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The proper basis for the calculation of transmission and reflection times for wave packets scat-
tered off arbitrary tunneling structures in one dimension is considered. With packets narrow in

wave-number space, we demonstrate that the classic phase times are indeed correct to lowest or-
der. Explicit, general expressions for the leading correction terms for finite wave packets are
given. The physics associated with these corrections is discussed. We also consider the dwell

time, as it is currently defined, and derive a general relation between this dwell time and the phase
times. This relation shows when the dwell time can and cannot be used. Finally, we discuss wave

packets transmitted from narrow resonances, and derive an explicit, exact formula for the tunnel-

ing time with resonance transmission from a symmetric double barrier. Comparison with earlier
approximate results is made.

I. INTRODUCTION

Advances in molecular-beam-epitaxy (MBE) technolo-
gy have opened up new possibilities for the design of
semiconductor structures with linear dimensions in the
nanometer range. ' On the one hand, this will certainly
have far-reaching consequences for tomorrow's devices.
A pointer in this direction is, for example, the successful
transistor operation of a double-barrier tunneling struc-
ture, recently achieved by Capasso et al. On the other
hand, the need for a better fundamental understanding
of quantum transport theory has become urgent. The
semiclassical approach, which has been so successful up
until now, needs, as a minimal measure, important
modifications. Possibly, a new start is necessary to build
a reliable kinetic theory, applicable to the nanometer re-
gime.

We shall be concerned with minimalism here. What is
certainly needed as elemental input in any new kinetic
theory, is the time for the completion of a basic event
like tunneling through a static potential barrier. It is
surprising that even a question of such fundamental sim-
plicity has been controversial in recent years. Not that
old answers do not exist. More than 30 years ago ' the
energy derivative of the scattering phase shifts was pro-
posed as representing the time needed for events of this
nature. The relevance of this "phase time" for the
motion of wave packets has been questioned, however,
and several counterproposals exist. ' Direct numerical
studies" ' of moving wave packets tend to favor' the
phase time over its competition, except, perhaps, at low
energies.

Different expressions for the tunneling time could, of
course, be relevant under different circumstances. For

example, Buttiker and Landauer introduce a traversal
time which emerges from a study of tunneling through a
time-modulated barrier. The relevance of this traversal
time for reactive scattering has been discussed by Pol-
lak. ' In the present paper only static potentials will be
considered. Even for this simplest case different tunnel-
ing times could apply, depending on the form of the po-
tential and the shape of the impinging wave packet. In
fact, the result in the time domain of the scattering of an
arbitrary wave packet can surely not be described by a
single transmission and reflection time, in general ~ In
order to make precise statements possible, the form of
the packet must be sharply characterized. For example,
Stevens has studied wave packets with a well-defined
front in real space. Such packets have a wide distribu-
tion in wave-number space (k space).

In this paper we shall be concerned with a different
class of wave packets for which transmission and
reflection times can be given a precise meaning. We re-
strict ourselves to packets narrow in wave-number space.
In a sense, we take one step back from the stationary
case, for which the wave packet degenerates into a 6
function in k space. This brings time into the problem,
and in our opinion, time delays can only be studied reli-
ably by calculations on truly time-dependent problems.
Plausible time interpretations of calculations on station-
ary states can be misleading. An example is the Larmor
clock interpretation of stationary scattering problems
studied by Baz, Rybachenko, and by But tiker. ' Relat-
ed experiments are reported by Gueret et al. ' In a
separate publication' we show that a time-dependent
calculation of the case studied in Ref. 10 reveals how to
set this clock correctly. When properly set, the Larmor
clock gives, to lowest order, times in perfect agreement
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with those found in the present paper.
After the recapitulation of some basic material in Sec.

II, we analytically study the motion of wave packets nar-
row in k space in Secs. III and IV. The natural
identification of the position as the "center of gravity" of
the packet is used. To lowest order, the classic phase
times for transmission and reflection are shown to de-
scribe the asymptotic motion. In addition, correction
terms to leading order in the width o = (b,k &'~ are de-
rived. These new correction terms have an interesting
structure, and the physics underlying them will be dis-
cussed.

In Sec. V we derive a general relationship between the
"dwell time", as it is currently defined, ' ' ' and the
phase times for transmission and reflection. This con-
nection, which is reminiscent of relations discussed in

the original paper by Smith, clarifies the status of the
dwell time. Results by Buttiker' on tunneling through
a single barrier serve as an illustration at this point, and
are quoted in the Appendix. The relation derived in Sec.
V demonstrates that the dwell time cannot, in general, be
interpreted as the average time a particle spends in a
barrier.

In view of its current importance, we reconsider the
double barrier structure in Sec. VI. The arguments of
Sec. III for the validity of the phase time do not immedi-

ately apply in the context of a narrow resonance. The
status of the phase time for resonant tunneling is

clarified in Sec. VIA. In Sec. VI B the phase time at res-
onance is calculated exactly for symmetric double bar-
riers. Earlier approximate results by Ricco and Azbel'
for the strongly localized case are (with minor
modifications) rederived and extended. Nonlinear
Coulomb and finite temperature efI'ects, ' which are
certainly important in practice, are not considered here.
%'e close with some concluding remarks in Sec. VII.

II. BASICS

A. The stationary scattering problem

Most of the results in this paper are easily generalized
to three dimensions. However, already the one-

dimensional case contains the essence of the problem
and is, in addition, of particular interest in connection
with "vertical" electron transport in submicrometer de-

vices. We shall consequently confine ourselves to the
one-dimensional case here.

Consider a scattering process as shown in Fig. 1. In
the stationary case the incoming particles are represent-
ed by a plane wave e ' of unit amplitude. The
(effective) mass is m and the energy is F. =Pi k /2m.
The particles are scattered by a potential V(x) localized
in the x interval (a, b}. Some are elastically reflected and
some are transmitted with energy E =E
+QE —/2k 2/2m

The stationary wave function has the form

V(x)

FIG. 1. Sketch of the potential V(x). The potential is con-
stant for x (a, arbitrary in the interval (a, b), and constant
again for x ) b. The difference between the constant energies is

AF. . The wave numbers are +k for x (a and k for x )b.

B. The initial wave packet

We shall be interested in what happens when a wave
packet, P(x, t), with a narrow distribution of wave num-
bers k, is scattered off the potential, V(x). For concep-
tual simplicity, assume that the initial wave packet, as
given by tb(x, O), is confined to a finite x interval to the
left of x =a. Beyond this, we shall characterize the ini-
tial packet by a few of its lowest moments only. We
define the Fourier transform as

P(k)= I dx e ' P(x, O)=
i
P(k)

~

e'~I ' (2.3)

The probability distribution over wave numbers is then

~

P(k)
~

/2n, with mean and variance given as

k, =(k&= f k ~y(k} ~',
(2.4)

We shall also need the average in x space and the cross
correlation between x and k, expressed by g(k) close to
the mean value A:, of the narrow packet. Simple calcula-
tions show that [with g'(k)=dg/dk, etc.]

(0)&= —(j'(k)&= —g'(k, ) ——,g'"(k, ) '+ .
(2.5)

( hk hx(0) & = —((k —k, )g'(k) & = —g"(k, )o +

We shall assume that the solution to the stationary prob-
lem is known for all energies, i.e., we shall consider the
transmission and reflection amplitudes

A(k)=
~

A (k)
~

e' ' ', B(k)=
~

B(k)
~

e'~'"', (2.2)

and the wave function X(x;k), in the scattering region,
as known functions of k. Analytic solutions exist in sim-
ple cases, and 3 (k), B(k), and J(x;k) can, in princi-
ple, be found by a numerical solution of the time-
independent Schrodinger equation for arbitrary V(x).

Time-dependent solutions of the Schrodinger equation,
such as those describing the evolution of a wave packet
impinging on V(x), can be constructed as linear com-
binations of the solutions (2.1).

e'" +B(k)e '", x &a

p&(x)= X(x;k), a &x &b

A(k)e'"", x ) b .

(2.1) Here the correlation function ( b,k b,x (0) & is understood
as the expectation value of the symmetrized product.
The mean-square deviation in x space also depends on
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g"(k, ):

&~x(0)') = f (
~ y ~

)'+[g"(k,)]'a'+, (2.6)
dk
2m

but we shall not use it in what follows, except for the re-
quirement that &x(0) ) must be sufficiently large and
negative to accommodate &[Ax(0)] )' to the left of
x =a.

III. TRANSMISSION TIME FOR THE CASE EE =0

In this section we consider the asymptotic behavior
for long times of the transmitted part of a narrow (in k
space) wave packet, scattered elastically off the potential
V(x). In particular, we shall focus on the mean position

I

QT(x, t}=f P(k)A (k)e'""dk
2m

(3.1)

with E =A k /2m. The unnormalized probability distri-
bution is the absolute square PT(x, t) = PT(x, t)

~

&x(t))T of the transmitted packet. The asymptotics of
&x(t))T provides a natural basis on which velocity
shifts, and space and time delays can be defined. In
Sec. IV we extend the results to the reAected packet, and
to the case b.E&0.

The time-dependent transmitted part of the wave
function QT(x, t) can be constructed as a linear superpo-
sition of the stationary solutions (2.1) for x &b, with
weights determined by the Fourier transform of the ini-
tial wave packet (2.3):

t

p (x t)= f f p(k)p'(k')A(k)A "(k')exp[i[(k —k')x —A(k' —k')t&2m]]
(2ir)

iqx —ifi&Qt/m + 1

q
+ &

q p + [q Q + 1

q
(2ir)

(3.2)

in which we introduced

q =k —k', Q= —,'(k+k') . (3.3)

N= f ", I+«}I'
I
A(g) I' (3.5)

The normalization

N(t)= f "
dx PT(x, t)

b
(3.4)

In a similar way, the asymptotics of the time-
dependent average position &x(t))T of the transmitted
wave packet can be calculated

clearly depends on time. For large times, however, N(t)
approaches a constant N. The reason for this is simply
that, for large t, the transmitted packet will be well
separated from the scattering region (a, b). The error
made in replacing b by ( —ao ) as the lower limit of the x
integral (3.4), then becomes negligible. As a result, in-
tegration over x gives 2ir5(q), and one finds

&x(t))T- —f dx xPT(x, t), (3.6)

where, based on the same reasoning as above, the lower
limit 6 in the x integrals of both numerator and denomi-
nator has been replaced by ( —ao). Use of (3.2), (2.2),
and (2.3) gives

( ))
— f d f f dgdq d
N — (2ir)2 dq

X exp [i [—fiqgt /m +g(Q+ —,'q) —g(g —
—,'q)

+a(g+ —,'q) —a(g ——,'q)]]
~
P(g+ ,'q)P(g —

—,'q)
~

A—(g+—,'q)A(g ,'q)
~

. (3.7)——
Partial integration with respect to q (no boundary terms)
and integration over x again gives 2m.6(q). Consequent-
ly, the q derivatives of the two functions that are abso-
lute values, vanish by symmetry. Introducing the
transmission probability at Q, T(g) =

~

A (Q) ~, one is
then left with (when Q~k)

&x (t))T =—f ~

(b(k)
~

T(k) t —g'(k) —a'(k)1 dk 2 Ak

N 2~ m

&x(t) &,—&x(O) ) = iii & T( k )k )
m & T(k))

& T(k)a'(k) ) & b T(k)hx(0) )
& T(k)& & T(k))

I

where averages without subscript are, as always, taken
with respect to the initial wave packet. Use of (2.5)
gives the alternative form

fi & T(k)k ) & T(k)( —g'(k)) )
m & T(k)) & T(k))

& T(k)a'(k) )
& T(k) &

(3.8)

(3.9)

In & ET(k}hx(0) ), as in & bk bx(0) ) of (2.5), the sym-
metrized product is understood.
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(3.10)

The assumption that
! P(k)! /2n. is a sharply peaked probability distribution is not part of the derivation of (3.8)

and (3.9). Those equation can therefore be used, also when T(k) has resonances, sharp with respect to the incident
wave packet. We shall return to this case in Sec. VI. In what follows, we assume that

! P(k)! /2n is peaked around2

k„and that the other functions in (3.9) vary slowly on the scale, cr of (2.4), set by the k distribution. To O(o ), a
simple calculation based on (3.9) gives

&kc T'rr, a"'o. T'a "cr T'
& b.k b,x(0) &

&x(r)&T —&x(0)&- ' 1+ t —a' 1+, +, —,+o a
m Tk, 2a' Ta' T a'

where, for example, T'=dT(k, )/dk, and o(cr ) denotes
terms smaller than O(o ). Equation (3.10) is the basic
result of this section.

With the motion of a free packet,

&x(t) &
—&x(0) ) =fik, t/m (3.11)

as a reference, we now consider the various terms in
(3.10). First note that when all correction terms are
neglected, (3.10) reduces to

&x(t) &T —&x(0) & =6k, t /m —a'(k, )+O(o 2), (3.12)

which demonstrates that, to lowest order, the spatial de-
lay AxT, and the corresponding temporal delay A~z, of
the transmitted packet read

m,

lcm'

bxT(k) =a'(k), Err(k) = a'(k) =Pi
Ak dE

(3.13)

(where the subscript c on k has been dropped). The cor-
responding total transmission time ~z- is

()= fk +fk '()m(b —a) m
(3.14)

This is in complete agreement with classic statements. '3, 4

Next, (3.10) shows that, when corrections of O(o. ) are
included, the speed of the transmitted packet is slightly
shifted with respect to the initial one, Ak, /m. This can
be understood as follows If the "barrier" V(x) is
more transparent for higher energies (around k, ), T' & 0.
In that case, the barrier preferably transmits the faster
parts of the initial packet, and preferably reflects the
slower ones. As a result, the average speed of the
transmitted packet is shifted upwards. The converse is
also possible: If k, is just above a transmission reso-
nance of V(x), one has T' & 0, and the transmitted pack-
et is slowed down.

Due to the shift in average speed, some caution must
be exercised in the definition of spatial and temporal de-
lays. (Such caution is particularly important when re-
sults of numerical "experiments" are to be interpreted. )

With reference to Fig. 2, the solid lines shov the path of
the initially free wave packet, and the asymptotic trajec-
tory of the transmitted packet. The dashed lines are the
corresponding linear extrapolations. From (3.10) it is
clear that the natural definition of the spatial delay is

= &x(0) &
—&x(0) & (3.15)

where (x (0) &T should be interpreted as the backward
extrapolation. Its geometrical meaning is shown in Fig.
2.

The first correction to a'(k, ) in the spatial delay of
(3.10) is —,'a'"(k, )o.2. This correction can have either

sign and is merely an expression of the fact that the in-
coming packet samples a range of phase shifts. The
second correction is somewhat more subtle. If T'&0
and a"~ 0, the barrier is more transparent for higher en-
ergies (around k, ) and the delay (-a') increases with
energy. The combined result is a positive correction to
the delay. Since T' and a" tend to have the same sign
(except at resonances, where they both vanish) this
correction generally adds to the delay.

The third correction to the delay is proportional to
the cross correlation, in the initial packet, between ve-
locity and position. If this correlation is positive, the
front part of the packet tends to move faster. If, in ad-
dition, T' & 0, fast particles are preferably transmitted
and, intuitively, the combined result should be a reduc-
tion of the delay. This agrees with the corresponding
negative sign in (3.10). Either factor &b,k hx(0)) or T'
can be negative, however [i.e., & T(k)hx(0) ) of (3.9) can
have either sign] so this correction can increase as well
as decrease the delay.

Let us pause here to consider an apparent paradox.
From (2.5) one has that &bkhx(0) &

= cr g"—(k, ). But
as time passes, the phase of the Fourier transform, P(k),
will change as g(k)~g(k) —A'k t/2m. This will increase
the cross correlation by o. At/m. For a wave packet,
having a given form when it impinges upon V(x), the
third correction in (3.10) to the spatial delay therefore
depends on the choice of the zero point in time. This
paradox is only apparent, however. The term propor-

It))/

FIG. 2. The average motion of a free packet (x(t))o for
t & t, , and of a transmitted packet (x(t) ) z- for t & t~ are shown
as solid lines. The dashed lines are the corresponding linear
extrapolations.
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tional to t in (3.10) will clearly also be affected by a shift
in time, and the corresponding constant correction of
O(o ) precisely cancels the change in the correlation
term. That this is so can be seen from the first version
of (3.8), where a shift t ~ t —t p will result in
g'(k )~g'( k tp ):g'(k ) —Akt p Im. For a given wave
impinging on the scattering region, the space delay, in-
cluding all corrections, is therefore well defined.

From the space delay, (3.15) of (3.10), we now want to
calculate time delays. The definition (3.15) of b,xr is
unambiguous. This is also true for the zeroth-order time
delay (3.13), where the velocity after transmission coin-
cides with the initial velocity. However, when the speed
after transmission has been shifted, there is an ambiguity
in the definition of time delays. Such delays can only be
defined relative to free motion with velocity Ak, /m

(x(tb)&r =—b, (x(t, )&p
——a . (3.16)

Use of (3.10) and (3.11) gives, when k, and a ' is a short-
hand notation which includes the corrections of (3.10),

before, and the shifted velocity of (3.10) after transmis-
sion. Where in the x interval (a, b) the velocity of this
reference motion changes, is a matter of choice. This ar-
bitrariness carries over to the definition of tlute time de-
lay.

There is no arbitrariness associated with the total
transmission time ~z, however. We define it as
7 z- = tI —t, . Here t& is defined as the time when the
transmitted wave packet by backward extrapolation is
located at the far end, x =b, of the scattering region.
The free packet at x =a defines t, similarly:

m
'TT = —a b k —k a''

&x(0)&+
k, k, k, k,

T 0 T+, [o (x(0)& —k, (hkbx(0)&] +o(o ) .
Tk, T(x'k,

(3.17)

From the definitions (3.16) it is clear that t, , tb, and
~z ——tb —t, are invariant with respect to a shift of the
origin of the x axis. Some of the separate terms in (3.17)
are not, however. With the origin located between a and
b, the term (m Imari)[( —a)lk, +b lk, ] in (3.17) can be in-
terpreted as the reference transmission time: From
x =a ( &0) to x =0 the reference velocity is erik, Im, and
from 0 to b it is Ak, /m. Clearly, the corresponding de-
lay A~z, defined by

The second remark concerns the correction to the de-
lay as a function of (x(0) &. Keep the cross correlation
in the initial packet constant, and move (x(0) & to the
left. With T') 0, this will reduce the delay by an arbi-
trary amount ~ Consequently, the "correction" term can
be made to dominate over ma'/haik, . The underlying
physics is clear: A large and negative (x(0) & allows
strong cross correlations to develop before the packet
reaches the scattering region.

m —a b
T P k

+ (3.18) IV. EXTENSIONS

also depends on the choice of the origin of x [through
(x(0) &]. In the context of (3.17), the simplest choice is
to let the origin coincide with the left end point of the
scattering region, i.e., to put a =0. Other alternatives
may be more convenient under diferent circumstances.

We shall not reiterate the discussion of the various
terms in (3.17). They were already considered in the
context of (3.10). Two remarks are, nevertheless, in or-
der. The first one concerns the delay time A~z-. In the
square bracket [ ], of the second form of (3.17), the
two terms are individually sensitive to a shift, t ~t —to,
corresponding to the apparent paradox discussed above.
The sum is invariant, however, since by (2.4) and (2.5)

[ . ]=—((ak)'&(g'(k)&+(k&&&kg'(k)& .

A shift in time corresponds to the addition to g'(k) of a
term linear in k. In the combination (3.19), such terms
clearly vanish. A shift, x~x —xo, on the other hand,
adds a constant to g'(k). This affects the first but not
the second term in (3.19). Although b,rr is invariant
with respect to t ~t —to, it is not invariant with respect
to x x —xo.

A. The reAected packet

For x &a, the linear superposition analogous to (3.1)
reads, from (2.1)

(x t) f P(k)[e'~x+B(k)e —&~&] —/&Et/6dk
2' (4.1)

p (x t ) f Q 'q —iqx —ifiqgt /md~d
(2~)

X P(Q + ,'q)P*(Q —
—,'q)B(Q +——,'q)

XB*(Q——,'q) . (4.2)

The existence of two terms in g gives four terms in
2 The first of these describes the wave packet

moving towards the scattering region. Then there are
two interference terms, and, finally, the fourth term de-
scribes the reflected part of the packet. The first three
terms cannot survive indefinitely so that, asymptotically,
we are left with the reflected packet. This is described
by an unnormalized probability distribution, analogous
to (3.2)



4208 E. H. HAUGE, J. P. FALCK, AND T. A. FJELDLY 36

The only changes from (3.2) to (4.2) are x~ —x and
2 (k)~B(k). When R (k)=

~

B(k)
~

denotes the
reflection probability, we can therefore immediately
write down the result analogous to (3.10)

( —x(t))tt —(x(0)) = 1+ t p' —1+, +
&kc R 'o, P"'o R 'P"a
m Rk, 2P' RP'

R' (Akbx(0))(
R P' (4.3)

(x(t., )&, =a, (x(t. )&,=a . (4 4)

Neglecting terms of O(o. ), one finds from (4.3) and
(3.1 1)

In Fig. 3 the spatial delay for reflection Ax& is defined
in analogy with Ex' of Fig. 2 and (3.14). This delay has
a meaning only with respect to a free packet, perfectly
reflected at some chosen reference point. In Fig. 3, and
in our calculations, this point is x =0. Since the posi-
tion of x =0 is arbitrary, we turn instead to the total
reflection time, uniquely given as ~z ——t,z —t, . Here, we
define t,& and t, by

I

(4.3). Equation (4.6) is completely analogous to (3.17).
The discussion of (4.3) and (4.6) parallels that of (3.10)
and (3.17). We shall not repeat it here. Note, however,
that R'= —T'.

B. The transmitted packet when EE&0

2 k 2+k 2 (4.7)

When one generalizes to the case shown in Fig. 1,
with b,E&0, there is no (formal) change as far as the
reflected packet is concerned. However, the calculations
for the transmitted packet must be modified. With AE
=A k, /2m defining the constant k„one has

and the transmitted wave function now reads (x ) b),
TR(k) = [ —2a +p'(k)] (4.5)

Pr(x, t)= J P(k) A (k)e'"
2~

(4.8)

(where subscript c has been dropped). A shift,
x ~x —xo, of the x axis results in a shift, P~P —2kxo,
of the phase [see (2.1)]. The combination (4.5) is, conse-
quently, invariant. However, unlike A~z, the reflection
delay A~z depends on the choice of origin already to
zeroth order. With the simple choice a =0, A~z ——~z.

Inclusion of corrections to O(o. ) gives

In analogy with (3.3) we introduce

q =k —k ', Q = —,'(k+k ') (4.9)

qQ=qQ . (4. 10)

in the double integral defining Pr(x, t) Note th. at, by
(4.9) and (4.7)

+ (x(0) )+m -a —a kc —k.
k, k, k, k,

(4.6)
With P(k) and 3 (k) still considered as functions of k,
(3.2) generalizes to

where k, and p' now include the correction terms of p (x t ) f Q 'q iq(k(x/TJ —i tiqQiImd d
(2tr )

x p(Q + —,'q)p*(Q —
—,
' q)

x &(Q+ —,'q) w *(Q —,'q), (4. 1 1)

(x(o))'
4 x

where (4.10) has been used. The steps of Sec. III can
now be repeated. - The only new feature is additional fac-
tors Q/Q in the 6(q) function, and in the differentiation
to form (x(t)) z. . With the modified definition T(k)
=(klk)

~

A(k) ~, Eq. (3.8) now becomes

(x(o))
x(t))

)&R ( )(zx. -(((T(k)( ' —(T(k(k)t~ T(k) ——r(k)
)m k

FIG. 3. The average motion of a free packet (x(t})0 for
t & t„and of a reflected packet (x(t})i( for t ) t,s are shown
as solid lines. The dashed lines are the corresponding linear
extrapolations. The mirror image of the free motion around
x =0 is also dashed.

T k —o."kk
k (4. 12)

Although (4.12), like (3.8), can be expanded to O(tr2),
we shall be content with stating the zeroth-order result
here
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5k, k, k,t+ (x(0) }— ~'(k, )+0(~') .
m k,

(4.13)

bxr ———a'(k) — ——1 (x(0)) .k, k
k k

(4.14)

The associated total transmission time, ~z- ——t& —t, , is

rr(k)=-m —a b ct'(k)
k k k

(4.15)

The analogy with (3.17) is evident. That both Axe and
~z- are invariant with respect to the shift x ~x —xo, fol-
lows from the corresponding transformation a ~e
+(k —k)xo. In the present case, the delay Arz depends
on the reference chosen, already to leading order.

The spatial delay is defined as in (3.15), and (4.13) gives
(when subscript c is dropped}

dx x, t '+j b, t —j a, t =0,
a

where j (x, t) is the time-dependent current

(5.1)

by Smith in 1960, in connection with collision theory in
three dimensions. The dwell time used in recent pa-
pers' ' ' is not identical to the somewhat subtler con-
cept introduced by Smith, however. In this section we
shall derive, for the one-dimensional case, an exact rela-
tion (reminiscent of one found in Ref. 5) between the
phase times ~z and ~z and the dwell time ~d, as it is
currently understood. This connection clarifies the
status of ~d, and shows when it can and cannot be used.
For simplicity, we restrict the derivation to the case
DE=0, indicating the generalization to DE&0 at the
end.

Consider the version of the situation shown in Fig. 1

in which b,E =0. Integrate the continuity equation
across the scattering region (a, b) for an arbitrary time-
dependent state g( xt). The result is

C. An alternative

In this paper we have identified the positions of the
transmitted and reflected wave packets with their mean
values ( (xt)) rand (x(t))R. Although this is, in our
opinion, the proper identification from a fundamental
point of view, alternatives exist. For example, in numer-
ical studies" ' of moving wave packets, a popular
choice is the location of the maximum of Pr(x, t) or
Ptt (x, t ). With this alternative definition one can (at
least with packets of "reasonable" shape) repeat the ar-
guments of Sec. III, with some technical modifications.
We shall not pause to give the details here. The out-
come is that, to lowest order, the classic result (3.13) on
the delay is rederived. So is the structure of the correc-
tion terms discussed in Sec. III. However, the detailed
coefficients of these corrections differ, in general, from
those found in Sec. III. The exception is the (initial)
Gaussian packet: In that case even the coe%cients of
the correction terms come out the same.

V. THE DWELL TIME

It is interesting to consider the dwell time, to be
defined below, in conjunction with the phase times
rederived and extended in Secs. I—IV. It was introduced

I

j(x, t)= Q*(x, t) f(x, t) —Q(x, t) p*(x, t)fi, d d
2im

' dx ' '
dx

(5.2)

Since, in the case of interest to us, the wave packet was
entirely to the left of x =a initially, (5.1) can be integrat-
ed twice to give

I&+I2 = dt dx x, t

+ dt dt' j bt' —j at' =0. 53

This equation serves as the basis for our derivation of
the relation between ~z, ~z, and ~d. Strictly speaking,
the time integrals should start at t =0 not at t = —~ .
We can, however, imagine the wave packet moved back-
wards in time from its position at t =0. During this
motion, the overlap with the x interval (a, b) will be
(essentially) zero. (Remember that we are considering
wave packets confined to x & a at t =0, and with a
spread of velocities small with respect to the average
o &~k, .) The range added to the time integrals there-
fore does not contribute in (5.3). The time integral in Ii
(and thus in I2) clearly converges, since the integrand
only lives during a finite time interval.

Use the Fourier decomposition of Sec. III but now
with Y(x;k) of (2.1) as the stationary solution, to write

I = d dx q -AQ'l- +q *,qr; +VI*—oo Q (2m }

»tegration over t gives (2vrm IfiQ)5(q), which, after integration over q (with Q ~k) yields

~, = J' "
[y (k(')„1" d(xX( ;x)k['= f "" )y(k)('rd(k).

(5.4)

(5.5)

This equation gives the now standard definition of the dwell time rd(k), for a given k, i.e. , for the stationary situation.
This dwell time is simply the particle density

~

X(x;k)
~

integrated over the scattering region (assumed well defined),
and divided by the incoming current (iilk/m)1. (The integral Ii can be considered as an average dwell time for the
given wave packet. ) If all particles are transmitted, rd(k) clearly measures the average time spent in the scattering re-
gion. With both transmission and reflection present, the interpretation of vd becomes less clear, as we shall see.
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Insertion of (2.1) with k =k into (5.2) and (5.3) gives for the second integral

I.= ' I™« f' dt' I I' ","-I"~™o(Q+,'q)-o*(Q ,'—q)—
2m —oo (2' )

X [2Q[/I (Q + —,'q)/I *(Q —,'q)—e'~ +B(Q+ —,'q)B*(Q —
—,'q)e 'i' —e''i']

+q [B(Q+—,'q)e 'g' —B*(Q ——,'q)e'g']j . (5.6)

When the stationary boundary term at t'= —0() is neglected, the t' integration brings down a factor ( —ikqQ/m)
(The way our problem has been set up warrants neglect of this boundary term. Formally, one could justify it by add-
ing a weak damping on the integrands for negative times, and letting the damping go to zero at the end of the calcula-
tion. ) Subsequent integration over t gives (2irm /A'Q)5(q) so that

I, =i I f dq 6(q)P(Q+ —,'q)P*(Q —
—,'q)

[
~

g (Q + ) q)g (Q { q)
~

eiQb+ia(g+0/2) —ia(g —0/2)

q
2 2

~

B (Q+ {q)B (Q {q)
~

e
—isa +i (Pg 0+ 2/) —iP(g —q/2) eisa]2 2

+ [ B(Q+ {q)~ iP(g+q / ) —2'gB(Q{)~ —'P(g —q /2)+2ig]1

2 2 2 (5.7)

The zeroth-order term (in a power series in q) in the first square bracket of (5.7) vanishes, since
~

3 (k)
~

+
~

B(k)
~

=1. Due to 6(q), the first-order term in the first square bracket and the zeroth order in the
second one, are the only survivors of the q integration, and one finds (with Q ~k)

I~ ——— k 3 k b —a+a'k + B k —2a+ 'k + —B k sin k —2ka . 5.82~ Ak k

&R (k)sin[P(k) —2ka ] .
Ak

(5 9)

Before commenting on the significance of (5.9), we note
that its form remains precisely the same in the case
AE&0, provided that T(k) is given its appropriate in-
terpretation as

T(k)=(k/k)
i

A (k)
i

=1—R (k)=1 —
i
B(k)

j

and that rt (k) is defined as in (4.15).
Several comments on our result (5.9) are in order: (i)

As anticipated, with perfect transmission (T =1, R =0),
the dwell time rd coincides with the phase time rr. (ii)
The third term on the right of (5.9) can be written as
(A/2E)&R sin(I3 —2ka). This form emphasizes its role
as a quantum interference term. It vanishes in the clas-
sical limit of high energies. (iii) To the extent that the
interference term can be neglected, ~d has the physical
interpretation of a weighted average of the phase times

Here we recognize (m /Rk)[b —a +a'(k)] as the total
transmission time rz(k) of (3.14). Similarly,
(m/A'k)[ —2a +13'(k)] is the total refiection time ri, (k)
of (4.5). When we use that

~
P(k)

~

is essentially arbi-
trary, and introduce the transmission and reAection
probabilities, (5.3), (5.5), and (5.8) finally yield the rela-
tion sought

rd(k) = T(k)rr(k)+R (k)~„(k)

for the two scattering channels existing here. In partic-
ular, at a resonance, where ~z- and ~z may become very
large, the interference term is negligible. (iv) For small
energies, however, and not too large ~z and ~z, the in-
terference term is very important. Typically' ~z and
~z —k ' as k ~0, whereas ~d —k. The difference is due
to the interference term which cancels the leading be-
havior in wz and rz. For small k, the dwell time has no
physical meaning in the present context. (v) To calcu-
late physica1 dwell times for transmitted and reAected
particles separately, one would have to identify those
with separate pieces of the total wave function in the
scattering region. Such a splitting of the wave function
is incompatible with the principles of quantum mechan-
ics. (vi) We have put (5.9) to the nontrivial test set by
reAection from, and tunneling through, a square barrier.
The dwell and phase times calculated explicitly for that
problem are in perfect agreement with (5.9). Details are
found in the Appendix. (vii) As it stands, with (a, b)
given as the (strictly localized) scattering region, all
terms in (5.9) are uniquely defined. If, on the other
hand, (a, b) is more liberally interpreted as any given in-
terval which includes the scattering region, the quanti-
ties in (5.9) change with (a, b). The phase times increase
linearly with a and b when (a, b) is thus expanded. The
interference term, however, oscillates with a. This is a
clear demonstration that the dwell time does not, in gen-
eral, have the physical meaning of the average time
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spent in the interval (a, b). Note that for any given k, a
can then be chosen such that the interference term van-
ishes. For a wave packet with a continuum of k values,
however, this is not possible. (viii) The dwell time intro-
duced by Smith is a somewhat subtler concept than that
discussed here. The freedom mentioned under the previ-
ous point, in combination with a limiting procedure, al-
lows the definition of a dwell time for which a relation of
the type (5.9), but without the interference term, can be
proved. This more refined dwell time is not well adapted
for applications in the transport theory of solids.

VI. RESONANT TRANSMISSION THROUGH
A DOUBLE BARRIER

A. General considerations

Assume now that T(k) has a sharp resonance at k„and
that all other functions vary slowly on the scale set by
the width of this resonance. To lowest order, the two
first terms on the right of (6.1) give [haik„t/m —a'(k„)].
If this were all, the only difference from the zeroth-order
version of (3.10) would be the trivial one that k, has
been replaced by k„. The last term in (6.1) represents
something new, however. It involves, in general, all mo-
ments of the initial wave packet. If we restrict ourselves
to packets characterized by moments of no higher than
second order, we can write

(bk bx(0))
0-2

(6.2)

[where (b,k b,x(0) ) =O(cr )]. In this simplest case (6.1)
becomes, with neglect of all corrections due to the finite
width of the resonance,

(x(t) ),—(x(0) )

( b.k bx(0))
(k k ) (6 3)

m 0

In view of its current importance, ' we shall, in this
section, consider resonant tunneling through a double
barrier. Most of the arguments of Sec. III were b6sed on
the assumption that the transmission probability T(k)
varies slowly on a scale set by the width 0., of the wave
packet. With sharp resonances, this condition may be
overly restrictive. We shall therefore go back to (3.8)
and (3.9) and consider the inverse situation.

Equation (3.9) can be written as

(x(r)), —(x(0))=-Pi ( T(k)k )
m Tk)

( T(k)a'(k) ) (AT(k)( —bg') )
( T(k)) ( T(k))

(6.1)

m —a b

k, k„ k,

k, —k,+
2

[cr (x(0)) —k, (bk hx(0))]
v k, k,

B. Calculations

We now turn to an explicit calculation of ~z at the
resonances of a symmetric double barrier. As the start-
ing point we use (6.4), and set k, =k„(i.e., we neglect the
correction from the initially free motion). Approximate
results (based on the dwell time) for the case of strong
localization (i.e. , high and/or wide barriers) have been
given previously by Ricco and Azbel. ' Our exact result
reduces (with minor, but interesting modifications) to
theirs, in the appropriate limit. It is not clear, however,
that this limit is the relevant one for applications, since
the corresponding delay time becomes uncomfortably
long, and neglected Coulomb and finite temperature
effects' then become significant.

The situation is shown in Fig. 4. A well of width m is
located between two equal barriers, each of width b and
height Vo. In the well there is a finite number (labeled
n = 1, 2, . . . ) of quasieigenstates (resonances) which, in
this symmetric case, correspond to k values where
T(k)=1. We only highlight the essential steps in the
calculation of ~z- below, since the procedure is stan-
dard. ' ' The complex transmission amplitude is
found to be

~ (k) =e ""/D (k), -

D (k) =cosh (orb )+ —,'sinh (vb )[cr cos(2kw) —6 ]
(6.5)

+i sinh(~b )[5cosh(~b)+ —'a sinh(irb )sin(2kw )],
where

(6.4)

This result is very similar to (3.17) and the same remarks
found there apply to (6.4). Note, in particular, that, de-
pending on the sign of (k„—k, ), a large and negative
(x(0) ) will substantially reduce or increase the delay as
given by the phase a'(k„). Note, also, that a discussion
of the reflected wave packet along the lines of this sec-
tion does not make sense.

An alternative approach to that presented above
would be to replace the initial wave packet by one
filtered through T(k), i.e. , to take P(k)&T(k) as the
Fourier transform of an "effective" initial packet. This
procedure would turn (6.4) into the standard form (3.14),
since k, would, by construction, coincide with k„. This
highlights the fact that the role of the term correcting
the phase time in (6.4) is merely to adjust the awkward
reference motion prior to tunneling into the resonance
structure.

The physics of the cross correlation term is precisely the
same as that discussed in Sec. III. What is new here is
its appearance already to leading order.

By calculations completely analogous to those of Sec.
III, one finds for the total transmission time

k
o = +

k

4
k q 2 ko5= ——— cr =5 +4=

k '~'

AkoE=, Vo ——,v =ko —k
2m

'
2m

(6.6)
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Vo

1

2W
1—2W

1

2W

A=2
f1=1

vo

2 W+b D res

1 ——,'6 tanh (~b)+i 6 tanh(~b)

1+—,
' 6'tanh'(l~b)

(6.10)

special choice kow =8 ko6 =3. There are three reso-
nances.

When (6.9) is satisfied, D (k) takes the form

FIG. 4. A symmetric double barrier. The height of the bar-
riers is Vo, their width b, and the distance between them is tL).

Two resonances are shown as dotted lines. 6 tanh(irb )tany„„= =tan(2kw) .
1 —

—,'6'tanh (I~b)
(6.11)

Clearly, T„„=
~
D„„~ =1. Furthermore, the phase of

D =
~

D
~

e 'r is, at resonance, given by

The resonance condition can be expressed in various
ways. A useful one, which can also be applied to the
asymmetric case, is

The proper solution of (6.11) is

y„=2k„w —(2n —1)~, (6.12)

A straightforward calculation based on (6.5) shows that
(6.7) implies

6 tanh(~b) (6.8)
1 ——,'6 coth(~b)

cot(kw) = ——tanh(ab) .
5
2

(6.9)

A graphical solution of (6.9) is shown in Fig. 5, for the

The extremal condition (6.7) is satisfied both at reso-
nances and when the transmission probability
T(k)=

~

D(k)
~

has a minimum. Resonances corre-
spond to those solutions of (6.8) at which

where n =1,2, . . . labels the resonances from the lowest
one up. Equation (6.10) can then be written

D„=—cos( 2k„w ) i sin(—2k„w ) . (6.13)

D (k) = —cos(2k„w) —i si n(2 k„w) +(g„+i i)„)Ak. . .

(6.14)

From this, the phase derivative follows as

y'(k„) = —)„ic s(o2k„w)+ g„sin(2k, w ) . (6.15)

Tedious, but straightforward, algebra is necessary to cal-
culate g„and i)„. The result for the transmission time

~T, at the nth resonance is, finally

Expansion of D (k) of (6.5) to first order in

Ak =k —k, at the nth resonance, gives an expression of
the form

k b=6 k w=8 [2b+ w 2b y'(k—„)]—
—k b1

0

cotk w

tanhKbI5
2

o. sinh (I~b) —,'w+ coth(—~b)
El

K

2

+u) +b 1— (6.16)

W

3'
kw

The above calculation was based on the phase derivative.
Since T, =1 at resonances in the symmetric case, the
same expression for ~z, should result if one would base
the calculation of ~T„on the formula for the dwell time
(5.5). We have checked this explicitly, and the agree-
ment with (6.16) is perfect.

For the case of strong localization, Irb » 1, (6.16)
yields

—2
m

Ak„

o. 1
e 2~b

4 K

m 4, 1 (6.17)

FIG. 5. Graphical solution of the resonance condition (6.9)
for the special choice of kow =8 and kob =6. There are three
tunneling resonances in this case.

where T'''=(16/ )oe
"" is the transmission coefficient

for a single barrier. Equation (6.17) agrees with the re-
sult of Ricco and Azbel, ' except for the prefactor 4 and
the factor —,

' in front of m. The overall prefactor was not
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taken seriously in Ref. 18, but the extra factor —,
' is more

interesting. It reflects the fact that, at resonance, the
wave function in the well is closely sinusoidal, rather
than having a constant absolute value. With asymmetric
barriers, where T„& 1 in general, the discussion in Sec.
V shows that a dwell time calculation, as in Ref. 18, can
yield an approximate answer, but never the exact one.

VII. CONCLUDING REMARKS

This paper contains three principal results. The first
one is the demonstration, in Secs. III and IV, that the
classic phase times are indeed the relevant physical times
when the motion of wave packets, narrow in k space, is
to be discussed to leading order. As an integral part of
this demonstration, new correction terms of O(o. ) have
been derived, and their physical content discussed.
These correction terms give quantitative meaning to the
condition that the wave packets should be narrow in k
space. The scattering off barriers of packets with a wide
k distribution cannot, in general, be characterized by
simple concepts like delay times. An exception is dis-
cussed in Sec. VI A. See also Ref. 8.

The second major result is the derivation, in Sec. V, of
the identity (5.9), relating the dwell time, as it is current-
ly used, to the phase times for transmission and
reflection. The corresponding discussion shows that the
dwell time is physically meaningful essentially only to
the extent that it coincides with the relevant phase time.
It is true that some numerical results' in the literature
might be said to favor the dwell time over the phase
time at small energies. This, we claim, must be due to
numerical difficulties. The results of Secs. III and IV
show that, for small energies, the packet has to be ex-
tremely narrow (o «k, ) for meaningful results to be
obtained. This puts the numerics under severe strain.
Other arguments in favor of the dwell time have been
based on calculations of stationary scattering of elec-
trons, including spin, by a potential barrier with an
infinitesimal magnetic field. ' ' ' Although we do not
challenge the calculations as such, we disagree with their
interpretation. When the time dependence is explicitly
handled, one finds, to lowest order, that a properly set
Larmor clock shows the phase time. '

The third new result is an explicit exact formula for
the transmission time, at resonance, through a sym-
metric double barrier. Under the provisos made explicit
in Sec. VI A, the phase time can be used to characterize
the delay of transmitted wave packets, even at narrow
resonances. Our explicit formula will, hopefully, be of
use in the discussion of resonant transmission, when the
barriers singly are not too opaque. (An extension to
asymmetric double barriers can be made without major
difficulties. ) Needless to say, the validity of the formu-
la is restricted by the assumptions basic to the model.

Note added in proof After this manuscript was submit-
ted we became aware of recent related work by J. R.

Barker, His conclusions on the relevance of phase
times are similar to ours. We differ, however, on the re-
lation (tested in our Appendix) between the dwell time
and the phase times.
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3 (k)= e
—ikb

cosh( Kb ) + —5 sinh( tabb )
2

(A 1)

B (k) = ——o. sinh(tabb)e'""A (k) .
2

This gives the corresponding phases as

a(k) = kb —tan —'[ —,'6tanh(tabb)],

P(k) = ———tan '[ —,'6 tanh(tabb)] .
(A2)

The phase times are

[b +a'(k)]

2trbk (t~ —k )+kasinh(2trb)
p'(k)=rR =

4k tr +k 0sinh (~b)

(A3)

From (Al) —(A3) and the identity (5.9) with a =0, one
calculates the dwe11 time as

2~b(tr —k )+kasinh(2tcb )
+d

4k t~ +ktsinh (x.b)
(A4)

in complete agreement with that found by direct integra-
tion of the wave function through the barrier.

Note that (i) whereas 7 r:'Tg (2m lhtrk)coth(tabb)
-k ' for small k, ~d -k. For small k, the interference
term in (5.9) is very important, and rd becomes physical-
ly meaningless. (ii) For finite A/E, the interference term
in (5.9) (with a =0) can only be made to vanish by hav-
ing sin/3=0. In the case of a single barrier (A2) shows
this to be possible only for 6~ ~, i.e., only when the
barrier becomes infinitely high. In that case, there is ob-
viously no difference between quantum and classical
reflection.

APPENDIX

The (elastic) transmission and refiection by a single en-
ergy barrier of width b and height V0 has been con-
sidered in detail by Buttiker. ' We sketch some of the
results here, using the notation introduced in (6.6). The
transmission and reflection amplitudes are, when the
barrier fills the x interval (O, b)
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