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Nucleation calculations in a pair-binding model
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Calculations of the nucleation and growth of thin films are presented. These atomistic calcula-
tions depend on adsorption (E, ), diffusion (Ed), and lateral binding (Eb) energies. A simplified pair
binding model of small two-dimensional clusters is used to make the calculations explicit for
layer-plus-island (or Stranski-Krastanov) growth systems. Within such a model it is found that at
least a crude (Einstein) representation of surface vibrations is needed to make reasonable predic-
tions at low supersaturation. The calculations are applied to extract parameter values from nu-

cleation and growth experiments on Ag/W(110), Ag/Mo(100), Ag/Si(111), and Ag/Si(100), and for
rare gases onto various (plated) substrates. Comments are made about the parameters obtained for
these systems, and about the role of surface crystallography and defects.

I. INTRODUCTION

Nucleation and growth processes are responsible for
the structure of thin films grown on surfaces. It is gen-
erally accepted that there are three types of growth pos-
sible, in the simplest cases when there is no interdift'usion
between deposit and substrate. The extensive experi-
mental work which has been done to test our ideas about
these processes has been reviewed. '

In the much-studied island, or Volmer-Weber, growth
mode, small three-dimensional (3D) clusters form direct-
ly on the bare substrate. In the layer, or Frank —van der
Merwe, growth mode, it is expected that two-
dimensional (2D) clusters will form on each layer, pro-
vided that the spacing between nuclei is small in com-
parison to the spacing between steps on the surface.

In the layer-plus-island, or Stanski-Krastanov (SK),
growth mode the simplest picture is that the layers form
first, and that the islands grow from two- or three-
dimensional clusters on top of the intermediate layer(s).
This is illustrated schematically in Fig. 1. This figure
also points out that the experimental variables are the
substrate temperature T and the arrival rate R, and indi-
cates important energy parameters. In practice, it seems
that the SK mode is quite close to layer growth, and
that the growth of islands can sometimes proceed along-
side further layer growth. In this case, it seems reason-
able to consider the nuclei to be 2D clusters, with con-
version to 3D islands taking place at a later stage.

The purpose of this paper is to present a simplified nu-
cleation theory of 2D clusters which can be applied to
layer and SK growth modes. In these modes, the depos-
its often grow at relatively low supersaturation values,
S=R/R„where R, is the reevaporation rate of the
bulk deposit at the given temperature T. In such condi-
tions the chemical potential driving force for condensa-
tion Ap=kT lnS is also small. It is shown here that to
ensure self-consistency for small S values, explicit ac-
count must be taken of surface vibrations. Calculations
within the Einstein model are presented to illustrate this
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FIG. 1. Schematic illustration of the processes occurring in
layer plus island, or Stranski-Krastanov growth. The indepen-
dent variables are the arrival rate (R) and substrate tempera-
ture (T). Also indicated are the activation energies for adsorp-
tion (E, ) and diffusion (Ed), and the binding energy E; of the
critical cluster, which contains i atoms. Here and in Fig. 2, the
dotted lines indicate the processes which are less important in
this growth mode.

point. These calculations are then used to abstract pa-
rameters from both Ag and rare-gas deposition systems.
The results for Ag have recently been described in out-
line, in the context of a recent conference review; here
the details needed to understand such results are given
and discussed.

The theory is used to make specific predictions for the
stable cluster density n„(R, T) which can then be com-
pared with the experimental (maximum or saturation) is-
land density N(R, T). For complete condensation condi-
tions the predictions depend on diffusion (Ed ) and lateral
binding (Et, ) energies. The onset of incomplete conden-
sation results in a dramatic decrease in n (R, T) at a
temperature determined in addition by the adsorption
energy (E, ). Thus application of this model amounts to
the simplest two parameter (or three parameter at high
temperatures) fit to the experimental data N(R, T), mea-
sured by microscopy.

Particular emphasis is given
Ag/W(110), Ag/Mo(100), and
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Ag/Si(ill), which have been studied by using UHV
scanning electron microscopy (SEM) techniques. Com-
ments are also made on rare-gas deposition systems,
which were studied recently and earlier by low-
temperature transmission electron microscopy (TEM)
techniques.

The nucleation theory developed previously is de-
scribed in Sec. II: this is extended to ensure consistency
in the low supersaturation limit in Sec. III. Compar-
isons with experiment are made in Sec. IV: a discussion
follows in Sec. V.
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II. NUCLEATION OF 2D CLUSTERS

A. Rate equations and processes

The first nucleation theory for 2D clusters was given
by Stowell and Hutchinson, and a general equation for
the maximum cluster density was first given by Stowell.
The nucleation theory needed can be derived within the
rate equation framework described previously, ' assum-
ing single adatoms to be the only species which are
effectively mobile on the surface. The equations for the
density nj of clusters of size j can be written as

dn, Idt =R —n, Ir, —d(n w„)ldt,

dnj ldt =0 (2&j (i ),
dn /dt =o.;Dn &n; —2n dZ/dt .

(2. 1)

(2.2)

(2.3)

d(n„w, )/dt =n, Ir„+n, Ir, +RZ . (2.4)

The three terms represent incorporation of single atoms
into stable clusters by nucleation, diffusion capture, and
direct impingement, respectively. As shown earlier, "
most nucleation occurs under steady-state conditions,
with dn, ldt=0 in Eq. (2.1). Under these conditions it
is convenient to write (2.1) and (2.4) as

n, =Rr(1 —Z), (2.5)

with ~ ' =~, '+ ~„'+~, ', where ~, ' =o.„Dn . This
expresses the competitive nature of reevaporation, which
is dominant at high temperatures, and capture by stable

Here Eq. (2.1) expresses the change in single adatom
population n& due to arrival from the vapor at rate R,
loss by evaporation with a stay time ~, , and by incor-
poration into existing clusters. Equation (2.2) expresses
the (approximate) local thermodynamic equilibrium
which exists between subcritical clusters of size j &i.
The critical size i corresponds to the clusters with the
lowest concentration, or highest free energy if equilibri-
um is assumed.

Equation (2.3) sums the supercritical (stable) clusters
as n =g ", ,n, in terms of a nucleation rate
(tr;Dn, n; ) and a coalescence rate proportional to the
rate of change of the substrate coverage by stable clus-
ters (Z).

The coupling of Eqs. (2.1) and (2.3) arises because of
the interaction between nucleation and growth stages, as
illustrated in Fig. 2. The last term in (2.1) can be writ-
ten as

clusters which dominates at low temperatures under
complete condensation conditions; the nucleation term is
always unimportant numerically, and will be ignored
subsequently. The capture number cr and the adatom
diffusion coe%cient D enter via solution of the relevant
(2D) diffusion equation. '

Two other relations are needed to couple (2.1) and
(2.3) analytically. There is first the relation between sub-
strate coverage Z and atoms in stable clusters
(n„w„=g,", , n, wj ). Specializing to 2D clusters, this
is simply

dZ Idt =N, 'd ( n„w„)Idt, (2.6)

where X, is the density of atoms per unit area in the de-
posit. Clearly if the deposit is 1 ML thick, X, '=0
where 0 is the atomic volume, but Eq. (2.6) allows for
(constant thickness) multilayer nuclei.

The second relation needed is that between n; and n
&

in (local) thermodynamic equilibrium. This is the Wal-
ton relation, often written in the form

(n; /No) =(n i /No )'gC;(m)exp[/3E;(m )], (2.7)

where No ——the substrate atomic density, /3=(kT) ', and
E; (m) and C;(m ) are the energies and statistical weight-
ings of i-sized clusters of configuration m. In simplified
theories appropriate to relatively high supersaturation
(S»1), Eq. (2.7) is limited to one configuration having
the highest binding energy, so that we write C; and E;
for a given i.

When these (2D) approximations have been made, Eq.
(2.3) can be written as a function of the coverage Z, i.e.,

dn /dZ =J—2n„,
where the "nucleation rate" term is

J=(cr, C;Dn'i+'exp(/3E; )No 'N, )I(o Dn, n„+RZ)

(2.8)

and ni is given by Eq. (2.5). The differential equation
(2.8) for n„(Z) therefore has solutions which depend on

FIG. 2. Schematic illustration of the interaction between the
nucleation and growth stages. The single adatom population
(n l) determines the critical cluster population (n;); however, n l

is itself determined by the arrival rate R, and the characteristic
times for evaporation (~, ), nucleation (~„), and diffusion cap-
ture (~, ) by n stable clusters. Only after these clusters cover a
sizable fraction of the substrate (Z) is direct impingement
significant.
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the dominant contribution to n]. However, Stowell ini-
tially showed that the maximum cluster density, as-
sumed to occur at a coverage ZQ, can be obtained simply
from Eq. (2.8) as n„=J/2. Rearranging this equation
and setting in the explicit expressions for J and n

&
leads

eventually to

where the ratio r =r, /r, =cr„Dr, n . Equation (2.9) is
of the same form as given previously (Ref. 1, Eq. 2. 17),
but the constants f, g, and Zo contained in Eq. (2.9)
have been retained explicitly. This means that the three
analytical regimes (denoted complete, initially incom
piete, and extreme incomplete') can be obtained exactly,
depending on which terms are dominant on the left-hand
side of Eq. (2.9). For complete condensation r &&g, for
initially incomplete condensation ZQ (7" (g, and for ex-
treme incomplete condensation r «ZQ.

Equation (2.9) has been used to calculate n„(R, T) in
general, given particular forms for D, ~, , and E;. But
for layer and Stranski-Krastanov growth, the special
case of complete condensation, when reevaporation is
negligible, is particularly important. In this case, Eq.
(2.9) simplifies to

(n /No)'+ =f(Zo, i )(R /NOD )'exp(PE; ) . (2.10)

By taking the (i +2)th root of this equation we obtain an
equation of the same form as derived previously' ' for
(n /No), with the correct constants. In order to repro-
duce this regime exactly we have f(Zo, i ) =il(ZO, E) g (1)
with Q(i)=(o;C;N, /No)'~'+ ', and ii(Z, i) as comput-
ed previously (Ref. 1, Fig. 6c or Ref. 3, Fig. 5). The fac-
tor g is given by g'=cr„'+'. In Eq (2.9), .however, its ex-
act value is unimportant as it is only used to interpolate
between the low- and high-temperature regimes, so we
have used o. =5. A short physical argument explaining
the form of Eq. (2.10) is given elsewhere. It is also im-
portant to realize that (n, /No) is very insensitive to the
choice of ZQ since most nucleation occurs in the low-
temperature limit Z «ZQ.

B. Thermally activated processes and numerical solutions

The various processes: adsorption, adatom diffusion,
cluster formation, and bulk evaporation and/or conden-
sation are typically thermally activated processes with
Arrhenius temperature dependences, and energies E„
Ez, and E; indicated in Fig. 1. In particular, it is con-
ventional to write the adatom stay time ~, as

r, '=v, exp( PE,)—
and the diffusion constant D as

D =avgNO ' exp( f3E& ), —

(2. 1 1)

(2.12)

where E, , v, and E&,v& are adsorption and diffusion en-
ergies and frequencies, respectively, and cx =0.25 for

(n„ /No )(g + r )'(Zo+ r ) =f(Zo, i )(R /NOD )'

&& exp(PE; )(o Dr, No )'+',
(2.9)

diffusion in two dimensions.
Evaluation of the right-hand side of Eq. (2.9) or (2.10)

requires a model for the critical cluster binding energy
E;. In fact only models in which all Ej can be evaluated
can be solved. This is because these equations assume
that i is the critical size, and correspondingly that local
equilibrium is maintained [Eq. (2.7)] for all j (i T. his
only happens for small j, and the actual critical size i is
that size for which n„(j), or equivalently the predicted
nucleation rate J(j), is a minimum. Thus this paper is
limited to a very specific pair binding model in which
Ej =bjEb, and bj is the number of nearest-neighbor
bonds, of strength Eb, in a j-sized cluster. Furthermore,
the explicit calculations have to assume a particular
cluster geometry. Although any geometry is possible in
principle, and is of course actually determined by the
forces between the adatoms themselves and the sub-
strate, we assume here close-packed clusters on a hexag-
onal lattice. For these, the bj can be evaluated by sim-
ple counting, and some values are given in Appendix A.

With these values Eq. (2.10) can be solved directly.
Equation (2.9) is solved by iteration, using Eq. (2.10) as
the starting point. In this complete condensation limit,
the n, (R, T) predictions depend sensitively on Fz [via
Eq. (2.12)] and E&, and less on the frequency factor vz
and numerical constants. Such predictions have been
published previously for Ag/W(110). " When reevapora-
tion is allowed [Eq. (2.9)], the behavior at high tempera-
tures is also influenced sensitively by E, . Some calcula-
tions for Ag/Si(111) and (100) using Eq. (2.11) inserted
into (2.9) have been published. However, these high-
temperature predictions need to be revised as discussed
in the next section.

III. NUCLEATION AT LOW SUPERSATURATION

A. General considerations

L =E, + lim (E, /i ) . (3.1)

For a special case of a lattice with nearest neighbor pair
bonds this reduces to L =E, +6 Eb, and for the hexag-
onal lattice b =3.

In this limit of large critical cluster size we can see
that the transition to incomplete condensation will take
place approximately when Eq. (2.10), for large i, corre-

It might seem an elementary requirement that a nu-
cleation model predicts zero nucleation rate at the equi-
librium sublimation pressure pQ of the deposit: however,
this is not assured by the equations described as yet.
There are several reasons for this. First, the adsorption
energy E, is a free parameter, which can be used to
model adsorption on a substrate different from the de-
posit material. In this case, as discussed in general
terms elsewhere, ' the effective supersaturation ratio
S=p/p, or R /R„where the equilibrium pressure (p, ),
or rate of evaporation (R, ), corresponds to a step in the
adsorption isotherm, which for layer-growth systems
occurs at p, &p, . For deposition of a material on itself
we must have E, and E; related to the sublimation ener-
gyLby
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sponds also to r =o. D~, n„= l. By eliminating o. Dn„
we find this condition to be

R, =(2mm Ih )(kT) exp[ PL—(T)], (3.6)

r, '=v, exp( PE—, ) =(1 Z—)(R /No)exp(PE;/t ), (3.2)

or rearranging using Eq. (3.1):

where L(T)=E,(T)+b Eb(T) is the temperature-
dependent sublimation energy corresponding to Eq. (3.1).
For consistency, we need R, =n

&
/~„so that

(R /Nov, ) =(1—Z) 'exp( PL—) . (3.3)
T = (2am Ih No )(kT ) exp[ f3E—, ( T) ] (3.7)

Equation (3.3) qualitatively follows the sublimation line
with energy L, but quantitatively it almost certainly does
not. In particular, a finite nucleation rate can still occur
within the model at the experimental sublimation pres-
sure, given particular choices of parameters, and Eq.
(3.3) does not necessarily describe a line which occurs
within the actual crystal-growth regime.

To overcome these problems at low supersaturation,
generalizations to Eqs. (2.7) and (2.11) have been made
which ensure consistency with the equilibrium sublima-
tion pressure, within an Einstein model of the solid.
This model has been used to fit the experimental sub-
limation pressure quite accurately for the cases of Ag
and various rare gases, as described in Appendix B.

Similar arguments could be advanced to change the
form of the diffusion constant D [Eq. (2.12)]. But be-
cause diffusion is only involved in the kinetics of crystal
growth, not the thermodynamics, this has not been done
here. In practice the form of the diffusion constant is
rather uncertain, and comparison with experiments may
have to average over the effects of anisotropic surface
crystallography, steps and other defects. Thus we prefer
to use Eq in (2.12) as a parameter to characterize the
effective value of D which is appropriate to the experi-
ments. This is discussed further in Sec. V.

(n; INO)=C;(n, INO)'exp[PE;(T)] . (3.9)

The above equations [(3.7)—(3.9)] are sufficient to en-
sure consistency within an Einstein model with the equi-
librium vapor pressure of a solid bound by nearest-
neighbor forces. Over a limited temperature range p, (or
R, ) can be expressed as

(3.10)

The values of the parameters Lo and the average fre-
quency [(v, +2v„)/3] needed to agree with the vapor
pressure of bulk Ag and rare gases in the pressure range
below 10 Torr are given in Appendix B.

IV. COMPARISON WITH EXPERIMENT

is the expression to use instead of Eq. (2.11).
Within the nearest-neighbor model we assume that

atoms within clusters on the surface retain the same v,
as isolated adatoms, but have v&&vq parallel to the sur-
face. This is consistent with Eq. (3.6) provided that

Eq(T) =Eg(0) —(2lb )kT[6'(xl, ) —A'(xg )], (3.8)

where E&(0) is the E& used previously. Under these con-
ditions, the cluster free energy E, =b, EI, (T) in the
simplified Walton expression for j=i:

B. An Einstein model of adsorption,
cluster formation, and evaporation

The model considered can be visualized in terms of
the vibrations of the entities indicated in Fig. 2. Ad-
sorption of single adatoms is taken to be localized on Xo
sites. In these sites the adatoms vibrate with frequency
v, perpendicular, and v& parallel to the surface. The
corresponding "Einstein" free energy can be expressed in
terms of x, = h v, /k T and x~ using the function we
designate as 8(x):

6'(x) =0.5x + in[1 —exp( —x)],

Recent experimental work at Sussex has involved nu-
cleation and growth studies of Ag on W(110), Mo(100),
and Si(100) and Si(111) substrates by ultrahigh vacu-
um SEM. In addition, attempts have been made to grow
Xe crystals on (xenon-plated) amorphous carbon sub-
strates at low supersaturation following earlier work at
low temperatures and pressures, using TEM techniques.
The fit of these experiments to the equations of Secs. II
and III are discussed here. The calculations were done
and the figures produced on a laboratory based PDP11-
23 system. '

A. Silver deposits on metals and semiconductors

E, (T)=E, (0) kT[6'(x, )+26'(xq )], — (3.4)

R, =p, /(2vrmkT)'~

=(2mm Ih )(kT) (n, /No)exp[ PE, (T)] . (3.5)—
The same model can give the evaporation rate of the

bulk solid, with no vacancies, in the form

where E, (0) corresponds to the energy E, used previ-
ously in Eq. (2.11).

Adsorption in this model follows the Langmuir iso-
therm for low adatom concentrations n&, and the equi-
librium evaporation rate R, is given by'

Figure 3 shows a comparison of the Ag/W(110) N(T)
data with the calculated n„(T) based on the complete
condensation equation (2.10). Two curves which fit the
data tolerably well are shown, corresponding to different
values of Eb around 0.3 eV and E& around 0.1 eV. The
larger value of Ez (0.15 eV) gives the steeper slope on
the Arrhenius plot and vice versa, and corresponds to
the smaller values of Eq (0.275 eV). Changes of Eq by
around +0.05 eV coupled with changes in Eb by 0.025
eV are thus consistent with the data, but much larger
changes would be inconsistent. In particular E& &0, so
that we can bracket 0(E~ (0.20 eV, and consequently
0.35 &Eb &0.25 eV.

Figure 4 shows a similar calculation compared with
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the rate-dependence data N (R ) for Ag/W(110) at tem-
peratures T =573 and 773 K. The solid lines show the
calculation for EI, ——0.30 and Ed ——0. 10 eV, which agree
well at the higher temperature, and have the correct
slope, if not the exact position, at the lower temperature.
Also shown is the curve for Ed ——0.05 eV at the lower
temperature, which reduces the predicted n value by a

FIG. 3. Complete condensation calculation of the nu-
cleation density N ( T) for Ag/W(110) with Eb ——0.275,
Ed ——0. 15 eV (dashed line), Eb ——0.325, Ed ——0.05 (dotted-
dashed line). The calculated critical nucleus sizes (I =17, etc.)

are indicated for each straight line section of the curve, in this
and all subsequent figures. Comparison with data (squares) at
R =0.3 ML/min from Ref. 3. 1 ML=1.38&& 10' atomscrn

factor of about 2. Both the N(T) and N(R) data fall
below the predicted curves in the region of T around 573
K in a manner which is consistent with a critical nucleus
size i =9 persisting over a larger region than predicted
in this simple model.

The sensitivity of the calculation of n (T) to parame-
ter values has been explored within the more general
model based on Eq. (2.9), incorporating Einstein vibra-
tions as described in Sec. III B. Unless otherwise stated,
the Ag vibration frequencies v„vb, and vd were all tak-
en equal to 4)&10' Hz. ' Figure 4 was actually pro-
duced with this program, but the results agree exactly
with the more general program in the complete conden-
sation regime for vb =v

Figure 5 shows the calculation for Ag/W(110) as a
function of Ed and E, for Eb ——0.30 eV. In the complete
concentration regime, the predicted n (T) is sensitive to
Ed (0.05 —0. 15 eV, as illustrated), but independent of E,
provided it is high enough. At the highest temperatures,
when condensation goes incomplete, there is a very rapid
fall, which depends on E„and to a lesser extent on Ed.
The highest-temperature values can thus be used to esti-
mate, or at least give a lower limit to E, . The two
values illustrated, 2.05 and 2.15 eV, bracket the highest-
temperature data points. It is of course significant that
if E, =2. 1 eV and Eb ——0.3 eV, the sublimation energy
of Ag islands will be L =E, +3Eb-3.0 eV, which is

very close to the actual sublimation energy for bulk
Ag=2. 95 eV. This agreement is obtained via the con-
siderations discussed in Sec. III and Appendix B.

Figures 6 and 7 explore the use of the same equations
in comparison with data for Ag/Mo(100) (Ref. 4) and
Ag/Si(100) (Ref. 5). It is assumed that the nucleating
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FIG. 4. Calculation of the rate dependence X (R ) for
Ag/W(110) with E =0.30, Ed ——0. 10 eV (solid lines), and
Ed ——0.05 eV (dot ted-dashed line). Upper curves and data
(squares) at T =573 K, and lower curve and data (diamonds) at
773 K. Data taken from Ref. 3.

FIG. 5. Calculation of the temperature dependence N ( T)
for Ag/W(110) with Eb ——0.30, Ed ——0. 15 eV (upper dashed
line), 0.10 eV (solid line) and 0.05 eV (lower dotted-dashed
line). Two curves are superimposed for each of these values,
which diverge only at the highest temperatures, corresponding
to E, =2.05 and 2.15 eV.
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clusters have hexagonal geometry, which is undoubtedly
incorrect in detail. Thus values deduced for Eb in par-
ticular are effective values. Given, however, the extreme
sensitivity of the predictions to Eb and Ed, the results
put tight limits on the possibilities open for more de-
tailed models.

The Ag/Mo(100) N(T) data (Fig. 6) shows a steeper
temperature dependence than the Ag/W(110) data. This
is consistent with a larger diffusion energy Ed and small-
er binding energy Eb, the curve for Ed ——0.45 eV and
Eb ——0. 15 eV fits well over a large temperature range.
The other curves illustrate the sensitivity to Eb, with
Eb ——0. 125 and 0.175 eV as shown. A similar range of
fits is obtained if Eb is fixed at 0.15 eV, and Ed is varied
from 0.5 to 0.4 eV. At the highest temperatures the
value of E, is important with E, =2.5 eV illustrated.
Again the highest-temperature data point needs E, )2. 5
eV and E, +3Eb )2.95 eV as required for the compar-
ison with bulk Ag. The larger critical nucleus sizes,
6 (i ( 168 in the temperature range illustrated, arise
from the smaller Eb value.

The same trend is apparent in the Ag/Si(100) compar-
ison of Fig. 7. The solid lines are the fits to Ed ——0.7 eV
and Eb ——0. 1 eV, with E, =2.6 eV. Although the data
are somewhat scattered, the fits can only be made with
small-Eb and high-Ed values. Essentially similar curves
were published earlier, but without the incorporation of
Einstein vibrations; such a model, based on Eq. (2.11),
needed E, =2.1 eV to fit the data. This relatively large
shift of 0.5 eV arises via the high pre-exponential factor
(up to 8 X 10 Hz) implied by Eq. (3.7). Again E, + 3Eb
is essentially consistent with bulk Ag sublimation if
E, =2.6 eV, but not if E, =2. 1 eV.

FIG. 7. Calculation of N(T) for Ag/Si(100) with E, =2.6,
E& ——0. 1, and Ed ——0.7 eV, exploring variations in frequency
factors v, , vb, and vd, all of which are 4& 10' Hz unless stated
otherwise. Upper solid line and data (squares) at R =2.0
ML/min, lower solid line and data (diamonds) at R =0.4
ML/min; data taken from Ref. 5, with 1 ML =6. 8 )& 10'
atomscm . Other lines all at R =2.0 ML/min; vd ——8&&10"
Hz (upper dashed line), 2)&10' Hz (lower dotted-dashed line);
v, = 8 &( 10' Hz (long-dashed line, at highest temperatures
only).

Figure 7 also shows, for the higher rate calculations,
the sensitivity of the results to changes of factors of 2 in
v, , vb, and vd. In the complete condensation regime, in-
creasing vd raises n (T) and vice versa. This is the re-
sult of two opposing tendencies: increasing D in Eqs.
(2.10) and increasing E;(T) in Eq. (3.9); the second is
more important and so n increases slightly. Increasing
v, decreases n, (T) at the highest temperatures via the
decrease in r, in Eq. (3.7). However, none of these
effects are very drastic, and do not markedly affect pre-
dicted nucleation densities.

Predictions of n (T) for Ag/Si(111) have been pub-
lished previously (Ref. 5, Fig. 8). The above calculations
also reproduce this figure provided E, =2. 6 eV rather
than 2. 1 eV. The comparison with experimental data for
this system clearly shows the effect of surface prepara-
tion treatment, in that less well-prepared substrates pro-
duce higher nucleation densities. In this case, the
difference between two sets of experiments could be ac-
counted for by having Ed -0.33 and 0.55 eV on the
better and worse substrates, respectively, while Eb
remained at 0.1 eV.

It is clear in this case, and maybe by extension to oth-
ers, that the Ed values deduced are effective values
which are constrained by the assumed form of D(T)
given by Eq. (2.12); The actual value of D (T) could have
different Ed and pre-exponential factors which cannot be
disentangled from a comparison only with N(T) values;
nonetheless the absolute values of D (T) must be close to
the value given by inserting the deduced Ed values into
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Eq. (2.12), with vd ——4X10' Hz and No equal to the
monolayer density for the system considered.

It is worth noting that, in the complete condensation
regime with large i values, changes in D(T) due to de-
fects in the substrate are more effective in changing
n„( T) than changes in E; . This is because D (and Ed )

appear to the power i—/(i +2), whereas E; appear to
the +1/(i+2)th power in Eq. (2.10). Thus defect densi-
ties and defect binding (via D ') affect n„almost linear-
ly; but if the effect on E; is limited to a few of the i
atoms, only the average E;/(i+2) intervenes. Thus the
occasional high experimental points on the plots (Fig. 6,
for example) may be ascribed to a low effective D due to
the defects; it is of course impossible to say that such
effects are entirely absent in the other cases. The above
reasoning is not valid for incomplete condensation,
where the effect of defect binding on increasing the pop-
ulation of single adatoms and small clusters is dominant;
but the complete condensation regime is much more im-
portant in the Stranski-Krastanov cases considered.

B. Rare-gas deposits on amorphous carbon

The nucleation and growth of rare-gas crystals has
been extensively studied. The earlier work has since
been shown' to be incorrect as a description of the nu-
cleation of xenon on clean graphite, which follows the
layer-growth mode; however, the results are substantially
correct as a description of xenon growth on various
xenon-plated substrates including "dirty" graphite,
amorphous carbon, or plastic specimen supports such as

pioloform. Similar, but more qualitative experiments
have been carried out recently, at higher temperature
close to the sublimation line, in an attempt to grow
better Xe and Kr crystals.

The analysis of rare-gas crystal growth is interesting
partly because pair-binding models are a reasonable
starting point, and partly because the experimental re-
sults span an extremely wide range of conditions. Also
the experimental conditions where islands are observed
correspond to Stranski-Krastanov growth, with the in-
termediate layer in the form of a more or less regular ad-
sorbed gas layer.

In the case of Xe condensed onto dirty graphite, there
was evidence (Ref. 7, Fig. 10), from delay times for the
appearance of crystals, that the intermediate layer was
—1 ML thick; from subsequent studies (e.g. , Ref. 16), it
is clear that this will depend sensitively on the gas-
substrate combination and on the substrate condition.
However, the rapid drop in adsorption energy in the first
few layers' ' towards the value for bulk (xenon) ensures
that the effective intermediate layer is quite like a (111)
plane of the bulk deposit, with, however, a higher rough-
ness, which we can parametrize via Ed, while keeping E&
appropriate to the bulk deposit.

The fit of Eq. (2.9) to the earlier data, with Eb fixed
in this way, and Ed and E, free parameters, is shown for
Xe and Kr in Fig. 8 and Ar in Fig. 9. The quality of the
fits is discussed in the next section.

Once condensation becomes incomplete the exact
values of both the nucleation rate and the nucleation
density are extremely sensitive to the parameters used.
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FICx. 8. Calculation of N(T) for Xe and Kr crystals using
constants Eq and No from Table II, and v, =vq ——vd from
Table IV. For Xe, E, =1400 K, Ed ——250 K (solid line) and
200 K (dashed line); the data are the triangles. For Kr,
E, =1100 K, Ed ——200 K (solid line) and 150 K (dashed line)
with data as crosses. Data from Ref. 7 for an effective pressure
p at the substrate of 3 & 10 ' Torr.
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FIG. 9. Calculation of N(T) for Ar crystals analogous to
Fig. 8. Curves shown for E, =700, 725, and 750 K with
Ed ——100 K (solid lines); E, =725 K with Ed ——125 K (upper
dotted-dashed line) and Ed ——75 K (lower dashed line). Data
from Ref. 7 as squares for an effective pressure p at the sub-
strate of 5 X 10 Torr.
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However, with the same parameters it was possible to
predict the effective onset of nucleation at low supersa-
turation (1.1(S(1.2) with very low nucleation densi-
ties (n„—10 cm ), to correspond qualitatively with re-
cent experiments at high pressures (p —50 Torr, or
R ) 10 ML/min. These tests are not very sensitive to
the value of E~ used, but are very sensitive to agreement
of E„Eb and v, with the bulk sublimation line, and
with the correct constants, as discussed in Sec. III and
Appendix B.

V. DISCUSSION AND CONCLUSIONS

The calculations presented can be considered to give a
good qualitative description of nucleation and growth
processes in the Stranski-Krastanov growth mode. They
can be interpreted quantitatively as a two parameter (Eb
and Eq) fit to experiments in the complete condensation
regime. In addition the fit at the highest temperatures is
sensitive to E, , and the simple Einstein model presented
in Sec. III ensures self-consistency in this regime. It is
thus practical, within the limitations imposed by the
simplified model, to extract these parameters and corre-
late them with other known features of the deposition
systems studied experimentally, most obviously the
structure and lattice parameter of the intermediate layer.
This is attempted for the silver deposition systems in
Table I.

The low Ez and hig-h-Eq values for Ag/W(110) are as-
sociated with the intermediate layer being very close to
the (111) plane of bulk Ag, both in structure and lattice
parameter. Nonetheless the value of Eb -0.3 eV is low,
considerably less than the value L/6=0. 492 eV which
would be appropriate for an isotropically bonded sur-
face. Corresponding E, =2. 1 eV is considerably greater
than L /2, which is the value for a nearest-neighbor
model of a (111) surface. This clearly reffects the non-
pair additive nature of metallic bonding. It is interesting
that Kolaczkiewicz and Bauer ' have found similar
values for Eb from a thermodynamic analysis of this
Ag/W(110) system. The strong lack of pair additivity is
also seen in the binding energy of isolated Ag2 and Ag3
molecules, 1.65 and 2.62 eV, respectively.

The values for Ag/Mo(100) imply higher Ez =0.45 eV
and lower Eb-0. 15 eV. This may be rationalized in
terms of the more open structure of the (100) surface, the
slightly larger lattice parameter (lower No), and the fact
that the (100)-oriented intermediate layer will inhibit the

formation of compact hexagonal clusters. In fact the is-
lands grow in a (100) orientation also, so the value of Eb is
only an effective value, which is a suitable average of
nearest- and next-nearest-neighbor bond strengths. In or-
der to get condensation at all at the highest temperatures
we must have E, )2.5 eV. This value of E, =0.85L is
again greater than 0.67L which is appropriate to a
nearest-neighbor model of the (100) surface.

The Ag/Si(100) and Ag/Si(111) cases have very low

Eb values (0. 1 eV and E& values ranging upwards from
-0.33 eV for well-prepared (ll 1) surfaces to —0.7 eV
for (100). The monolayer density is only about half that
of bulk silver, and this, in addition to the surface recon-
structions must be very effective in keeping the diffusing

Ag atoms apart. This leads to large critical nucleus
sizes, and, it is presumed, to fluidlike nuclei. On the
(100) surface there is clearly competition between at least
two epitaxial orientations for the islands, ' and the
diffusion coefficient may well be anisotropic due to the
2X 1 reconstruction; on the (111) surface, defects clearly
strongly infIuence D. Consequently the values are
effective values and should not be overinterpreted.
Nonetheless, the adsorption energy E, has to be high
( —2. 6 eV) in both cases. This value is certainly of in-
terest as a test of metal-semiconductor binding theories.

Thus, the silver deposition systems studied illustrate
cases where the lateral binding energy (Ez) is attractive,
but substantially reduced with respect to bulk values.
The adsorption energy (E, ) is strongly attractive, and
higher values are correlated with low Eb values. The
effective diffusion energy (E&) can be correlated with the
known orientation, reconstruction, and lattice parameter
of the intermediate layers: (100) surfaces have higher Eq
values than (111) surfaces, and reconstruction increases
E&, at least in the four systems studied as yet.

More qualitative conclusions can be drawn from a
reexamination of experiments on rare-gas growth on
amorphous carbon and similar substrates. Whereas Xe,
Kr, and Ar grown on clean graphite are archetypical ex-
amples of layer growth, impurities or surface irregulari-
ties convert these to Stranski-Krastanov growth systems.
The values of E~ and E, needed to agree with experi-
ments are given in Table II, on the assumption that the
lateral pair binding energy Eb is not reduced from the
bulk value. The E& values are higher than those expect-
ed for the (111) plane of the corresponding rare-gas
solid, but are still a sufficiently small fraction of E, to

TABLE I. Silver deposition system parameters.

Substrate
Np

(10' cm )

Layer
thickness

Island
orientation

E„
(eV)

E„
(eV) (eV)

W(110)
Ref. 3
Mo(100)
Ref. 4
Si(100)
Refs. 5 and 21
Sj(111)
Ref. 5

1.38

1.20

0,69

0.79

2—3

1 —2

1/4

2/3

(100)

(100) and (210)

0.3

0.15

0.1

0.1

0.1

0.45

0.7

0.33-0.55

2. 1

2.5

2.6

2.6
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TABLE II. Rare-gas deposition parameters. Energies in K/atom.

Np
(10" cm-') (on 1 ML)

E
(range)

Xe
Kr
Ar

0.610
0.718
0.813

Ref. 22

228
164
119

1307
898
660

Ref. 16

86
81
73

1400 125-225
1100 100—200
725 75- 125

This work

seem reasonable. FroID the shape of the curves shown in
Fig. 8 particularly, it can be seen that a range of Ed is
needed to fit the Kr and Xe data. The value of Ed de-
creases with increasing temperature in the range indicat-
ed in Table II. This is what is expected for diffusion
over a rough surface. For example, if the diffusing ada-
toms encounter a mixture of (111)- and (100)-oriented
patches, an effective diffusion energy up to some fraction
of Eb higher than the (111) value, which decreases with
increasing temperature, would be reasonable, and this is
observed.

The E, values needed to fit these experiments are also
somewhat higher than for a (111) rare-gas layer, while
remaining much less than that calculated for clean
graphite. Again this is reasonable for rough rare-gas
surfaces. However, these values should not be overinter-
preted, since the actual deposition rate R at high tem-
peratures was almost certainly higher than that assumed
in the calculation, because of the lack of complete con-
densation on the walls of the sample holder.

There are clearly some remaining uncertainties in the
details of the cluster models, and of the surface diffusion
mechanisms. For example, even within the Einstein
model there is scope for taking account of the variation
of the frequencies within clusters as a function of coordi-
nation number, or for using alternative expressions for
the diffusion constant. It seems likely that more than a
three-parameter fit (Eb, Ed, E, ) risks overinterpretation
of the nucleation density N(R, T) on its own. More de-
tailed correlations with related kinetic and thermo-
dynamic measurements can, however, be envisaged, in-
cluding thermal desorption' and work function' mea-
surements. We are presently investigating nucleation

TABLE III. Values of j and b, used for the model studied
in this paper.

densities, size and spatial distributions, and surface
diffusion on finite sized deposits ' and consider it like-
ly that such experiments will yield further constraints on
detailed models. Such checks should further advance
our understanding of the atomic processes of surface
diffusion and crystal growth in simple systems.
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APPENDIX A: PAIR BINDING IN 2D
HEXAGONAL CLUSTERS

The smallest clusters, size j, and the number of bonds
per cluster, bj, can be evaluated by simple drawing and
counting. This has been done for the first 37 clusters,
and the nucleation programs run with this list. Exam-
ination of the output and the list revealed a sequence of
two- and three-bond additions (b,b, ) for each atom addi-
tion (bj=1). The only clusters to become critical nuclei
for j & 2, on the criterion of minimum nucleation density
or nucleation rate, were those which followed a step
Abj =2, and preceded a step Ab, +& ——3: i.e., those whose
next size up was particularly stable.

For larger clusters the picture clearly merges with a
2D continuum model. This was approximated by count-
ing the bonds in clusters consisting of n hexagonal shells
plus a central atom, and assuming the critical size to
consist of one atom less than this. In this model
j=3n (n +1), and b& ——3n (3n+1)—3 for n ) l.

1

2
6
9

17
22
34
60
90

126
168
216
270

0
1

9
16
36
49
81

153
237
339
459
597
753

Material

Ag

Xe
Kr
Ar

Lp (eV)

2.95

Lp (K/atom)'

1937
1394
981

vg (10' Hz)

4.0

v, (10' Hz)

0.73
0.84
1.02

11604 K/atom=1 eV; this unit is used to facilitate compar-
ison with other work on rare-gas adsorption.

TABLE IV. Values of Lp and v, needed to agree with the
vapor pressure of bulk Ag and rare gases in the pressure range
below 10 Torr.
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This list used for the illustrations is given in Table III.
The list can be further extended by use of the formulas
given beyond n =9. Small changes in j or 6 for large
sizes do not inAuence the results unduly.

APPENDIX B: SUBLIMATION PRESSURES
WITHIN THE EINSTEIN MODEL

A simplified Einstein model of the vapor pressures of
monatomic solids was given by Salter. Neglecting va-

cancy and anharmonic effects the formulas reduce to
that given in Eq. (3.6). The values of I.o and v, needed
to agree with experimental data for Xe, Kr, and Ar are
discussed by Crawford. For Ag, similar agreement (to
a few percent) can be obtained with the same equation
with Lo and v, values given by LeLay, Manneville, and
Kern, ' based on vapor-pressure measurements by
Honig, and their own thermal desorption measure-
ments on Ag crystallites. The values are given in Table
IV.
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