tions; the degree and nature of the correlations depend on
which interactions dominate and on the growth condi-
tions. While we have identified most of the interactions
expected to cause correlations, not all of them have been
treated completely in this paper. However, even though
some details remain unclear, the principal effects can now

2.70
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FIG. 13. GaAs;_,Sb, alloy average GaAs and GaSb bond
lengths as a function of composition x for material grown at 600
K. The solid curves labeled GaAs and GaSb are the average
values, and the dashed curves are the extent of the rms varia-
tions. The heavy solid curve is the average bond length corre-
sponding to Vegard’s rule.
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TABLE 1. Mixing enthalpy parameter Q in units of kcal/mol, calculated at 7=1000 K with the
“soft” and “stiff”” models. For comparison, results are included from Ref. 3 from the full perturbation
theory (FPT) and experimental numbers (Expt).

Soft Stiff FPT Expt.
CdHgTe 0.033 0.038 —0.07 0.7,1.4
ZnHgTe 1.552 2.613 1.50 3.0
CdZnTe 1.592 2.718 1.24 1.34
AlGaP 0.013 0.026 —0.05
GalnP 2.854 5.454 2.54 3.25,3.5
AlInP 2.662 4.775 2.55
AlGaAs 0.027 0.044 —0.07 0.0
GalnAs 2.178 4.328 1.60 1.65,2.0,3.0
AllnAs 2.257 4.319 2.17 2.5
AlGaSb 0.116 0.179 —0.15 0.0
GalnSb 1.715 3.266 0.81 1.47,1.9
AlInSb 1.459 2.833 1.36 0.60
ZnSSe 0.945 1.700 0.90
ZnSeTe 2.156 3.713 2.26 1.55
ZnSTe 6.115 9.338 6.20
AlPaS 0.666 1.364 0.76
AlAsSb 3.447 6.477 4.09
AlPSb 6.935 12.019 8.32
GaPAs 0.741 1.589 0.94 0.4,1.0
GaAsSb 2.922 5.797 3.67 4.0,4.5
GaPSb 6.556 12.473 8.66
InPAs 0.519 1.035 0.57 0.4
InAsSb 2.199 3.989 2.52 2.25,2.9
InPSb 4.969 8.325 5.76

be appreciated in broad terms; we attempt to identify
them in the following.

In the formalism reported here, we start by focusing on
small clusters of atoms that are called microclusters.
Once the microcluster size is selected, the total energy of
the solid is expressed as a sum of cluster energies, and the
number of configurations of the solid corresponding to a
given total energy is calculated. There are approxima-
tions in the microcluster energy calculations and
microcluster-microcluster interactions are neglected, but
once these approximations are made, no appreciable addi-
tional inaccuracy is introduced in the statistical mechanics
arguments leading to microcluster population distribu-
tions. The accuracy of the final result for a given physical
property (e.g., critical order/disorder transition tempera-
ture) differs for different properties, but in general be-
comes progressively better the larger the cluster size used.
Two-atom clusters are found to give most trends properly,
but differ in detail from the answers found for the 5-atom,
16-bond clusters that are the basis for most of the numeri-
cal results in this paper. We have not attempted to ex-
tend the numerical results to large clusters because larger
clusters will not help in the understanding of the long-
range corrections, and the present cluster is adequate to
describe the most important local correlations.

An n-atom microcluster in state j, represented schemat-
ically as A,,‘,,j(B)B,,j(B), corresponds to a given number

n;(B) of B atoms. If the degeneracy g; :(ﬁj(m) of a given
energy state €; is not split, and if €; depends linearly on
n;(B), the average population distribution of such a mi-

crocluster, X;, is always that of a random alloy x JO. There-
fore, only interactions that split the degeneracy or cause a
nonlinear variation of €; on n;(B) drive correlations. To
be precise (as detailed analysis shows), the energies
g;—n;(B)u(B), where u(B) is the B atom chemical poten-
tial in the grand partition function formalism, are respon-
sible for populations of state j.

Three mechanisms cause appropriate nonlinear varia-
tions of €;. A type caused by strains resulting from
bond-length mismatches between the constituents. So-
called chemical interactions, caused by potential
differences between the constituents that are responsible
for charge shifts among the atoms, and in tight-binding
terminology the ionic, covalent, and metallization contri-
butions to bond energies. A type arising from the
electron/electron Coulomb interactions as modified by
long-ranged Madelung sums.* As a rule, the bond-length
mismatch terms dominate, but the other term can intro-
dnce substantial corrections and are all that remain in
cases where there is a near-bond-length match. Until re-
cently, it was though that cluster energies were nearly in-
dependent of composition.” In consequence, if the aver-
age of the 44 and BB interaction energies exceeded the
AB energy, then compound formation was thought to be
favored while an 4B energy exceeding the interaction en-
ergies was thought to favor spinodal decomposition. The
entropy terms would always favor the intermediate ran-
dom distribution.

We now know that this picture is flawed and that the
cluster excess energies are in fact highly composition
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dependent. In the strain terms, the cluster whose volume
most closely matches the average volume per cluster for
the alloy will have the lowest energy. As a consequence,
certain alloy compositions (e.g., x=0.25,0.5,0.75, where
simple stoichiometric compounds with long-range order
could exist) have comparatively low excess-free energies.
This means that it is possible in principal to have a posi-
tive mixing enthalpy parameter defined by Q=AE/
[x (1—x)] and still have compound formation favored for
some special composition’s x. However, this does not
happen as a general rule. For example, in Fig. 4(a) the ex-
cess enthalpy AE has no sharp feature at the special con-
centrations, even for material grown at room temperature.
The shape of the corresponding free energy AF in Fig. 5(b)
is characteristic of a material that undergoes normal spi-
nodal decomposition. Figure 5(b) displays the excess free
energies AF for a stiff-lattice case of Ga,_,In As, in
which it has been assumed that the 12 outer bonds of the
cluster are attached to C-type atoms that are fixed at lat-
tice spacings corresponding to Vegard’s rule. Even in this
stiff-lattice case, normal spinodal decomposition is the
rule. It is not until we also set the angular distortion elas-
tic constant 3 in the valence force field model to zero that
the excess free energy curve for Ga;_,In, As in Fig. 5(c)
has a shape that corresponds to decomposition into an or-
dered compound and a random alloy. We have resisted
the temptation to present phase diagrams (critical temper-
ature versus composition) in this paper because they will
be modified by the electron-electron Coulomb interactions
that are not yet incorporated completely into the formal-
ism.

The chemical interactions modify this picture only
slightly: They tend to cause a slight asymmetry in the ex-
cess enthalpy variation with x about x=0.5 and to shift
the overall curves. For Ga;_,In,As, the asymmetry
causes the features on the low-x side to have higher ener-
gies than the corresponding ones on the high-x side.
Despite the fact that the bond-length mismatch is slightly
greater for GaAs;_,Sb, than for Ga,;_,In,As, causing
AE to be larger, the temperature variation of AE is actual-
ly smaller for GaAs;_,Sb,. This runs counter to con-
clusions we drew previously,® based on single impurity
considerations where chemical excess energies tended to
be positive for anion-substituted alloys and negative for
cation-substituted alloys.

The configuration-dependent electron-electron
Coulomb interactions* are not included in the results re-
ported here. These interactions make contributions com-
parable to those driven by the bond-length differences dis-
cussed previously and, therefore, will modify the numeri-
cal results significantly. The terms are driven by polarity
differences between the alloy constituents in contradis-
tinction to the customary bond-length difference. The
essential feature of Coulomb interactions is the
configuration-dependence of spatial charge fluctuations.
Because the Coulomb energy is nonlinear in the charge
density, fluctuations increase the energy. This can be par-
tially compensated by the long-range Madelung energy
originating in a coherent sum of alternating charges.
Configurations that minimize the combined effect are of
lowest energy. The random configuration is always of
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higher energy, mainly because of the weakening of the
Madelung energy. Therefore, both ordered compounds
and spinodal decomposition are favored by this interac-
tion relative to random alloys. We have demonstrated
that in the bond-length-matched Ga,_, Al, As alloy, the
ordering observed by Kuan et al.?* can be explained by
electron-electron Coulomb terms.

Others®~!%12 have calculated the concentration varia-
tion of microcluster energies ¢; by treating the various
types of clusters as units of different periodic structures.
Several of these workers allow the central atom in each
As_;B;C (j=0,1,2,3,4) microcluster to relax into its
minimume-energy configuration and then compute the en-
ergy of the cluster g;(v) as a function of cluster volume v.
They then assign cluster energies at each composition x
by identifying the v to be that of the average lattice, fol-
lowing Vegard’s rule. Because of long-range effects, this
procedure leads to small, sometimes negative, excess clus-
ter energies, A; for the compositions where the cluster
volume just fits the average alloy volume per cluster, so
these special clusters experience no strain. Moreover,
coherent band effects also tend to lower the energy. In
the plot of Aj versus x in Fig. 2, this would cause the
A(3)B(1)C, A(2)B(2)C, A(1)B(3)C cluster energies to
be small for x=0.25, 0.5, and 0.75, respectively. In addi-
tion, the constraint that each type of cluster has the same
volume at a given concentration accentuates the
differences between cluster energies relative to those we
calculate and produces A; curves that resemble the stiff
lattice case. The energies are then scaled upward by two
groups®® to cause the mixing enthalpy to have the correct
value. It is argued that these extra terms are needed in
one case to account for the fact that the band-structure
theory leads to bond-length differences that are too
small,’ and in the other because the angular restoring
forces were set to zero.?

In our procedure each cluster is attached to an effective
alloy medium and allowed to relax to its minimum-energy
configuration. The effect of constraining the volume can
be seen by comparing Figs. 4(a) and 4(b). Thus there are
two major differences between our €; versus x curves and
those of other groups. Even for cases with a bond-length
mismatch, some of their A; values are negative for a col-
lection of special concentrations corresponding to possible
stoichiometric compounds for which the periodic lattice
can fit together without appreciable strain. Furthermore,
their A; values vary much more steeply with x reaching
somewhat larger values and having a much larger overall
excursion, because the various cluster volumes are each
forced to equal the average lattice volume. This causes
their excess enthalpy and free energy versus composition
curves at a given temperature to have a much sharper
structure than ours with three minima at x=0.25, 0.5,
and 0.75. To generate the similar results shown in Figs.
4(c) and 5(c), we had to adapt the unphysical approxima-
tion of setting the angle-restoring elastic coefficient 3 to an
unrealistically small value.

There is merit in the approaches taken in Ref. 9 when
an alloy has long-range order; their energies are then
more appropriate (but one should not use cluster statis-
tics). The models reported to date assign to a microclus-
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ter only the local strain energy. However, a long-range
strain field is also produced in the surrounding medium
by a cluster that does not fit exactly into the lattice. If
there are many misfitting clusters, then the long-range
strain fields from each add incoherently, and the net re-
sult is to produce the average lattice spacing, but no addi-
tional nonlocal energy need to counted toward each clus-
ter. We depend on this in our cluster-energy calculation;
it is the reason long-range strain fields are not included in
the cluster energies. However, when the misfit cluster
density is small, then the incoherence is incomplete and
the long-range strain fields are likely to be important.
Thus starting from a perfectly ordered compound, e.g.,
ABC,, the first small deviation in the composition from
the ideal stoichiometry will introduce large (local and
long-range) strain fields, which will cause the composition
variation of the free energy around these special points to
be even more rapid than anyone has yet calculated. Ac-
cordingly, the net result is expected to be low-temperature
excess-free-energy curves that resemble those in Fig. 5(a),
but with sharp negative spikes superimposed at the special
compositions. This conjecture remains to be confirmed by
calculation and experiment.

The other major class of phenomena that can introduce
correlations is made up of phenomena that split the de-
generacy of the clusters. The easiest to picture are
coherent strains produced by a uniform externally applied
stress as, for example, when an epitaxial layer of an alloy
is grown on a lattice-mismatched substrate. Then, for ex-
ample, for a stress in the (110) direction, a four-atom
n;(B)=2 cluster will have different energies if the two B
atoms or two A atoms have positive displacement com-
ponents parallel to the (110) direction. When the stress
is large enough to drive the energy of the preferred orien-
tation down well below those of other clusters, then it is
possible for compounds with long-range order to have low
free energies. This phenomenon has recently been ob-
served in the growth of Gey sSip s on a silicon substrate,
where an ordered compound, rather than a random alloy,
was found.'* Stresses produced by temperature gradients
behind a growth front can cause similar effects. In this
discussion we have recognized the potential importance of
applied stresses and temperature gradients in driving mi-
crocluster population distributions. While a special case
has been treated,?* a comprehensive quantitative theory
must still be formulated.

We have discussed the possibility of spinodal decompo-
sition into domains. A given domain can be nearly a ran-
dom alloy surrounded by other domains with differing
compositions or ordered compounds depending on the
constituent materials, the concentration, and growth con-
ditions. However, there remains the question of how the
domains fit together and their relative size. We cannot
offer complete answers to these questions, but we can
identify many phenomena that influence the outcome.
The thermodynamics discussed here tell us about the
compositions and structure of the favored domains.
Clearly, if there is no inhibition to atom motion or anneal-
ing times are sufficiently long for equilibrium to be
reached, the system will separate into two domains, one of
each of the favored types, and the relative amount of each
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type will be given by the composition-lever rule applied to
the free-energy curve. However, if there are constraints
on the distance atoms can travel, then other local-free-
energy minima may be determined by a competition be-
tween the statistical effects discussed previously and long-
range strains produced as the alloy forms a domain struc-
ture. Because the different types of domains have
different lattice constants when they fill space in some reg-
ular array, they will exert stresses on one another. The
preferred configuration will be one that minimizes the net
free energy, now including the extra mechanical domain-
domain interactions. The calculation by Muller, 5 in
which he demonstrates that the fluctuations in the popula-
tions of clusters inherent in a random alloy are suppressed
by strain fields in lattice-mismatched systems, is a precur-
sor to this kind of theory. A regular array of domains of
ordered compounds surrounded by a random alloy has
been reported recently by Jen, Cherng, and Stringfellow.?

A number of nonequilibrium growth processes are
proving to be valuable additions to our materials prepara-
tion methods. Included in this category are all growth
methods in which the substrate is held at a temperature
well below the melting point of the growing material, e.g.,
molecular beam epitaxy (MBE), metalorganic-chemical-
vapor deposition (MOCVD), and various energy-assisted
epitaxies (EAE).?®?” The EAE methods are those in
which some form of energy, e.g., laser light or ion bom-
bardment, is supplied to the growing surface. Even
without energy assistance, local bonding arrangements in
the layers just beneath the growth surface can reorder to
attain local-minimum-free-energy configurations driven by
the energy released when the new atoms arrive and bond,
typically a few eV per atom. If one thinks in terms of an
effective growth surface temperature, 7.4, that determines
the nature of the order/disorder phase state of the materi-
al, then in normal MBE and MOCVD, T probably lies
below the melting temperature 7,,. For liquid-phase epi-
taxy, one has T g~ T,,, while for EAE, one has T ;s> T,,.
This single T. parameter model is undoubtedly an
oversimplification, but it serves to establish an order
among the trends of a wide range of experimental results
recently reported. When T. is small (MBE and
OMCYVD), then correlations are high, and ordered crys-
tals and crystals with ordered arrays of domains can
occur. When T 4~T,,, then correlations are smaller and,
depending on the alloy and composition, more nearly ran-
dom arrangements or normal spinodal decomposition are
more likely. When T 4>>T,,, then it is possible to grow
materials in the form of random alloys that do not exist in
equilibrium. While these materials are metastable, they
may still be useful and open a whole new treasure trove to
device science.
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APPENDIX A: ANALYTICAL EXPRESSIONS
FOR THE CLUSTER STRAIN ENERGY

We can sidestep the complication of the way to couple
the cluster to its environment for the present by modify-
ing the Keating model for the bonds to the C atoms at the
periphery. The force constant model in Eq. (26) is used
for the bonds connecting the central atom to its four
neighbors and also includes the 12 three-body S forces
connecting the central atom to the 12 peripheral C atoms.
The 12 bonds to the peripheral atoms are coupled by
effective force constants K, and K,, which characterize the
resistance of displacement of the alloy atom transverse
and normal to the bond. This entails no further approxi-
mation (beyond assuming that the K’s do not couple to
each other through bonds outside the cluster), since it is
possible to obtain K, and K, in terms of a and . How-
ever, the dependence of the K’s on a and f3 requires some
detailed model that governs the displacement of the 12
peripheral C atoms and their effective interaction with the
more remote bonds. By using K, and K;, we can leave
this choice and also the displacement of the peripheral
atoms unspecified.?® K, and K, are evaluated for a partic-
ular model in Appendix B.

The total strain energy is thus formulated as the sum of
strain energies internal to the microcluster, which we cal-
culate from the Keating model, the three-body S strain
energies connecting the microcluster to the adjacent
effective medium atoms, and the strain energy from the
effective medium,

1K, 3 (dy-8r;)2 + 1K, 3 |d;x8r; |?, (A1)
ij ij
where the index i signifies each of the three external bonds
adjacent to microcluster atom j, and Or; represents the
displacement of a nucleus relative to its natural bond posi-
tion.

The resulting strain energies for the 4, and B4 micro-
clusters can be expressed in terms of the differences 6 4
and 85 in bond lengths of the pure crystals 4 and B rela-
tive to that of the virtual crystal bond length d, defined as

SA =d —dA , (A2)
and

The strain energy of each cluster must be minimized with
respect to the various possible independent distortions.
By symmetry, the only distortion 4, and B, microclus-
ters can suffer is the breathing mode in which every A4
atom displaces radially by an equal amount. If we mini-
mize with respect to the radial displacement, the strain
contribution to the excess energy is

EA4 :E4,strain :CB8%4 ’ (A4)

512K, [688aK, + 1807aB+212K,B]

4293
A A 5 B
B B
A
(a) (b) (c)

FIG. 14. Distortions of a tetrahedron (a) breathing mode dis-
tortion of A4 and also in the other microclusters as described in
the text. (b) Distortion in 4,B, corresponding to bond-length
differences d 4 —dp. There are three independent distortions: a
radial distortion along the bond axis, a distortion transverse to
the bond axis, and the displacement of the central C atom. (c)
Distortions in A3B or ABj;, corresponding to bond-length
differences d 4 —dp. There are three independent distortions
here as well: a uniform translation of all atoms in the microclus-
ter (not shown), the displacement of the central atom, and the
displacement of the three 4 (or B) atoms transverse to the bond
axes.

and

EB4 =E0,strain = CBB% s (A5)

where the effective breathing-mode force constant Cp
takes the form?

96(64aK, +27aB+32aK, + 16K,B+ 32K,K,)
B 576a + 64K, +2438+ 512K 1 :

(A6)

The A,B, microcluster has five independent distor-
tions, illustrated in Fig. 14. To minimize the internal en-
ergy, the simultaneous equations Vqusm,in=0 must be

solved, where the u; are coefficients each to some linear
combination of the displacements shown in Fig. 14. The
symmetric combinations of radial and transverse displace-
ments of 4 and B atoms uncouple from the remaining
three independent distortions. Thus there is a breathing
mode (the symmetric radial displacement), a mode that

vanishes identically at the undistorted lattice position, and

finally a ‘displacive” mode. The strain energy is
comprised of a sum of the first and last modes,
2
8,4+0p 84—38p
Eap,=Esrain=Cp | =5 DT 5 |
(A7)

where Cp is the effective displacive mode force constant.
Because Cj, is numerically more complicated than Cp, we
show the form Cj, using K, =p. It is¥

Cp

- 3[512aK? +80BK,(199a + 8K, ) +36778%(9a +2K,)]

(A8)
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The A;B and AB; microclusters have four independent
distortions, but the same breathing mode and bending
modes found in the A4,B, microcluster can be extracted
with a suitable linear combination of atomic displace-
ments. The energy then takes the form

8 , 4355 g

4

2

3

E 4p,=E| strain=Cp +Co

(A9)

The cluster energies take a particularly simple form, de-
pending only on x, Cy, and Cp. Figure 15 shows the
dependence on a and 8 of Cy, Cp, and K, as estimated in
Appendix B. If the virtual crystal bond length is assumed
to be linear in the composition x (as is nearly the case ex-
perimentally), the strain energies assume a simple quadra-
tic dependence on x, all with the same curvature in this
model. If the strain energies alone are considered, the
free energy must be symmetric in x — 1, in which case it
must be true that pg(x)=—pug(l—x), and pp(L)=0.
For x =1 the partition function is

—Cpld , —dp)*/4kT —(3Cp +Cy)\d , —Dy)?/16kT
D% 4 B D B A B

g =2(3e +4e
—Cyld , —dg)2/4kT
e BE4aTO ). (A10)
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FIG. 15. Variation with 3 of K, as estimated from Eq. (A8),
K, obtained from Eq. (A6), Cp and Cp using Egs. (A6) and (A8)
for K, and K,. All force constants are in units of @ to make
them dimensionless. Typically a/10 <3 <a/5 (see Table I).
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Given this partition function, all of the thermodynamic
quantities of the system related to strain induced by lat-
tice mismatch can be calculated. However, the numerical
results reported in the body of this paper use a more exact
relation. Equation (A 10) provides useful insights into the
underlying physics, but it is not used in our numerical
evaluations.

APPENDIX B: EVALUATION OF FORCE CONSTANTS

For purposes of generating K, and K,, we treat the
medium surrounding the cluster as a virtual crystal in
which the cluster is embedded. The reason this is a prop-
er choice to represent the average medium is subtle. The
alloy is made of a collection of clusters with a distribution
of sizes. If one places an atom or cluster in a medium
that is, for example, too large, both it and the surround-
ings will be compressed, thereby establishing a long-range
strain field in the surroundings. The net strain field is
that due to the combined effect of all the clusters. But for
a nearly random concentrated alloy, at any point in space
the long-range contributions to the strain add incoherent-
ly and average to zero relative to the position correspond-
ing to the virtual crystal lattice. Thus only the short-
range local interactions contribute to the strain energies
and are counted. In alloys with significant correlations,
e.g., nearly ordered compounds, or in dilute alloys where
the long-range strain fields do not average to zero, the
problem is more complicated. The dilute limit is treated
in detail in our prior work.> As an exact solution of the
Keating model includes long-range strain fields, approxi-
mations are necessary.” K, and K, will depend on the ap-
proximation used to govern the displacement of the 12
peripheral C atoms and more distant neighbors, but it is
generally true that the numerical values of K, and K, are
rather similar for the various approximations one might
consider. In particular, K, is weak, and can be very well
approximated by holding the distant atoms fixed, allowing
the nearest C atom to move freely. In that approxima-
tion, K, becomes

K,=B[1—(B/4a)]=B . (B1)

(The latter approximation obtains if the C atom is also
fixed.)

K, is more sensitive to the assumptions governing the
displacement of the virtual crystal atoms, and is necessari-
ly more complicated. If, in the simplest assumption, the
C atom is held fixed,

K, =3a+pB/4 (B2)

a value significantly too large, as the following shows. A
reasonably good approximation is to take the third
neighbors as fixed, and neglect the 3 forces coupling
second and third neighbors (the Shih®*® approximation,
but extended to the second neighbor shell). Then, !*

K — 3a+16f3
14+ (B 2a)1[14(B/14a)]
which is roughly four times smaller than the rigid approx-

imation Eq. (A7).
Because the total energy is rather sensitive to K,, this

(B3)
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approximation (or a similar one) is probably the most im-
portant one of the model. The sensitivity of the total en-
ergy to K, is most easily expressed as d1nCp /9 1InK,. At
K,=pB and K, =a, both 3InCp /3 1nK, and 01InCj /3 InkK,

are ~3, while 0InCp/31InK, and 3InCp/dInkK, are
~0.025. Thus the variation of the total energy is almost
directly proportional to K,, while it is only weakly depen-

dent on K.

In a pseudobinary alloy, the A4 and B atoms occupy one crystal-
line sublattice and the C atoms another. The C atoms are
merely spectators in the statistics.
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