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First-principles calculations of the phase diagrams of noble metals: Cu-gu, Cu-pg, and pg gu
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(Received 11 May 1987)

It is shown how the temperature-composition phase diagrams and thermodynamic properties of
noble-metal alloys can be accurately reproduced by solving the three-dimensional nearest-neighbor
fcc Ising model with volume-dependent interaction energies determined from the properties of the
ordered phases alone. It is found that lattice relaxation effects are essential in determining order-
disorder critical temperatures. This approach enables the understanding of phase diagrams in
terms of the electronic properties and atomic-scale structure of the constituent ordered phases.

I. INTRODUCTION
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The observed temperature-composition phase dia-
grams of the face-centered-cubic (fcc) noble-metal alloys'
(Fig. 1) exhibit many of the qualitative phenomena un-
derlying phase equilibria of alloys: order-disorder transi-
tions and multiple-phase coexistence in Cu-Au [Fig.
1(a)], limited solubilities and a broad miscibility gap in
Cu-Ag [Fig. 1(b)], and complete solid solutions in Ag-Au
[Fig. 1(c)]. This diversity of phase phenomena, coupled
with the relative simplicity of the electronic and crystal
structures of the ordered phases of noble-metals com-
pounds are largely responsible for the fact that these sys-
tems constituted the testing grounds for nearly all
theoretical approaches to phase stability. This includes
electronic structure calculations for distinct ordered
phases, empirical models for charge transfer in or-
dered phases, ' coherent potential approaches to the

properties of the homogeneous disordered alloys,
tight-binding cluster-Bethe-lattice approaches' to the
order-disorder transition in Cu-Au, and various solutions
to the phase diagram problem modeled by the three-
dimensional spin- —,

' fcc Ising model' ' and solved ap-
proximately by the cluster variation method' ' (CVM),
Monte Carlo simulations, or high-temperature ex-
pansions. Despite the fact that the phase diagrams of
noble metals are by far both experimentally and theoreti-
cally the best studied metallurgical system, with the ex-
ception of Ref. 12, no attempt has been made to relate
the phase diagram to the electronic structure of the con-
stituents. Recently we have outlined the way in
which the phase diagram of an alloy can be obtained
from the volume-dependent total energy of its ordered
"building blocks. " We will apply this method here to
study from first principles the phase diagrams of noble
metals.

The volume ( V) -dependent excess internal energy
BE(o,V) of an alloy made of Nz A atoms and Nz B
atoms (where N=Nz+Nz) in a state of order cr (any of
the 2 possible arrangements on a fixed lattice) is defined
with respect to equivalent amounts of the elemental
solids A and B as
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FIG. 1. Experimental (Ref. 1) phase diagrams of noble-
metal alloys.

where E(o, V) is the total energy of the alloy, and
Ez(Vz ) and E~(Vz) are the total energies of the con-
stituents at their respective equilibrium volumes Vz and
Vz. On each lattice site i, one can have either a B atom
(in which case we denote the spin variable as S"= 1 and
the occupation variables as i)'I' ——1 and i)0"=0) or an A
atom (in which case the spin variable is S"=—1 and
the occupation variables are i)I' ——0 and i)0' ——1). This
general Ising problem is then often simplified by limit-
ing the interaction to a tractable short range and to a
finite number of multisite couplings within this range.
For instance, limiting the interaction range to first
neighbors and truncating the many-atom couplings to in-
clude up to four-body terms, the Hamiltonian can be
written as
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bE(rJ, V)=gg„(o. ) b,E(n, V)=0 .

Considering a (eanonieal) ensemble of samples of given
concentration x, the probability of finding a given unit n

becomes a thermal average

E y E( r s) y~(()~(j)~(k)~(&) (3)

where the interaction parameters I J I can be volume
dependent. The Hamiltonian of Eq. (2) can also be writ-
ten in the form

P„(x,T)= (g„(o ) ),
and the excess enthalpy of mixing at the equilibrium
volume Veq,

where t enumerates tetrahedra, N4 is their number, and
E(p, q, r, s) is the energy of a tetrahedron [expressible as
linear combinations of the J's of Eq. (2), see Ref. 20]
with occupations p, q, r, s (zero or one). Subtracting from
E(p, q, r, s) the energies bH (x, T) =+ATE(n, V,q )P„(x,T) . (10)

b,H(x, T) =E[o,V,q] xEq —[Vq ]—(1 x)Etj—[Vi) ], (9)

becomes

N N~

N
E(0,0, 0,0)+ E(1,1, 1, 1)

of equivalent amounts of the pure constituents, defining
the multiple index n =(p, q, r, s), and the state-of-order-
dependent multisite correlation functions

gap nq v. v.(I) (P (k) (I)

N4

Eq. (3) becomes

bE(o, V) =QbE(n, V)g„((T), (5)

where the energy of the alloy at any state of order a is
expressed as a weighted superposition of the energies of
its building blocks, with weights g„((T ) describing the oc-
currence frequencies of each building block.

In general the lattice parameter (hence volume)
changes with composition. Hence, each of the interac-
tion "parameters" b,E(n, V) of Eq. (5) is, in fact volume
dependent, i.e., an equation of state at T =0 (note that
all traditional Ising model approaches' ' assume con-
stant interaction energies). The physical content of these
volume dependent parameters b E(n, V) can be conceptu-
alized in the following way. If all the N4 tetrahedra
have the same occupation numbers n, then Eq. (4) im-
plies that the multisite correlations are

(n)=5„

Conceptualizing such a state of. order as a periodic crys-
tal whose repeat unit is this tetrahedron, Eq. (5) lets us
interpret the volume-dependent parameters b,E(n, V) as
the excess energy of the ordered structure n. An alloy
could then be desired as a collection of all local atomic
environments [each occurring in the alloy with the fre-
quency g'„(o )] exhibited by the corresponding ordered
crystals. At any state of order cr of the system (ordered
or not), the equilibrium volume [V,„(x)] is given by the
minimum condition

Our method is then based on the following steps.
(i) Identify a set of ordered structures A„B~ „which

exhibit all the local nearest-neighbor atomic environ-
ments characteristic of the A, 8 l alloy. We use for
this~urpose the five Landau-Lifshitz ordered fcc struc-
tures for the (001) ordering vector, i.e. , for n =0 and
n =4 we use the 31 fcc structure, for n =1 and 3 the
L1z structure, and for n =2 the L lo structure. These
crystal structures, their space groups, atomic positions,
and lattice vectors are depicted in the first three columns
of Fig. 2. The choice of these structures (observed to
occur in Cu-Au alloys') implies a nearest-neighbor ap-
proximation.

('ii) For each of the five ordered structures A„Bq
calculate self-consistently its total energy E [A„B4 „,V]
as a function of volume. Use these to obtain the
volume-dependent interaction energies per atom
bE(n, V) of the ordered phases

bE(n, V) = ,'E [A„B4 „,V—]

n 4 —n——E~[V~]— Ea[Va]4 4

appearing in Eqs. (1) and (5).
(iii) With these interaction energies, solve for the

correlation functions g„(cr)=g„(x,T) appearing in the
Ising Hamiltonian [Eqs. (2)—(5)] using, say, the cluster
variation method. '

(iv) Obtain the probabilities P„(x,T) from Eq. (8), and
from these the entropy S(x, T), enthalpy [Eq. (10)], and
hence free energies of all possible (ordered or disordered)
phases.

(v) Construct the x Tphase diagram from the-free en-
ergies of all species, using standard thermodynamic
methods. The approximations involved in this ap-
proach will be discussed in Sec. II C, after the results of
the local density calculations (Secs. II A and II B) are in-
troduced.
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FICx. 2. Structural properties of simple fcc-derived ordered phases of the type A„B4 „ for 0& n &4.

II. FIRST PRINCIPLES TOTAL ENERGY
CALCULATIONS FOR THE ORDERED PHASES

OF NOBLE METALS

A. Method of the calculation

Band structure and total-energy calculations for or-
dered A„B4 „(where A, B are Cu, Ag, or Au) com-
pounds were performed using the all-electron general po-
tential linear augmented-plane-wave (LAPW) method
within the local-density-functional formalism, using the
Wigner ' exchange-correlation functional. In this calcu-
lation, semirelativistic (i.e., without spin-orbit coupling)
effects are included for the valence states, whereas the

core states are treated fully relativistically in an atomic-
like procedure. The muffin-tin (MT) radii are chosen to
be 2.3324 a.u. for Cu and 2.5679 a.u. for Ag and Au.
The cutoff kinetic energy for the LAPW basic functions
are 11.8 Ry (equivalent to about 70—80 LAPW basis
functions per atom) and are kept the same for all calcu-
lations. Our cohesive energies are converged to be better
than 0.1 eV. No shape approximation is made for either
the potential or the charge density. Inside the atomic
spheres the nonspherical charge and potential are ex-
panded in terms of lattice harmonics of angular momen-
tum l &6.

The Brillouin-zone (BZ) integration for the charge
density is performed using a discrete k-point summation.
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FIG. 3. Lattice parameter-dependent total excess energies (with respect to equivalent amounts of the elemental solids at equilib-
rium) of noble-metal phases in the fcc structure (Cu, Ag, and Au), L 10 structure (n =2) and L 12 structures A 3B (n = 1) and AB3
(n =3). See Fig. 2 for structural information. The full circles are the calculated points. The empty circles give the calculated limit-
ing partial mixing enthalpies QH(0) and QH(1) [Eq. (28) below]. The arrows point to the equilibrium lattice constants.
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TABLE I. Comparison of the ground-state properties (lat-
tice parameter, in A, bulk modulus in CzPa, and cohesive ener-

gy in eV/atom) of fcc noble metals, as obtained by various
computational approaches to the local density formalism. '
The present results are obtained in the semirelativistic ful1-

potential linear augmented-plane-wave (LAPW) method, using
Wigner's exchange correlation. " The augmented-spherical-
wave (ASW) method used in Ref. 2 employs a shape-
approximated potential, is semirelativistic, and uses the
exchange-correlation potential proposed by Moruzzi et al. "
The ASW work of Ref. 34 is nonrelativistic and uses the
Hedin-Lundqvist exchange-correlation potential. ' The ASW

0
calculations of Refs. 2 and 34 differ by 0.05 A in lattice con-
stant. The mixed-basis (MB) pseudopotential methods of Ref.
37 use a shape unrestricted potential, are nonrelativistic, and
use the Ceperley and Alder exchange-correlation potentials as
parametrized by Perdew and Zunger. The Korringa-Kohn-
Rostocker (KKR) method of Ref. 35 uses a muftin-tin poten-
tial, is nonrelativistic, and employs the exchange-correlation
potential of Ref. 35.

CU Ag Au

Present, LAPW
ASW'
ASWb
MB'
KKRd

0
Lattice parameter (A)

3.577 4.057
3.554 4.028
3.602
3.625
3.581

4.106
4.070

Present, LAPW
ASW'
ASW"
MB'
KKR"

Bulk modulus (CJPa)
144 106
186 137
129
150
152 102

180
189

Present, LAPW
ASW'
ASW'
MB'
KKRd

Cohesive energy (eV/atom)
4.33 3.53

4.05
3.35
4.10 2.88

4.35

'Reference 2.
Reference 34.

'Reference 37.
Reference 35.

For the 3 1 fcc structure ten special k points in the ir-
reducible portion of the BZ (64 in the full BZ) are used.
To test the convergence of the results with respect to
this sampling we calculated the ground-state properties
of Cu using 28 k points and compared the results ob-
tained using 10 k sampling points. We find the lattice
constant to increase by only 0.013 A, the bulk modulus
decreases by 8%%uo and cohesive energy increases by l%%uo.

These changes reAect the relative precision of our first
principle calculation. For calculating the (generally
small) excess energies AE(n, V) [Eq. (11)] of compounds
in different crystal structure we have used the equivalent

k-points method to eliminate random errors due to the
k-point sampling. In this procedure the k points in the
full BZ of the A 1 (fcc) structure, used to generate the
ten special k points for fcc crystal, are mapped into the
irreducible portion of the BZ of L lo (generating 12 k
points), of L 12 (generating 4 k points), and of L 1~ (gen-
erating 15 k points). This mapping guarantees that the
total energy per atom of an elemental metal calculated
either with the fcc unit cell or with a lower symmetry
unit cell (e.g. , L lo, L l~, L12) are identical. Finally, each
eigenvalue is effectively broadened using an artificial
Fermi-Dirac distribution corresponding to a thermal en-
ergy of kT=2 mRy to improve the convergence of the
k-space summations.

B. Ground-state properties and heat of formation of
the ordered alloy

The calculated total energies as a function of lattice
parameters for the A„B4 „(n =0, 1,2, 3, 4) noble-metal
compounds are depicted in Fig. 3. These were fitted to
the Murnaghan's equation of state to find the equilibri-
um lattice constants a,'q', bulk moduli B'"', and the pres-
sure derivatives B~"' of the bulk modulus. We have used
for this fitting procedure 4—5 values of the lattice pa-
rameters near the equilibrium position. Calculated re-
sults for fcc Cu, Ag, and Au are given in Table I, where
they are compared with the results of previous calcula-
tions. ' The cohesive energies for the elemental
solids are obtained by subtracting the atomic total ener-
gies in the d' s' configuration from the total energies of
the solids using the von Barth-Hedin exchange-
correlation potential. The spin-polarization energies
(with respect to the unpolarized energies) are found to be
—0.27, —0.21, and —0. 18 eV for the Cu, Ag, and Au
atoms, respectively. For the tetragonally-deformed
(rl =c la; g&1) AB compound in the L lo phase the equi-
librium structure is found by searching the minimum of
total energy in the two dimension (a, g) plane. After
finding the equilibrium positions the bulk modulus is ob-
tained approximately by calculating total energy as func-
tion of volume with fixed equilibrium c/a ratio. Our
calculated results for the ordered binary compounds are
given in Table II and Table III, where they are com-
pared with the results of earlier calculations ' and with
experimental data.

The dependence of the ground-state properties on
exchange-correlation potential has been examined for Cu
and Au. We find that using the Hedin-Lundqvist corre-
lation formula the calculated lattice constants for Cu

0

and Au are 3.534 and 4.081 A, respectively, about l%%uo

smaller than those calculated from Wigner's interpola-
tion formula. '

For the Cu-Au and Cu-Ag systems total-energy calcu-
lations have been extended to values of lattice parame-
ters covering the full range where alloys form {3.577
A &a &4. 106 A, Fig. 3). To minimize the fitting errors
near the equilibrium positions, we fixed a,&', B"', and
the cohesive energy E,'"' to the values calculated near
equilibrium (Tables I and II), retaining as the only fitting
parameter the pressure derivative B~"'~ The resulting fits
are used in the phase diagram calculation (see Sec. III
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TABLE II. Comparison of the ground-state properties (lattice constant a,'q', bulk modulus B "',

and formation enthalpy AH'"') of intermetallic compounds of noble metals as obtained by diferent

computational approaches to the local density problem. See caption to Table I for details. The AB

and A3B structures are Llo and 1.12, respectively. T and C refer to tetragonal (c&a) and cubic

(c =a), respectively.

a,'",' (A) B'"' (t-Pa) hH'"' (kca1/g-at. )

System

Cu3Au

CUAU

Present

3.738

a =4.022
c =3.630
a =3.887

AS&'

3.697

3.830

Present

140

162

188

191

Present

—0.83

—1.45( T)
—1.21(C)

AS&'

—1.50

—1.61

CuAu3

Ag3Au

AgAu

AgAu3

Cu3Ag

CuAg

CuAg3

3.991

4.068

a =4.057
c =4.122
a =4.079

4.093

3.731

a =3.966
c =3.622
a =3.848

3.963

3.955

4.034

4.043

4.056

3.677

3.795

3.914

194

125

164

137

115

155

186

151

168

175

172

161

146

—0.61

—0.98

—1.56( T)
—1.55( C)

—1.16

+ 1.78

+ 2.34(T)
+ 2.39(C)

+ 1.58

—0.78

—1.02

—1.39

—1.05

+ 1.98

+ 2.73

+ 2.10

'Reference 2.
Reference 3 obtained AH(Cu3Au) = —1.18 kcal/g-at.

bH" —=bE(n, V, )

= —,'E[ A„B4 „,V,q]

n 4 —n
E~(&~ ]— Eat I—'a] .

4 4
(12}

By definition, the formation enthalpies of the end-point
constituents (n =0,4) are zero. A negative heat of
formation indicates the compound to be stabler then
its end-point constituents. The significance of
negative/positive formation enthalpies in terms of the
electronic structure is discussed in Sec. II D.

C. Basic approximations

Our approach to the alloy phase diagram problem in-
volves three basic approximations.

and Table VI). The fitting error is about, 10 ~ mRy for
points near the equilibrium positions, and about a few
mRy for points far away from the equilibrium positions.

The heat of formation per atom AH'"' of the ordered
compounds from the elemental solids is defined as the
equilibrium value of bE(n, V) of Eq. (11), i.e.,

(i) Even if five basic stoichiometric structures (Fig. 2)
were sufficient to describe the properties of the alloy at
all compositions, the local density approximation pro-
vides but an imperfect description of the ground-state
properties of these five structures relative to experiment
(Table III). We will examine the consequences of these
errors on the phase diagrams in Sec. IV ("model B"),
where the experimental values of Ia,q', B'",&H'"

I

would be used instead of the local density values ("model
A"). The sensitivity of the phase diagrams to small
changes of {a,'"„',B'"',bH'"'I will be further examined in
Sec. V ("model C").

(ii) The actual alloy may exhibit lattice relaxation
e(Fects, (equivalent to using a very large number of or-
dered building blocks, differing from one another by
small distortions), whereas we have implied so far the
use of unrelaxed structures. We will introduce such re-
laxation efFects in Sec. VI ("model D").

(iii) Each of the ordered structure used includes but a
single type of tetrahedron, e.g. , the A4 and 84 tetrahedra
in the A 1 phases (n =0 and n =4, respectively), the
A2Bq tetrahedron in the L1O phase (n =2},and the AB&
(n = 1) and A 3B (n = 3) tetrahedra in L 12 phase. Our
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nearest-neighbor approach hence implies that the energy
bE(o, V) of structures with an arbitrary arrangement of
tetrahedra (including, for example, cases where two
different tetrahedra such as A3B-AB3 coexist in the
same cell) can be approximately described by a superpo-
sition of the energies I b,E(n, V) I of periodic structures,
each containing a single type of tetrahedron. The ade-
quacy of this nearest-neighbor "superposition approxi-
mation" is examined as follows: We have calculated the
total energy of CuAu and AgAu in the L1& CuPt struc-
ture [space group D3~, equivalent to an (1,1) superlattice
along the (111) direction, see last column of Fig. 2], a
phase which includes both A3B and AB3 clusters in the
same cell. We then compared its excess energy to the
average excess energies of the two L 12 structures, each
containing only a A 3B or a AB3 tetrahedron. The
nonadditivity b(a) of the excess energies as a function of
lattice constant is defined as

b,(a)—:—,
'

I bE~"; '[ —,
' A3B+ AB3),a ]

——,
' [bEL', ( A, B,a)+bEt, '

( AB„a )]I, (13)

bELi, I(a)=K~ti(a —a„~) +bH" ', (14)

where Kzz is an effective force constant, azz is the equi-
librium lattice constant of the L 1 i structure (close to
that of the CuAuI structure), and bH'' ' is its forma-
tion enthalpy. Similarly, model the lattice-parameter
variation of the average energy of 3 3B and AB3 [second
bracketed term in Eq. (13)] as

bE(a)=k(a —a„g) +bH, (15)

when azz and K are the average lattice constants and
force constant, respectively, and b H = [bE"'(a zti )

+bE' '(a „~i ) ] /2. The nonadditivity b (a ) of the excess
energies would then be

where the L 1, structure is kept cubic (i.e., no structural
relaxation). b, (a) is hence a measure of the strength and
volume dependence of intertetrahedra (next nearest-
neighbor) interactions. For the Ag-Au system we find
that b, (a) is positive (+ 0.25 kcal/g-at. ) and nearly a-
independent. For the Cu-Au system we also find at

0
a =3.864 A (a value near the equilibrium lattice parame-
ter of CuAu, see Table II) a positive b(a ) = +0.24
kcal/g-at. Hence, as is the case for the Ag-Au, the L1&
structure of CuAu near equilibrium is also less stable
than the average of the two L lz structures. However, at

0
a =4.080 A (a value close to the equilibrium lattice pa-
rameter of Au, see Table I) we find for Cu-Au a negatiue
value b, (a) = —0.57 kcal/g-at. (the L 1, system being
more stable). These results can be understood qualita-
tively as follows: Model harmonically the lattice-
parameter variation of the energy of the L 1] structure as

system the average lattice parameter of Cu3Au (3.738 A)
and CuAu3 (3.991 A) is (3.864 A) close to that of CuAu
(3.880 A) in either the L lo or the L 1, phases, hence
a zz ——a zz too. Consequently,

b, (a)=(K~ii K—)(a —a„~) +(bH ' ' bH—) . (16b)

D. Electronic structure and its relation to the
cohesive properties

l. Elemental solids

To understand the trends and gain some insight into
the stability of noble metals and their alloys we have
studied their electronic properties. We find that many of
the trends obtained in the total-energy calculations could
be rationalized by considering the atomic properties.
Table IV shows the calculated atomic s and d valence or-
bital energies (both semirelativistic and nonrelativistic)

TABLE IV. Local density atomic eigenvalues c (in eV) and
orbital moment (R ) (in a.u. ) of Cu, Ag, and Au calculated
with the Hedin-Lundqvist exchange-correlation potential. The
nonrelativistic (NR) and semirelativistic (SR) values of the
outermost valence s and d states are given.

(R, ) (Rg)

Finding for Ag-Au (all a' s) that b, (a) =+0.25 kcal/g-at.
and for Cu-Au at a =a „ii ——3.864 A also b(a „ii )

=+0.24 kcal/g-at. we conclude that relative to the iso-
lated tetrahedra the two A3B and AB3 tetrahedra repel
each other by [b,H" ' —bH] &0. However, for Cu-Au
at the lattice parameter of a =4.080 A which is far from
equilibrium we find a negatiue b(a) = —0.57 kcal/g-at.
Since [bH'' ' bH] &0—, this shows that the first term
on the right-hand side of Eq. (16b) must be negative, or
that K~~ &K. This shows that the coexistence of tioo
kinds of tetrahedra in the same cell softens the elastic
constants (K„ti) relative to those (K) of the structures
with isolated tetrahedra. This softening then reduces the
elastic energy of the CuPt L 1

~
structure by

—0.57 —0.24= —0. 81 kcal/g-at. at a =4.080 A. This
suggests to us that such a modification of the properties
of a given type of tetrahedron due to the existence of
other tetrahedron around it (to be referred to below as
"relaxation of cell-internal degrees of freedom") can be a
viable mechanism of phase stabilization. [Notice that we
have assumed a cubic L1& structure, whereas this struc-
ture can relax along the (111)direction, further lowering
its energy. Our results above are hence upper limits of
b, (a)]. This observation motivated us to investigate the
consequences of relaxation on the phase diagrams (our
"model D" Sec. VI).

b, (a)=K„ii(a —aug) —K(a —agcy) +(bH" ' bH) . —

(16a)

For the Ag-Au system the lattice parameters of all or-
dered compounds are similar (e.g. , Ag3Au, AgAu and
AgAu3, see Table III), hence a„e -—a„e. For the Cu-Au

CU (NR)
Cu (SR)
Ag (NR)
Ag (SR)
AU (NR)
AU (SR)

4.77
4.95
4.37
4.81
4.51
6.16

2.95
2.89
3.27
3 ' 1 1

3.31
2.84

5.57
5.39
8.19
7.73
8.35
7.14

1.04
1.05
1.40
1.42
1.58
1.62
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Our results of Table III indicate that among the
noble-metal compounds Cu-Au and Ag-Au are "stable"
(negative formation enthalpy), but Cu-Ag is "unstable. "
Miedema and coworkers have proposed a successful
empirical formula to predict the sign of the heat of for-
mation for binary alloys. In their formula the formation
of an intermetallic alloy from its constituent solids is as-
sociated with two competing contributions to AH,
represented as

bH = —(bP) +(bq) (17)

Here, (b,P) is the attractive term related to the elec-
tronegativity difference, or the ability to attract elec-
trons, whereas (hg) is a repulsive term related to the
discontinuity of electron density at the boundary of
atomic cell of the pure metals. The efforts ' ' under-
taken in the past to understand the microscopic origin of
the attractive and repulsive terms of Eq. (17) can be
broadly divided into two conceptually different models.
(i) The ionic model, in which the alloy formation is
thought to be inhibited by the strain energy (required to
fit two lattice mismatched elemental solids in the same
alloy), and is fauored by the charge flow induced by the
different chemical potentials of the constituents. (ii) The
covalent model ' in which the s and p electrons, which
are responsible for the charge arrangement, are ignored;

for Cu, Ag, and Au. The relativistic energy shifts are
large for Au: They deepen (i.e., increase the binding of)
the Au 6s energy level by 1.65 eV; as this orbital be-
comes more tightly bound, it in turn better screens the
core potential and hence pushes the Au 5d orbital ener-
gy to a higher energy (by 1.21 eV). These relativistic
shifts of atomic eigenvalues have the following effects on
the cohesive properties.

(i) They localize the s orbitals and delocalize the d or-
bitals causing thereby lattice contraction. This ex-
plains why Au has a smaller lattice constant than one
would expect from a nonrelativistic model (where atoms
with a larger atomic number generally have larger lattice
constants). The reduction in lattice constant of Au also
implies a larger bulk modulus.

(ii) Relativistic effects reduce the s-d energy diff'erence,
increase the overlap of s and d orbitals (Table IV), and
therefore enhance the s-d hybridization. Since for ele-
mental noble metals the s-d hybridization contributes
significantly to the cohesive energy, the relativistic
shift also implies an increased cohesive energy for Au.
This also explains why Ag has the smallest cohesive en-
ergy among the noble metals. As we can see from Table
IV, the Ag 4d level has the largest binding energy in the
series and is fairly localized. This reduces both the s-d
hybridization and the d band covalent contribution to
cohesion in Ag (See Table I). We have performed a non-
relativistic (NR) total-energy calculation for metallic Au.
We find that the lattice constant (a~„=4.304 A) in
creases by 4.8%, the bulk modulus (BA„——111 GPa) de-
creases by —38% and the cohesive energy (E, =3.33
eV) decreases by —23% (Table I). These results sub-
stantiate our conclusions.

2. Noble-metal compounds

the attractive contribution to AH in this model is then
ascribed to the enhancement of interatomic covalent
bonds due to the broadening of the d bands of the con-
stituents, whereas the repulsive contribution is thought
to originate from the mismatch of the widths of the con-
stituents d bands.

We find that neither the ionic model nor the covalent
model provide a satisfactory and complete picture of the
formation of the noble metal alloys. For example, con-
ventional electronegativity scales used in the ionic model
often predict an incorrect direction of charge transfer.
Using, for example, Pauling's scale (where the elec-
tronegativities of Cu, Ag, and Au are 1.9, 1.9, and 2.4,
respectively) suggests that the charge transfer in the Ag-
Au system is from Ag to Au. We find, however, (see
Table V) that the actual charge transfer is from Au to
Ag, i.e., in the opposite direction. In Table V we see
also that the direction of charge transfer is I dependent:
the s and d channels always transfer charge in opposite
direction. ' The change of charge density on the nucleus
is found to be correlated to the s charge transfer. This
suggests that the assignment of a single, l-independent
chemical potential (or electronegativity) is not appropri-
ate. The covalent model also cannot explain some of the
results we found. For example, the calculated d-band
widths [defined as W'd ——e(X5)—e(X, )] are 3.46, 3.76,
and 5.57 eV for Cu, Ag, and Au, respectively. Since the
band width mismatch for CuAu is larger than that of
CuAg, the covalent model would suggest that CuAg is
more stable than CuAu, a conclusion which is not sup-
ported by our total-energy calculation or by experiment
(Table III). Further, since in the covalent model the
nominal d occupation number of noble metal is ten, this
model would suggest that the d-band contribution to
bonding is zero, which is inappropriate.

3. Separation of the formation enthalpies into
"chemical" and "elastic" contributions

A qualitative understanding of the phase stability
problem has been developed recently by approximately
separating the excess energy b.E(o, V) of an alloy in a
state of order 0. into a volume-independent but
configuration (n)-dependent "chemical energy" e'"' and a
volume and concentration dependent "elastic energy"
g(x, V):

bE(tr, V)=QE'"'g„(o )+g(x, V) . (18)
n

The need for such a separation becomes clear when one
realizes that whereas the formation enthalpy 5H'"'
=b,E(n, V,q) of a compound [Eq. (12)] reflects the bal
ance between "chemical" and "elastic" energies, the
transformation between an ordered compound and a
disordered phase of the same composition (e.g. ,
AB~A05BO ~, or A3B~A07&Boqs) depends solely on
E'"', since g(x, V) has the same value for ordered and
disordered phases at the same composition x and
volume. The fact that such a separation is in general
nonunique has led in the past to conflicting (and indeed,
confusing) models, largely because it was not generally
appreciated that one needs to choose a well-defined con-
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TABLE V. Site and angular momentum projected charge inside the muffin-tin spheres of Cu {RMT ——2.3324 a.u. ), Ag and Au
{RMT——2.5676 a.u. ), and the charge density dift'erences at the nucleus sites {in e/a. u. ') with respect to the elements.

P
d
l)2
Total
Ap'

Cu

0.496
0.413
9.229
0.029

10.167
0.0

Cu site
CuAg

0.456
0.318
9.270
0.021

10.061
—0.77

CuAu

0.427
0.347
9.290
0.029

10.093
—1.40

Ag

0.447
0.310
9.140
0.034
9.931
0.0

Ag site
CuAg

0.489
0.411
9.106
0.050

10.056
2.08

AgAu

0.421
0.324
9.166
0.045
9.956

—1.04

Au

0.5S2
0.357
8.702
0.054
9.665
0.0

Au site
CuAu

0.632
0.453
8.636
0.067
9.788

23.9

AgAu

O.S85
0.340
8.668
0.044
9.637

12.55

straint to make such a separation "unique. " Ferreira
et al. have indeed shown that a rigorous separation is
possible if one imposes the reasonable constraint that
molar volumes of different phases at the same composi-
tion (e.g. , ordered vs disordered) have but a weak depen-
dence on the state of order. Under this constraint, it
was proven that at the equilibrium volume,

g (x, V,q) = 6 (x), where

G(x ) = (1 —x ) J XZ (X)dX+x f (1—X)Z(X)dX, (19)
0 X

and
2

(20)

b,E(o )=QE"g„(o)+G(x) .

For a pure stoichiometric compound all g„(o ) but one
vanish, giving at equilibrium

2!H " =AE( n, V,q ) =E'"'+ G (X„), (22)

where X„ is the concentration of a given atom in the
stoichiometric compound (e.g. , X„=n/4 for A„84 „).
The physical interpretation of Eq. (22) is as follows: The
first term on the right-hand side represents the forma-
tion enthalpy of a compound whose volume V,'q' equals
that of its constituents (V~ and Vii), i.e., for the uncom-
mon case of a lattice-matched alloy. These
configuration-dependent (but volume and composition
independent) "chemical energies" c~" I are then simply
the familiar Ising-type "spin-flip" substitution ener-
gies' ' on this fixed lattice. They measure the strength
of the many-body interactions between atoms (or spins)
within the interaction range considered. The only
reason that the first term of Eq. (21) changes with com-
position is statistical: different alloy compositions have
different distributions of species n [given by g„(o.)], but
c'"' itself is composition independent.

The second term of Eq. (22) represents corrections to
the constant-volume assumption. It vanishes by Eqs.
(19) and (20) when the alloy has the same volume as its
constituents, i.e., when dV/dx —=0, or when the alloy is
infinitely compressible 8 (x) =0. The two terms in Eqs.
(21) and (22) refiect the dual coordinates used in phe-

8(x) dV d G

V(x) dx dx 2

and where 8 (x) and V(x) are the bulk modulus and
volume of the alloy, respectively. The excess energy of
Eq. (5) for a general state of order o then becomes

nomenological models of solid solubility, compound sta-
bility, and mixing enthalpies: The second term can be
thought to describe the destabilizing effect of strain in-
duced by the mismatch between the molar volumes of
the constituents, and parallels the classical "size factor"
in alloy models, ' whereas the first term can be thought
to describe the "electronegativity factor. "

Using our calculated Ia,'q', 8'"', hH~"'I values for the
noble-metal compounds A„84 „(Table III) one can
evaluate the two terms of Eq. (22). This is done by
evaluating B(x) and V(x) as an interpolation of the
values of B'"' and V'"' for five ordered compounds, and
integrating Eqs. (19) and (20) to find G(x). Evaluating
this G(x) at the stoichiometric compositions X„=—,', —,',
and —,

' then gives G(X„);combined with Eq. (22) and the
calculated values of h.H "' (Table III) one then gets all
E'"'s. For the Cu-Au systems for which sufficient exper-
imental data for ordered compounds exist (Table III) the
same procedure can be repeated using the observed
values of I

V'"',8 I"I, AHI"'], resulting in "experimental"
values for E'"' and G(X„). These values are given in the
last two columns of Table III.

The results point to the following conclusions.
(i) Although Cu-Au and Ag-Au have negative hH'"'

values but Cu-Ag has positive AH'"' values, all three sys-
tems have attractive chemical energies c.'"'

& 0.
(ii) The Cu-Au system has the largest negative chemi-

cal energy mainly due to the ability of Au to attract s
electrons from other atoms, forming "ionic" bonds, and
its ability to give up d electrons, forming "covalent"
bonds (Table V). Although the elastic energy G(X„) of
Cu-Au is even larger than that of Cu-Ag (since Au has
larger bulk modulus than Ag), the large chemical in-
teractions in Cu-Au overwhelm the destabilizing elastic
energy and make this system stable.

(iii) The Cu-Ag system has rather small chemical ener-
gies. This can be traced back to the similar s electron
levels of its constituents (Table IV) leading to a small
ionic charge transfer (Table V), and to the deep d elec-
tron energy of Ag (Table IV) depriving the system from
significant d-d bonding. The reason that the formation
enthalpy AH "' for Cu-Ag is positive is that its small
chemical energy c" is overwhelmed by the large elastic
energy G (X„) caused by the large lat tice mismatch.
This large elastic energy will therefore lead to limited
solubility despite the fact that the chemical energies in
Cu-Ag are more attractive than in Ag-Au.
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(iv) The Ag-Au system has a negligible elastic energy
due to the good lattice match between the constituents (a
consequence of relativistic efFects, see discussion in Sec.
II D 1). Hence, the small chemical energy dominates
AH'"' which is therefore negative. The small elastic en-
ergy will lead to the formation of complete solid solu-
tions.

(v) Because of the fact that the chemical energy is neg-
ative in all three systems, we will find (Sec. III) that Ag-
Au has stable low-temperature ordered phases (yet unob-
served) and that despite bH(Cu„Ag4 „)&0, the fact
that s(Cu„Ag4 „)~ 0 will lead to metastable low-
temperature ordered phases in Cu-Ag.

III. MODEL A: CALCULATING THE PHASE
DIAGRAMS FROM FIRST PRINCIPLES TOTAL

ENERGIES OF UNRELAXED STRUCTURES

Our first step in the study of the phase diagrams of
noble metals is to use the five equations of state (de-
scribed in Table VI as "model A") of the unrelaxed or-
dered A„B4 „compounds (Fig. 2) and solve with these
interaction energies b,E(n, V) (Fig. 3) the three-
dimensional nearest-neighbor fcc Ising model [Eqs.
(2) —(5)] in the tetrahedron approximation (i.e., retaining
up to four body interactions). We use for this purpose

the cluster variation method (CVM, see Refs. 15—19).
We minimize the free energy not only with respect to
the correlation functions g„(tr ), but also with respect to
the volume, obtaining thereby the predicted (generally,
non-Vegard-type) composition-dependent volumes. In
comparing order-disorder temperatures calculated in the
CVM with experiment one must notice that the CVM
provides an imperfect solution to the corresponding Is-
ing Hamiltonian: More exact Monte Carlo (MC) simula-
tions of the same Hamiltonian provide slightly lower
critical temperatures. In particular, TMc /TcvM
—:g =0.9425 for the nearest-neighbor fcc Ising mod-
el. ' ' ' We hence must multiply the calculated critical
temperatures by g when comparing with the observed
values.

Our calculated phase diagrams in model A are given
in Fig. 4 (Cu-Au), Fig. 5(a) (Cu-Ag), and Fig. 6 (Ag-Au).
Comparison with the experimental phase diagram (Fig.
1) shows that the qualitatiue features are correctly pre-
dicted, e.g. , ordered compounds for Cu-Au, a broad mis-
cibility gap for Cu-Ag and complete solubility below
melting for Ag-Au. We predict for Cu-Ag [Fig. 5(a)]
that inside the miscibility gap there should exist three
metastably ordered compounds (i.e., with free energies
lower than the disordered phase but higher than the
two-phase mixture) since e'"' & 0 but bH'"' ~ 0. For

TABLE VI. Structural and thermodynamic properties of ordered Cu„Au4 „compounds used in
0

the calculation of the phase diagrams. a'"' in A, B'"' in GPa, hH'"' in kcal/g-at. An asterisk denotes
adjusted quantities.

Quantity

a (0)

~(I)
(2)

a")
g(4)

B(0)

B(l)
B(2)
B(3)
B(4)
B(0)

PB(l)
P

B(2)
P

B(3)
P

B(4)
P

XH")
aH(3)

Model A
first principle

3.577
3.738
3.887
3.991
4.106

144
140
162
194
180

2.92'
2.38'
6.26'
4.82'
4.89'

—0.83
—1.21'
—0.61

Model B
LT experimental

input'

3.615
3.743
3.866
3.982
4.078

138
148
163
170
171

2.92'
2.38'
6.26'
4.82'
4.89'

—1.71
—2.10
—1.37

Model C
adjusted LT

experimental input

3.657*
3.758*
3.852*
3.943*
4.031*

138
148
163
170
171

2.92'
2.38'
6.26'
4.82'
4.89'

—1.59*
—2.100
—1.250*

Model D
LT experimental

input +
relaxation

Eq. (24)
Eq. (24)
Eq. (24)
Eq. (24)'
Eq. (24)"

138
148
163
170
171

2.92'
2.38'
6.26'
4.82'
4.89'

—1.556*
—2.100
—1.373

'See columns 3, 5, and 9 in Table III for sources of data.
Not measured; interpolated from other data. (See Table III).

'Taken from first-principle calculations, model A.
"Relaxation parameter K =0.20772 in Eq. (24), see text of Sec. VI.
'This is the data for cubic CuAuI (c/a =1), which is used to calculate the phase diagram. After the
relaxation of c/a we find hH' '= —1.45 kcal/g-at.
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TABLE VII. Predicted critical temperatures T„(in K) for order-disorder transitions in

Cu„Au4 „~~Cu„Au&, miscibility gap (MG) temperature, TMG, mixing enthalpies AH(X„, T=800),
and critical compositions X„ for order-disorder transitions.

Ti
T2
T3

TMG
(i)

AH( —', 800}
AH( —', 800)
5H( 3,800)

XI
X2
X3

Model A

1216'
1009
719

1821
1017

—0.39'
—0.06

0.244
0.490
0.688

Model B

1000
940
740

—1.01'
—1.31'
—0.79

0.250
0.490
0.690

Model C

703
725
531

—1.02
—1.39
—0.78

0.254
0.492
0.696

Model D

703
725
531

—0.98
—1.38
—0.90

0.250
0.490
0.713

Experimental

703'
725'
531'

—1.06
—1.22
—0.72

0.25
0.50
0.75

'Triple point for equilibrium between two disordered phases and CuAu, see Fig. 4.
q=0. 9425 is the fact converting CVM temperatures into the more accurate Monte Carlo results (see

Sec. V).
'Although the ordered phases are stabler at these compositions and temperatures, the disordered
phases still exist and their enthalpy can be calculated.

Ag-Au (Fig. 6) we predict at low temperatures stably or
dered compounds since both c'"' and AH'"' are negative.
Since these ordered phases both for Cu-Ag and for Ag-
Au are predicted to occur at low temperatures, they may
be dificult to detect.

Figures 7—9 show the calculated mixing enthalpies
[Eq. (10)] of these alloys, compared with the experimen-
tal values. ' The predicted order-disorder temperatures,
mixing enthalpies at T=800 K, and critical composi-
tions for the Cu-Au system are summarized in the first
column of Table VII. The fifth column of Table VIII
gives the calculated and measured' partial molar enthal-
pies of solution, where they are also compared with the
recent calculation of Foiles et al.

The results of model A can be summarized as follows.
(i) The general qualitative features of the phase dia-

grams are correctly reproduced. The phase diagrams of
Cu-Ag and Ag-Au agree quantitatively with the limited
data available (high temperatures only). The new results
at lower temperatures (ordered phases for Cu-Ag and
Ag-Au) are offered as predictions.

(ii) The quantitative description of the Cu-Au phase
diagram is poor: Critical order-disorder temperatures
(for Cu3Au this is a peritectic point, whereas for CuAuI
and CuAu3, Fig. 4 shows a congruent point) are too high
by 200—500 K (Table VII) even after the usual overes-
timation of critical temperatures by CVM relative to the
more accurate Monte Carlo is taken into account (by the
constant g in Table VII). Furthermore, two miscibility
gaps (dashed areas in Fig. 4) appear in the calculation,
with no counterpart in the experimental data.

(iii) The mixing enthalpies of Ag-Au (Fig. 9) as well as
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FIG. 8. Calculated excess mixing enthalpies for Cu-Ag at
1052 K in the (a) Cu-rich, and (b) Ag-rich limits. Results are
given both for the unrelaxed structures (model A, giving mix-
ing enthalpies that are too positive) and for the fully relaxed
structures [model D, with K = 1 in Eqs. (24) and (25)]. The
diamond-shaped symbols give the experimental results (Ref. 1).

FIG. 9. Calculated excess mixing enthalpies of Ag-Au at
800 K, using the unrelaxed energies of model A, compared
with the experimental data (Ref. 1, denoted as solid circles).
The formation enthalpies of the ordered phases are denoted by
the diamond-shaped symbols.
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TABLE VIII. Calculated and measured partial molar enthalpies of solution in kcal/g-at.

Alloy

Cui „Au„

Agi —x Aux

Cul —x Agx

Partial molar
enthalpies

Au in Cu (Ap)
Cu in Au (Qi)
Au in Ag (Qp)
Ag in Au (Oi)
Ag in Cu (Op)
Cu in Ag (Qi)

a
+exptl

—3.9 (800 K)
—2.8 (800 K)
—4.8 (800 K)
—4.0 (800 K)
+ 9.2 (1052 K)
+ 6.0 (1052 K)

Relaxed
energies

(model D)

+ 7.1'

+ 6.3'

Unrelaxed
energies

(model A)

+ 6.0
+ 3.5
—3.9
—4.6

+ 15.4
+ 9.5

Embedded
atomb

—4. 1

—2.8
—2.5
—2.5
+ 2.5
+ 4.1

'Reference 1.
Reference 63.

'Relaxation parameter K =0.2077.
Data of Ref. 1, available at x =0.05 and x =0.98.

'Full relaxation X = 1 [Fig. 5(b)].

its partial molar enthalpies of solution (Table VIII) are
correctly reproduced. The corresponding results for
Cu-Ag (Fig. g and Table VII) are too large relative to ex-
periment, whereas for Cu-Au (Fig. 7 and Table VIII) the
enthalpies are yet larger, becoming even positive, in con-
trast with experiment. '

These discrepancies are consistent with the local den-
sity ouerestimation of the strain energy (e.g. , lattice
mismatch in Table III) and its underestimation of the
formation enthalpies (e.g. , b,H'"' in Table III). Since the
Ag-Au system is naturally lattice matched, our model
correctly predicts the properties of this system. The
problem is more acute for the Cu-Au system which has
both larger local-density errors and larger elastic ener-
gies.

for the overestimation of CVM relative to Monte Carlo)
by 300 K (Cu3Au~~CuQ 75AuQ z5), 215 K (for
CuAu~~CuQ 5AuQ 5) and by 210 K (for
CuAu5~CuQ p5AuQ 75).

We conclude that the use of five basic unrelaxed or-
dered structures with "exact" structural and thermo-
dynamic parameters as building blocks is sufFicient to
reproduce the excess thermodynamic functions of the
disordered phase and the qualitative features of the
phase diagram, but overestimates critical order-disorder
temperatures by -200—300 K. While the ability to de-
scribe the temperature-composition properties of an al-
loy from the properties of Pue ordered structures at low
temperatures constitutes a significant accomplishment,
we wish to identify the physical factors which would

IV. MODEL B: USING THE LOW-TEMPERATURE
EXPERIMENTAL DATA FOR ORDERED COMPOUNDS

Having identified an obvious source of error in model
A—the insufFiciently accurate description of the equilib-
rium properties of ordered intermetallic phases by the
local density approach —we proceed in model B and
correct the values of Ia,q', B'"I and bH'"'I for
Cu„Au4 „ to match the experimentally observed values
of these ordered structures at low temperatures (second
column in Table VI, labeled model B). Our objective
here is to find whether the use of nearly-perfect data on
the five basic ordered compounds at low temperatures
would sufFice to describe the phase diagram in a full tem-
perature and composition range. The resulting phase di-
agram of Cu-Au is shown in Fig. 10; the mixing enthal-

py is shown in Fig. 7(b). Table VII gives the critical
temperatures and enthalpies.

The results of model B can be summarized as follows.
(i) The unphysical miscibility gaps of model A (Fig. 4)

have disappeared (Fig. 10).
(ii) The mixing enthalpies are very close to experiment

(Fig. 7); Table VII shows in fact that they are within
0.09 kcal/g-at. of experiment.

(iii) The critical order-disorder temperatures (Table
VII) are too high relative to experiment (after correcting

1000

I I

Cu3Au

900

800

700
E 600I-

500

400
0.0
Cu

0.2 0.4 0.6
Atomic Fraction x

0.8 1.0

FIG. 10. Calculated phase diagram of Cu-Au using the ob-

served equilibrium properties of the five ordered phases at low
temperature (L.T.) (Table VI). Shaded areas denote ordered
structures. Observe that the unphysical miscibility gaps
present in model A (Fig. 4) have disappeared, and that the
order-disorder transition temperatures are lower.
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lead to an even closer agreement with experiment.

V. MODEL C: SENSITIVITY OF THE PHASE
DIAGRAM TO THE STRUCTURAL PARAMETERS

OF THE ORDERED PHASES

Qur foregoing discussion shows that the use of the
properties of five physically realizable ordered interme-
tallic phases to construct the phase diagram leads to an
overestimation of the critical temperatures. Given the
fact that the extremely small differences in the structural
properties of the ordered phases in model A relative to
model 8 (see Table VI) resulted in substantial changes in
the critical temperatures (Table VII), one wonders if
similarly small changes in the parameters used in model
B could produce an accurate phase diagram. We want
then to establish the magnitude of the changes in
[a,'"„',bH'"') needed to reproduce the observed phase di-
agram. In other words, having established in model 8
that the real ordered structures A „B4 „alone are
insufIicient to accurately reproduce critical order-
disorder temperatures, we now ask what are the values
of [a,'q', bH'"'I of "effective ordered structures" A„B4
needed to get an "exact" phase diagram.

Since fitting only three critical temperatures by adjust-
ing the numerous values of [a,'q', B'"',bH'"'I may be an
overdetermined problem (if not an uninformative exer-
cise), we set a number of simple restrictions on the prob-
lem. (i) We will not adjust [B'"',Bz~ "I) but keep them
fixed as in model 8. (ii) We require obtaining not only
the three critical temperatures but also a physically
correct phase diagram (e.g. , no miscibility gap as in
model A). (iii) All a,'q' should be shifted by adjusting a
single parameter Q in a function a'"'(II). This is done
by observing that Z(x) of Eq. (20) can be approximat-
ed as a constant 20. Integrating V(x) from Eq. (20)
then yields

'2

V(x)= [V(0)]'"+(-,'n)'" fo [B(X)]'" (23)

which we use to define a scaling relationship for the
equilibrium molar volumes V„=V(X„) at the
stoichiometric compositions x =X„, as functions of A.
Interpolating the B'"' values to obtain B(x) and using
Eq. (23) we end up with five molar volumes functions of
a single parameter Q. By varying A we can fit T&

——703
K, T2 ——725 K, T3 ——531 K if we simultaneously perform
small shifts in the values of b,H '' and hH' [we keep
AH' ' fixed since it is the most reliably determined for-
mation enthalpy in this system. Shifting AH' ' is no
violation of any experimental data because it was inter-
polated, not measured (Table III). On the other hand,
AH"', though well measured is the enthalpy of forma-
tion on ill-defined phase: A compound presenting
different lattice parameters and possibly enthalpies, cor-
responding to different states of order]. The parameters
for fitting then became b,H' I bH' ', and Q. (The
dependence of the transition temperatures on hH'" and
b H' ' is considerably weaker than the dependence on
the lattice parameters. ) The resulting lattice parameters
and enthalpies for model C are given in Table VI. The
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( )

800—
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E
I- 500—

CuqAu CuAu

1 I

Model C:
Adjusting s ~"~,

h, H&l~, and AH&~~

400
0.0
Cu

0.2 0.4 0.6
Atomic Fraction x

0.8 1.0
Au

FICx. 11. Calculated phase diagram of Cu-Au using slight
adjustments of a,'q', AH'", and hH' ' of model B (Table VI).
These small changes result in significant modifications in the
phase diagram relative to the unmodified model 8 (Fig. 10),
making this phase diagram very close to experiment [Fig. 1(a)].

VI. MODEL D: EFFECTS OF LATTICE RELAXATIONS

A. The relaxation model

In using models A and 8 we have assumed that (i) the
equilibrium volumes VIq'(x) of the tetrahedra A„B4
embedded in an alloy of composition x equal the values
V,'q'(X„)= V~"' for the pure tetrahedra A„B~ „, and (ii)
no local distortions occur around a given tetrahedron.
Our foregoing discussion (Sec. II C) indicated that the
coexistence of numerous types of tetrahedra could affect
the properties of any given tetrahedron, including its
equilibrium volume and its local structure. To general-
ize our first assumption (i) above we note that to first or-
der in a Taylor series, the equilibrium volume of struc-
ture n at a composition x is

Vi",i(x) = Vi",'(X„)+K„[V(x) V,",'(X„)]+—(24)

where K„are constants, and where V(x) is the equilibri

resulting phase diagram is shown in Fig. 11 and is nearly
identical to the experimental phase diagram, where it is
known (of course one must account for the factor
q=0. 9425 that corrects the CVM calculation).

This exercise shows that a change in the equilibrium
lattice parameters of the experimentally obserued ordered
structures (model B) by only 0 04 -A .(- l%%uo), and a
change of -0. I Kcai/g at in th-e f.ormation enthalpies is
sufhcient to produce a perfect ftt to the phase diagram (to
within —I K) and mixing enthalpies, using but viue or
dered structures. This emphasizes the critical need to es-
tablish lattice parameters with extreme precision if the
system consists of two components with a large lattice
mismatch. Clearly, the structures corresponding to the
[a,'q', b,H'"'

I values of model C are fictitious: They
represent the "effective medium" properties of the five
hypothetical basic structures which produce, by con-
struction, a perfect phase diagram. However, the fact
that the properties of these fictitious structures are so
close to those of the real structures, combined with our
foregoing discussion on the role of lattice relaxation (Sec.
II C), suggest to us a physical way of producing a correct
phase diagram, which we discuss next.
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&& [ V(x) —V'"']'+ (25)

where bH'"' is the value at V= V'"' and V "'—:V,q'(X„).
Here V(x) is found by solving

B (n)
= QP„(x, T) (1—K„)

dV
X

&& [ V(x) —V'"'] =0 . (26)

The graphical interpretation of Eq. (24) is given in
Fig. 12. Had one used the equilibrium volumes
V,q'(X„)=—V'"' of the ordered A„84 „structures for all
compositions x (i.e. , set K„:—0), the five solid lines in

Fig. 12 would have been horizontal. This corresponds to
models A and B where we assumed that each tetrahed-
ron of type n can be characterized by a volume V'"'
which is independent of its chemical environment.

Composition x (T = 500)
0.0 0.25 0.50 0.75 1.0

I
CP

E

0

C
~~ I
LU
U

O

10

t7—

7.1 8 9 10
Alloy equilibrium volume

V(x) (cm /mole)

FIG. 12. Schematic plot of the composition dependence of
the equilibrium molar volumes V,'~'(x) of ordered tetrahedra n

in a medium of composition x [see Eq. (24)]. Solid circles
denote the values of V,'q'(X„) for the perfectly ordered phases
A„B4 „at stoichiometric compositions X„=O,4, —,', 4, and 1.
The unrelaxed model (E =0) corresponds to the case where all
solid lines are horizontal and each passes through the corre-
sponding V,'q'(X„) value. The fully relaxed model (K = 1) cor-
responds to the case where all five lines collapse into the single
dashed line passing through all V,q'(X„) values.

um volume of the al/oy at the composition x. Since for
small volume changes the energy scales as
[V(x)—V,'q'(x)], Eq. (24) shows that the energy of a
cluster embedded in an alloy of molar volume V(x) is

1 B'")
b,E [n, V(x ) ]= b.H "'+— ( 1 —K„)V(n)

While this assumption (analogous to the classical con-
cept ' of the existence of transferable atomic radii) has
been the cornerstone of structural chemistry since
Bragg and Pauling demonstrated that numerous
packing arrangements of the same atoms in different
compounds can be explained by assuming fixed atomic
volumes (or radii), it is probably insufficiently accurate
for phase-diagram calculations, given their extreme sen-
sitivity to small changes of VI"' (Sec. V). The effect of
K„&0 is then to allow for such internal relaxations. No-
tice that K„&0 does not imply any changes in bond dis-
tances of tetrahedron A„B4 „ in the alloy, but merely
that the equilibrium values of V,'"„'(x) equal those of the
pure ordered compounds V,q'(X„) only at x =X„. The
opposite extreme to K„=O is K„=1 (dashed line in Fig.
12), where all of the distinct volumes V,q'(x) become n

independent [equaling V(x)], as in the virtual lattice
model. This viewpoint argues that atoms lose their iden-
tities in an alloy, forming effectively "average atoms"
with correspondingly average atomic volumes.

Rather than seek a set of n-dependent A„values, we
instead pose the following question: Does there exist a
single effective relaxation parameter K for a given binary
alloy which when applied to the properties of the five ac-
tual ordered phases (model B) cures all of the discrepan-
cies of this phase diagram and thermodynamic proper-
ties relative to experiment? This reduction to a single
n-independent relaxation parameter also simplifies the
problem since V(x) and 8 (x) becomes K dependent
only indirectly through P„(x,T) [as (1 —K) can be taken
out of the sum over n in Eq. (26)].

In addition to cell-internal relaxation modeled by
K&0, one could envision local atomic cell-external re-
laxations to take place [i.e., avoid our second assumption
(ii)]. These are equivalent to the use of a large number
of basic ordered structures which taken together are able
to describe arbitrary local displacements of a given site.
Such local relaxations could be described by using large
supercells (instead of the 4-atom cell of the structures
used here, see Fig. 2). They could lower the strain ener-

gy and raise the configurational entropy (providing more
configurational degrees of freedom). Both effects then
tend to reduce the free energy of the disordered phase,
lowering thereby order-disorder transition temperatures.
Rather than model separately the cell-internal and cell-
external relaxation effects (which are clearly beyond the
nearest-neighbor tetrahedron approximation), we instead
seek effective (global) relaxation parameters K in the
sense of Eqs. (24) —(26).

B. Results for the relaxation model

1. CQ-AQ

Keeping [a,'"„',8'"',8~~",AHI j fixed at the values of
model B (see Table VI) we then adjust [K,AH' ' ', bH' ' ).
Solving the Cu-Au CVM phase diagram with these ad-
justable values produces the parameters shown in Table
VI as "model D." The phase diagram is given in Fig.
13, the mixing enthalpy in Fig. 7, and the critical data is
summarized in Table VII. The limiting partial enthal-
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FIG. 13. Calculated phase diagram of Cu-Au using a single
relaxation parameter K=0.2077 (Table VI) and the results of
model B. Observe the nearly perfect fit with the experimental
phase diagram of Fig. 1(a).

i.e., Cu3Au~~Cup 75Aup 25, CuAu~~Cup &Aup &, and
CuAu3~~Cup 25Aup 75 The discontinuity is larger for
Cu3Au and smaller for CuAu3. [While we find the tran-
sition region to be very narrow (less than 0.1 K) for
Cu3Au, for CuAu3 the region extends in a range of al-
most 40 K. The discontinuities for CuAu and CuAu3
are very dificult to observe experimentally because, in
the case of CuAu there is a tetragonal distortion when
crossing the region, while, for CuAu3, the transition re-
gion is so broad and the volume discontinuity so small
that it is unlikely that the internal strains could prevent
the formation of multiphase domains. On the other
hand, the discontinuity of Cu3Au has been observed to
be some thousandths of A, while our calculated result
is 0.0080 A, in reasonable agreement with experiment. ]

2. Cu-Ag

pies resulting from model D are shown in Table VIII. A
perfect fit is obtained for K=0.20772, indicating that
Pauling's view (K =0) is only —20%%uo wrong, whereas the
virtual lattice result (K =1) is —80% wrong. A perfect
fit is also possible starting from the first-principles re-
sults of model A, producing a somewhat different value
of the relaxation parameter K. Hence, quantitatively
precise phase diagrams and thermodynamic properties of
alloys can be obtained using a small number of modestly
relaxed ordered building blocks. This is the basic finding
of this work.

In solving the phase diagram problem we minimize
the grand canonical potential G(x, T) both with respect
to g„(cr ) [Eq. (5)] and with respect to the alloy volume
V(x). [Notice that in CVM the probabilities P„(x,T)
are variational, i.e., BG/BP„=O. The minimization with
respect to the volume, i.e., dG/dV=O is reduced to an
equation for the partial derivative BG/BV=O. ] The re-
sults of this procedure for the volume V(x, T) are depict-
ed in Table IX for T =500 K, 800 K, and for the ran-
dom disorder approximation (T = ~ ). They are com-
pared with the volume V,'q'(X„) of the perfectly ordered
compounds. We find that there is a volume discontinui-
ty upon order-disorder transformation for all three cases,

Since only Cu-Au and Cu-Ag show a significant lattice
mismatch between the constituents we include relaxation
only for these systems (the results of the unrelaxed mod-
el A for Ag-Au are already adequate). Since the data on
Cu-Ag is limited, one cannot narrowly determine the re-
laxation parameter, as was done for Cu-Au. We there-
fore examine the extreme limits of K =0 (no relaxation,
model A) and K =1 (full relaxation). Table VIII shows
that the partial solution enthalpies in the fully relaxed
calculation (7.1 and 6.3 kcal/g-at. for Ag-in-Cu and for
Cu-in-Ag, respectively) are closer to the observed values
(9.2 and 6.0, respectively) than are the unrelaxed values
(15.4 and 9.5, respectively). Figure 8 shows that the ob-
served mixing enthalpies for small dilution are indeed
closer to those obtained from the relaxed model. Figure
5(b) shows the phase diagram with full relaxation and
demonstrates a considerable reduction in the miscibility
temperature (which remains, however, above the melting
line).

VII. AVERAGE PROPERTIES OF THE ALLOYS

Having established an accurate model (D) for the
phase diagrams of noble metals, involving a single ad-
justable (relaxation) parameter, we proceed to investigate
some of the properties of these calculated phase dia-
grams.

TABLE IX. Comparison of the equilibrium molar volumes V,'q' of the ordered phase Cu„Au4 „(from a',q' of Table III) with
those of the alloy V(X„,T) at compositions X„=O, 4, —,', 4, and 1, as calculated from model D. Percentage changes of the alloy
volume relative to the ordered compounds are given in parentheses. Thermal expansion effects are excluded. Note the large
change in molar volume associated with disordering Cu3Au.

Ordered
structure

Cu
Cu3Au
CuAu
CuAu3
Au

Alloy
composition
Cui „Au

0.0
0.25
0.50
0.75
1.0

Veq
ordered

phase

7.111
7.892
8.698
9.506

10.213

V (T =500)

7.1 1 1 (0.00%)
7.962 (0.89%%uo)

8.752 (0.62%%uo)

9.543 (0.39%%uo)

10.213 (0.00%)

V (T =800)

7.111 (0.00%)
7.982 (1.14%)
8.769 (0.82%%uo)

9.550 (0.46%)
10.213 (0.00%)

V(V =~)
7.111 (0.00%)
8.050 (2.0%%uo)

8.836 (1.58%)
9.571 (0.68%)

10.213 (0.00%)



4180 WEI, MBAYE, FERREIRA, AND ZUNGER

Figure 14 depicts the excess probabilities

b P„(x,T) =P„(x,T)—P„'"'(x) (27)

with respect to the random (R) probabilities, as a func-
tion of temperatures, demonstrating that even for very
high temperatures ( —2000 K) the clusters Cu3Au,
CuAu, and CuAu3 exist considerably in excess (& 10%)
of what random statistics would predict. Simple random
disorder models are hence inapplicable. Figure 15 shows
bP„(x, T) as a function of composition, demonstrating
that the mixed tetrahedra (Cu„Auq „ for n =1, 2, and
3) exist in excess, whereas the pure tetrahedra (n =0 and
4) are deficient. This "clustering" phenomena leads to
pronounced nonideal behavior of the enthalpy and entro-
py. Defining the "interaction parameters"

I4 (x, T) =KS(x, T)/x(1 —x ),
QH(x, T)=AH(x, T) jx(1—x),
IIF(x, T) =bF(x, T)Ix(1—x),

(28)

where bS(x, T) is the nonideal mixing entropy, bH(x, T)
[Eq. (10)] is the mixing enthalpy, and bF(x, T) is the ex-
cess free energy of mixing, Fig. 16 shows for Cu-Au
large negative values of 0&, 0II, and 0F, only for
"T= m" do IIH(x, T)=OF(x, T) become nearly compo-
sition independent. It is interesting to note that the un-
relaxed results (model A) give a positive QH(x, T) [Fig.
7(a)] if random probabilities are used, whereas the use of
the variational probabilities gives correctly a negative
QH(x, T), both for model A [Fig. 7(b)] and for model D
(Fig. 16). In contrast to the strong composition-
dependent interaction parameters for Cu-Au, the Ag-Au
system (Fig. 17) exhibits only a weak composition depen-
dence in Q(x, T). These trends were indeed observed ex-
perimentally: For Ag-Au QH (x, T) is nearly x in-
dependent, whereas for Cu-Au it is strongly composition
dependent.

Figures 16 and 17 show negative values for the excess
mixing entropies I4(x, T) for Cu-Au and Ag-Au.
Whereas Hultgren et al. ' quote indeed negative values
for Ag-Au, in agreement with our results, they give posi-

40
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K cn
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o .'= 20
c ~~

P 10
CO Q

4)
l3 0

500 1000 1500
Temperature (K)

gp(n) (x„,T)
for Cu1 „Au„

I D)

2000

FIG. 14. The difference hP'"'(x, T) of the actual cluster
probabilities P'" (x, T) and the random probabilities Pq"'(x) for
Cu-Au, calculated from model D. Observe that the actual
probabilities deviate significantly from random probabilities
even for very high temperatures.

~[i]=—1.56+0.98= —0.58 k-l/, -.t. ,

~' ' = —2. 1+1.38 = —0.72 kcal/g-at. ,

A,
' '= —1.37+0.90= —0.47 kcal/g-at. ,

(29)

showing that CuAu(n =2) has the strongest tendency to
order. Had one used instead the much higher mixing
enthalpies EH(x, T) of the random alloy [Fig. 16(d)], the
ordering energies A.

'"' would have been considerably
more negative. In the extreme limit of the unrelaxed
model A [Fig. 7(a)], bH'"' has the opposite sign to
b,H(X„, T= oo). This unphysical result is apparent in
the work of Terakura et al. who have combined unre-
laxed energies with random statistics.

tive (but extremely small) values for Cu-Au at 800 T.
More recent experimental studies of Kleppa and Topor
give, however, negative values, as we find in Fig. 16.

One can compare the mixing enthalpies bH(x„, T) of
the disordered alloy at stoichiometric compositions X„
(Table VII) with the formation enthalpy bH'"' of the or-
dered phases at the same compositions (Table VI) to
deduce the "ordering energies" A, '"'(T)=AH "'
—hH(X„, T). This yields for Cu„Au4 „at T =800 K
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model D to those obtained by the simpler E-G ap-
proach (see the Appendix).

ACKNOWLEDGMENT

G(x)=(1—x)f x'Z(x')dx'
0

1+x l —x' Z x' dx'
X

(A6)

Our present approach to the phase diagram of a
binary A„B& system is based on representing the ex-
cess energy b E(cr, V) of the alloy in a state of order cr as
a superposition of equations of states b.E(n, V) of the or-
dered structures A„B4

bE(cr, V) =gbE(n, V)g„(o.),
n

and determining the correlation functions g„(cr )

=g„(x,T) by solving this Ising Hamiltonian using

I bE(n, , V) I as input. These bE(n, V)'s are the excess en-

ergies of an ordered structure AnB4 „with respect to
the energies of equivalent amounts of A and B at their
respective equilibrium volumes Vz and Vz

(Al)

b E(n, V) = —,'E [ A „84 „., V]— E~ ( V„)—— E~ ( Vs ) .

(A2)

Ferreira et ah. have proposed an alternative ap-
proach which is simpler, but requires that the molar
volumes of the 'thermodynamically selected config-
urations be approximately state of order independent.
In this "s-G model" bE(n, V) is replaced by a separable
form

bE(n, V) =s'"'+ (1—X„)f xZ(x)dx
0

+X„f (1—x)Z (x)dx, (A3)
X( V)

where s'"' are the "chemical energies, " and Z(x) is

given by
2

8(x) dV
V(x) dx

Here the constant c'"' is the volume-independent "chem-
ical energy, " V(x) and 8 (x) are the equilibrium volume

and bulk modulus of the alloy, both functions of the
concentration x, but otherwise independent of the state
of order, X( V) is the inverse function of V(x), and X„ is

the stoichiornetric concentration in the ordered com-
pound n. At the equilibrium volume of the alloy, the
enthalpy is

bH(x, T)=QP„(x,T)bE(n, V,q)
n

=QP„(x, T)EI"'+G (x), (AS)
n

(A4)

wh«e P„(x,T) are the thermal average of the correlation
function g„(x,T) and

This work was supported in part by the Office of En-

ergy Research, Materials Science Division, U.S. Depart-
ment of Energy, under Grant No. DE-AC02-77-
CH00178.

APPENDIX: COMPARISON OF THE e-6
APPROACH AND THE PRESENT

EQUATION-OF-STATE APPROACH TO THE
PHASE DIAGRAM PROBLEM

because X ( V,q ) =x. From Eqs. (A3) and (A6) one has

bE(n, V,q)=st"'+G(X„)—=bH'"' . (A7)

In this Appendix we compare these two approaches.
Comparing b,E(n., V) of Eq. (A2) to b,E(n, V) of Eq. (A3)
we note the following.

(i) Both have the same value at equilibrium (a value
which equals the formation enthalpy AH'") of the or-
dered phase n) since e "' is calculated from the same
given bH'"' value [Eq. (A7)].

(ii) The minimum occurs at the same equilibrium
volume VI,q' = V(X„), since the given ( V',"„'

I are used to
construct Z(x) of Eq. (A4).

(iii) The second volume derivatives of these excess en-
ergies [bulk modulus 8'"'=8 (X„)] are the same since
{8'"']is used to construct Z (x) of Eq. (A4).

(iv) The third volume derivatives of the excess energies
are, in general, not the same. In the c-6 approach these
are related to higher-order composition derivatives of
V(x) and 8 (x), whereas in the present equation of state
approach the third volume derivative of the energy gives
the pressure coefficient B~"' of the bulk modulus.

To assess the role of B~"' on the phase diagram we
have recalculated the phase diagram of Cu-Au in model
C (Table VI) using our standard equation of state ap-
proach, but set all Bz"'———1. In this case the equation
of states of Eq. (A2) reduce simply to the harmonic form

B(n)
bE(n, V) =bH'"'+. ( V —V'"')

2y(n)
(A8)

Despite the fact that this equation of state is very
different away from equilibrium from the Murnaghan
equation of state used in this paper, the resulting phase
diagrams (Fig. 18) are very similar (compare with Fig.
11). This result implies that at the temperatures con-
sidered in these phase diagrams, the Boltzmann popula-
tion of clusters whose volume departs considerably from
V'"' (these are the only clusters which experience

900—

800—
hC

700

m 600

E 500

400

Cu3Au

Y=
CuAu

Model C
but 8„=Q

300 I [ I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
CU Atomic Fraction x

FIG. 18. Calculated phase diagram of Cu-Au using the pa-
rameters of model C (Table VI) but setting all B~"' to zero.
The similarity to the phase diagram of model C (Fig. 11j indi-

cates the relative insignificance of the curvature variation of
EE(n, V) for V far from equilibrium.
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B'"'&0) is small. The clustering phenomena observed
here (Fig. 15 and Sec. VII) simply suggests that the sys-
tem reduces the population of the most strained clusters.
This weak dependence of the phase diagram on 8~("' ex-
plains the success of the E;-G model. This also implies
that the equilibrium alloy volume [which minimizes Eq.
(A5)] is reasonably state-of-the-order independent. (The
small variations of the volume with changes in the state
of order shown in Table IX are, however, missed by the
E-G approach. )

The success of the c.-G approach in practical applica-
tions depends on one's ability to simply calculate Z(x).
In the equation of state approach this requires solving
the phase diagram first. This gives V(x, T) (e.g., Table
IX), B(x,T) and dV(x, T)/dx which can be inserted in
the definition (A4) of Z(x, T) obtaining a temperature-
dependent function. In the E-G approach one needs to
calculate Z(x) a priori [to obtain EI"' and G(x)]; by con-
struction, it is T independent. This is simply done by in-
terpolating V(x) from j V'"'I of the ordered phases as

x —X;
V(x) =g VI"' &„X„—X;

(A9)

with an analogous expression for B (x). These functions
are then used in Eq. (A4), [together with dV(x)/dx also
obtained from Eq. (A9)] to obtain Z(x).

We will compare these functions for Cu-Au from
model D, using the c,-G and the equation of state ap-
proach. (This comparison will be done only for the
disordered phase because the ordered solutions only exist
at a very small range of x and V. On the other hand, in
these small ranges, the parabolic approximation is
correct anyway, which validates the e-G assumption. )

For the E-G separation of variables [Eq. (A3)] to be
valid one requires that the true Z(x, T) will depend but
weakly on temperature; for the E-G construction of Z(x)
to be valid we require that it matches closely the Z(x, T)
calculated from the equation-of-state approach. To test
these assumptions, Fig. 19 shows Z(x, T) for Cu-Au
(model D) calculated from the CVM solution to the
equation of state representation for T =500 K, 800 K,
and random-disorder ("T=ao"). It is compared with
Z(x) calculated from Eqs. (A4) and (A8) using the data
[ V "',B'"'] for the ordered compounds given in Table
VI. The range of temperatures from 500 to 800 K is
specially important because all the phase transitions

Cl

O

/
/

/

I
I

4o ~-'

~ ~

= 800K

Z(x) For Model 0
~ ~ ~ ~ ~ T = 500K

~ T = 800K
————T= oo

Interpolation

30- ~ ~ ~ ~
0

20-
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g0 Cu,
0.0

I

0.2
I I I I

0.4 0.6
Atomic Fraction x

I

0.8
Au

1.0

FIG. 19. The calculated function Z(x, T) [Eq. (A4)] for Cu-
Au using the present equation of state approach (model D) for
T=500 and 800 K and T= ao K, compared with Z(x) calcu-
lated in the c-G approach by interpolating the properties of the
five ordered structures [solid line and Eq. (A9)].

occur in this range. One observes that Z(x, T) at
T =500 K differs very little from that of T =800 K, ex-
cept for the compositions near x =0. 15 when the
difference reaches a maximum of 13%. The curve for
T = oo and that obtained in the e-G method (solid line)
present larger deviations from those of T=500 and 800
K.

The four functions Z(x) were used in Eq. (A6) to gen-
erate G(x) which was used in Eq. (A7) to calculate the
chemical energies c". The results are presented in
Table X which also shows the "effective" c.". These
effective chemical energies were obtained in the follow-
ing way. If the (E, G) separation were exact, then the
critical temperatures would depend only on the E'"' and
not on G(x). Then, the eff'ective E.

'"' could be calculated
by using a simple Ising Hamiltonian fitted to give the
critical temperatures of 703, 725, and 531 K, much in
the same way as done by De Fontaine and Kikuchi. '

From Fig. 19 and Table X one sees how well the (c., G)
separation is working, and how well the interpolation
scheme to calculate Z(x) and E'"' is satisfactory. Most

TABLE X. Calculation of c'"' (in kcal/g-at. ) for the Cu-Au system from the parameters of model
D. For T =500 K, 800 K, and op we use Z(x, T) calculated in CVM (Fig. 19), whereas "interpola-
tion" means that Z(x) was calculated in the c,-G model.

E(1)

~(2)

~(3)

T=500 K
—4.317
—5.618
—3.833

T=800 K

—4.329
—5.603
—3.813

T=oo K

—4.388
—5.524
—3.717

Interpolation

—4.205
—5.630
—3.935

Eff'ective'

—4.228
—5.591
—3 ~ 860

'These are defined as those parameters of the pure Ising model ("c only" ) that give the correct
Tl, Tp, T3. These results were calculated with CVM.
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1000
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gg 700—

CL

E 600~

500—

Y=
CuAu

C-G approach
to Model 0

of [
V'"I,BI"'I (Fig. 19, solid curve) and the correspond-

ing interpolated EI"' values (Table X), we have performed
a CVM calculation of the phase diagram. The results
are shown in Fig. 20. We find excellent agreement with
the direct equation-of-state CVM approach (Fig. 13).

On tne other hand, some thermodynamic potentials
depend not on G(x) but on its derivative. For instance,
the chemical potential p has a term

2

400 I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cu Atomic Fraction x Au

dG i, B x' dV
dx x V(x') dx'

FIG. 20. Calculated phase diagram of Cu-Au in the c-G ap-
proach to model D, using the c ' and G(X, ) values denoted in
Table X as "interpolation. " Note the great resemblance to the
phase diagram of Fig. 13 calculated for model D using the
present equation of state approach.

of the important features of a phase diagram, and many
of the single-phase phenomena, such as short-range or-
der, are solely determined by the chemical energies c '.
From Table X one sees that, whatever the scheme, these
energies are calculated with a precision already better
than most of the enthalpy measurements. The chemical
energies E'"' are obtained from Eq. (A7) by integrating
G(x) as in Eq. (A6). In the process of integration, the
di(ferences between the many Z(x) curves of Fig. 19 are
much attenuated. Using Z(x) obtained by interpolation

x, B(x') dV
o V(x') dx' (A10)

for which the di6'erences between the many Z (x) be-
come more important. Finally, spin odals which are
determined by equating the second derivative of the free
energy to zero, depend on d G/dx = —Z(x) itself. In
this case, the spinodal curve will depend on which of the
diff'erent Z(x) curves is being used.

This analysis shows that the (c tG) separation will al-
ways be very good as a parametrization scheme. On the
other hand, when it comes to the calculation of Z (x) by
interpolating the sets {V„ I and IB„],the results are go-
ing to be good for E ", worse for p, [when the first
derivative of G(x) intervenes], and even worse for the
spinodals and miscibility gaps (when the second deriva-
tive intervenes).

'R. Hultgren, R. D. Desai, D. T. Hawkins, H. G. Gleiser, and
K. K. Kelley, Selected Values of the Thermodynamic Proper
ties of Binary Alloys (American Society for Metals, Cleve-
land, 1973).

2K. Terakura, T. Oguchi, T. Mohri, and K. Watanabe, Phys.
Rev. B 35, 2169 (1987).

~R. E. Watson, J. W. Davenport, and M. Weinert, Phys. Rev.
B 35, 508 (1987); 34, 8421 (1986).

4D. Gray and E. Brown, Phys. Rev. 160, 567 (1967).
~H. L. Skriver and H. P. Lengkeek, Phys. Rev. B 19, 900

(1979).
R. E. Watson and L. H. Bennett, Phys. Rev. B 1S, 6439

(1978).
7J. A. Alonso and L. A. Girifalco, Phys. Rev. B 19, 3889

(1979); C. H. Hodges and M. J. Scott, Philos. Mag. 26, 375
(1972).

"J. A. Clark and P. G. Dawber, J. Phys. F 2, 930 (1972).
C. D. Gelatt and H. Ehrenreich, Phys. Rev. B 10, 398 (1974).

' K. Levin and H. Ehrenreich, Phys. Rev. B 3, 4172 (1971).
''H. Ebert, P. Weinberger, and H. J. Voitlander, Z. Phys. B 63,

299 (1986).
'2R. C. Kittler and L. M. Falicov, Phys. Rev. B 1S, 2506

(1978}; in Theory of Alloy Phase Formation, edited by L. H.
Bennett (The Metallurgical Society, Warrendale, PA, 1980),
pp. 303.

'3C. Domb, in Phase Transitions and Critical Phenomena, edit-

ed by C. Domb and H. S. Green (Academic, London, 1974),
Vol. 3, pp. 357.

'~D. M. Burley, in Phase Transitions and Critical Phenomena,

edited by C. Domb and M. S. Green (Academic, London,
1972), Vol. 2, p. 329.

'5R. Kikuchi, J. M. Sanchez, D. de Fontain, and H. Yamagu-
chi, Acta Metall. 2S, 651 (1980).

' R. Kikuchi and J. W. Cahn, Acta Metall. 21, 1337 (1979).
' D. De Fontaine, in Solid State Physics, edited H. Ehrenreich,

F. Seitz, and D. Turnbull (Academic, New York, 1979), Vol.
37, p. 73.

' J. Hijmans and J. De Boer, Physica (Utrecht) 21, 471 (1955);
21, 485 (1955); 21, 499 (1985).

' C. M. van Baal, Physica (Utrecht) 64, 571 (1973).
D. F. Styer, M. K. Phani, and J. Lebowitz, Phys. Rev. B 34,
3361 (1986).
K. Binder, Phys. Rev. Lett. 45, 811 (1980).
U. Gahn, J. Phys. Chem. Solids 47, 1153 (1986).

23See, for example, Ya. G. Sinai, Theory of Phase Transitions:
Rigorous Results (Pergamon, Oxford, 1982).

24G. P. Srivastava, J. L. Martins, and A. Zunger, Phys. Rev. B
31, 2561 (1985). See also J. W. D. Connolly and A. R. Willi-
arns, Phys. Rev. B 27, 5169 (1983) for a closely related ap-
proach.

25A. A. Mbaye, L. G. Ferreira, and A. Zunger, Phys. Rev.
Lett. 5S, 49 (1987).
L. G. Ferreira, A. A. Mbaye, and A. Zunger, Phys. Rev. B
35, 6475 (1987), and unpublished.

27A. CJ. Khachaturyan, Theory of Structural Transformations in
Solids (Wiley, New York, 1983)~

E. A. Guggenheim, Mixtures (Clarendon, Oxford, 1959).
S.-H. Wei, H. Krakauer, and M. Weinert, Phys. Rev. B 32,



36 FIRST-PRINCIPLES CALCULATIONS OF THE PHASE. . . 4185

7792 {1985),and references therein.
30P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); W.

Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
3~E. Wigner, Phys. Rev. 46, 1002 (1934).

D. J. Chadi and M. L. Cohen, Phys. Rev. B 8, 5747 (1973).
F. D. Murnaghan, Proc. Nat. Acad. Sci. 30, 244 (1944).

34A. R. Williams, J. Kiibler, and C. D. Gelatt, Jr., Phys. Rev.
B 19, 6094 {1979}.

35V. L. Moruzzi, J. F. Janak, and A. R. Williams, Calculated
Electronic Properties of Metals (Pergamon, New York, 1978).

36L. Hedin and B. I. Lundqvist, J. Phys. C 27, 1853 (1984).
M. H. Kang, R. C. Tatar, E. J. Mele, and P. Soven, Phys.
Rev. B 35, 5457 (1987).
J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).
D. S. Eppelsheimer and R. R. Penman, Physica 16, 792
(1950). See more discussion in Vol. 6 of Landolt-Bornstein,
Xeu Series (Springer-Verlag, Berlin, 1971), p. 7.
Y. Hiki and A. V. Granato, Phys. Rev. 144, 411 (1966).

42C. Kittel, Solid State Physics, 5th ed. (Wiley, New York,
1976), p. 74.

J. R. Debesis, Ph. D. thesis, Western Reserve University 1971,
quoted in Vol. 11 of Landolt-Bornstein, ¹ur Series
(Springer-Verlag, Berlin, 1979), p. 100.

4~M. E. Straumanis and S. M. Riad, Trans. AIME 223, 964
(1965). See more discussion in Vol. 6 of Landolt-Bornstein,
New Series (Springer-Verlag, Berlin, 1971},p. 1.

45R. F. S. Hearmon, Rev. Mod. Phys. 18, 409 (1946).
46P. S. Ho, J. P. Poirier, and A. L. Ruo6; Phys. Stat. Solidi 35,

1017 (1969).
4~C. Rolfe, J. Inst. Metals 94, 148 (1966}. See more discussion

in Vol. 6 of Landolt-Bornstein, New Series (Springer-Verlag,
Berlin, 1971), p. 2.

4 B. Golding, S. C. Moss, and B. L. Averbach, Phys. Rev. 158,
637 (1967).
P. A. Flinn, G. M. McManus, and J. A. Rayne, J. Phys.
Chem. Solids 15, 189 (1960). See more discussion in Vol. 6
of Landolt-Bornstein, New Series (Springer-Verlag, Berlin,
1971), p. 324. The lattice parameter at room temperature,
corresponding to the disordered phase, is approximately
3.805 A; see H. L. Yakel, J. Appl. Phys. 33, 2439 (1962)~

R. Chiarodo, J. Green, I. L. Spain, and P. Bolsaitis, J. Phys.

Chem. Solids 33, 1905 (1972).
~~C. H. Johansson and J. O. Linde, Ann. Phys. (Leipzig) 25, 1

(1961);J. B. Newkirk, J. Metals 5, 823 (1953). See more dis-
cussion in Vol. 6 of Landolt-Bornster'n, Rem Series (Springer-
Verlag, Berlin, 1971), p. 323.

~2P. Wright and K. F. Goddard, Acta Metal. 7, 757 (1959).
See more discussion in Vol. 6 of Landolt-Bornstein, New

Series (Springer-Verlag, Berlin, 1971), p. 323.
S. Froyen and C. Herring, J. Appl. Phys. 52, 7165 (1981).

54A. R. Williams, C. D. Gelatt, Jr., and J. F. Janak, in Theory
of Alloy Phase Formation, edited by L. H. Bennett (The
Metallurgical Society, Warrendale, PA, 1980), pp. 40—62.
C. D. Gelatt, Jr., H. Ehrenreich, and R. E. Watson, Phys.
Rev. B 15, 1613 (1977).
A. R. Miedema, P. F. de Chatel, and F. R. de Boer, Physica
1008, 1 (1980).

57M. O. Robbins and L. M. Falicov, Phys. Rev. B 29, 1333
(1984).

ssD. Pettifor, J. Phys. F 7, 613 (1977); J. Friedel, in Physics of
Metals, edited by J. M. Ziman (Cambridge University Press,
Cambridge, 1969), Vol. I, pp. 361—364.

~ A. R. Williams, C. D. Gelatt, Jr., and V. L. Moruzzi, Phys.
Rev. Lett. 44, 429 (1980).

6oFor a discussion see Theory of Alloy Phase Formation, edited
by L. H. Bennett (The Metallurgical Society, Warrendale,
PA, 1980).

6iR. E. Watson and L. H. Bennett, in Theory of Alloy Phase
Formation, Ref. 60, pp. 425 —450.

62L. Pauling, The Nature of the Chemical Bond (Corneil Uni-
versity, Ithaca, NY, 1960).
S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33,
7983 (1986).

6 Notice that at a fixed composition V,'q'(x) is a constant, that
is a V,'", '(x) ga V

~

„=0.
W. L. Bragg, Philos. Mag. 40, 169 (1920).
H. L. Yakel, J. Appl. Phys. 33, 2439 (1962) (the sample used
was slightly nonstoichiometric).
L. Topor and O. J. Kleppa, Metallurgical Trans. 15A, 2
(1984); O. J. Kleppa and L. Topor, in Robe/ Metal Alloys,
edited by T. B. Massalski, W. B. Pearson, L. H. Bennett, and
Y. A. Chang (The Metallurgical Society, Warrendale, PA,
1986), pp. 199.


