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A simple theory is developed to describe the interplay between Anderson localization and dephas-
ing mechanisms {such as inelastic electron- or exciton-phonon coupling), within the framework of a
tight-binding model of spatially disordered systems. Self-consistency is enforced by demanding that
only the most probable value of the imaginary part of the site self-energy be self-consistently deter-
mined. Dephasing interactions are characterized simply by an energy-independent dephasing rate.
When the dephasing rate vanishes the pure localization problem may be examined as the transition is

approached from either the localized or the extended regimes; mobility-edge trajectories may thereby
be located. In the limit of rapid dephasing the theory correlates with the usual master-equation treat-
ments of incoherent transport. For sufticiently large disorder a nonmonotonic but continuous cross-
over from coherent to incoherent transport is in general predicted. The problem of Mooij correlation,
viewed as a weak-delocalization phenomenon, is also examined: it is suggested that the correlation is
not universal as has frequently been supposed.

I. INTRODUCTION

The localization phenomenon discovered by Anderson'
is both the simplest and most subtle concept in the theory
of quantum transport. It is simple because its physical
content arises directly from the description of single parti-
cle transport in terms of probability amplitudes and the
superposition principle. Its inherently quantum nature
also makes localization subtle. Interactions which destroy
phase relationships can act to mask the Anderson locali-
zation: such dephasing effects lead to the phenomena of
self-trapping and incoherent hopping transport which are
manifest in many experiments. Also, because these phe-
nomena can be visualized in a nearly classical way, there
has been an occasional tendency to confuse them with
Anderson localization itself, especially when the localiza-
tion idea is used in the context of topologically disordered
materials such as electrons in Auids and exciton transport
in disordered solids.

The importance of the interplay between dephasing and
Anderson localization has been realized by many workers
(for recent reviews see Refs. 2 —5). In the area of weak
delocalization in dirty metals, the effects of inelastic
scattering which give rise to dephasing, and of magnetic
fields which modify phase relationships, have been
paramount in elucidating the scaling theory of localiza-
tion. ' ' In this paper we would like to take a different
direction by pointing out how dephasing enters into a
mean-field theory of localization in topologically disor-
dered systems. In so doing we present an approximate
but unified picture of the coherent quantum transport
considered in the localization theory, and the incoherent
transport usually considered in these systems.

The theory we develop has its origins in the treatment

of localization on a Cayley tree due to Abou-Chacra, An-
derson, and Thouless ' (AAT). In previous papers'
we have shown how their treatment can be extended to
include the effects of short-range structure and of band
structure in spatially disordered materials. These theories
start with the locator expansion and use the notion that
there is a site self-energy which is a random variable
whose probability distribution can be self-consistently
determined. Rather than solving completely the resultant
nonlinear integral equations, however, the theories ulti-
mately reduce to a stability analysis of the localized states.
They do not therefore yield direct estimates for the rate of
transport, although they do reasonably well at locating
mobility edges, especially when band-structure effects are
taken into account. '

A generalization of the nonlinear integral equations to
include dephasing is straightforward. With dephasing,
however, something more than a stability analysis is re-
quired. This step was taken for the Cayley-tree problem
by Jonson and Girvin. ' ' In attractive pioneering papers
they analyzed the problem via a Monte Carlo procedure.
Although their analysis led to many interesting ideas, we
feel that the Monte Carlo procedure also led to some
misleading conclusions. In particular, the available and
possibly inadequate statistics led Girvin and Jonson to
support the idea of a discontinuous localization transition.
The existence of a minimum metallic conductivity would
contradict the emerging scaling ideas for finite-
dimensional systems, although the status of discon-
tinuous localization on a Cayley tree is still controversial:
recent results based on supersymmetric field-theory treat-
ments have come to various conclusions. '

In this paper we simplify the self-consistency conditions
in such a way that we have to analyze algebraic equations
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rather than integral equations, by demanding that only
the most probable value of the imaginary part of the site
self-energy be self-consistently determined. The increased
transparency introduced by this simplification allows a
rather complete analysis, and the simplified self-consistent
theory exhibits many healthy features. When the dephas-
ing rate vanishes the pure localization problem may be ex-
amined as the transition is approached from either the lo-
calized regime or the domain of extended states. The
theory locates mobility edges rather well, and provides a
reasonable estimate for the Anderson transition density.
The simplified treatment predicts a continuous transition,
with which we believe an exact analysis of the full integral
equations would concur-. ; critical exponents for the electri-
cal conductivity may also be deduced. In the limit of
large dephasing the theory here developed correlates with
the usual master-equation treatments of incoherent trans-
port, and a nonmonotonic but continuous crossover from
coherent to incoherent transport is predicted. The prob-
lem of Mooij correlation' found for electron transport
in dirty metals, viewed as a weak-delocalization
phenomenon, may also be addressed within the present
theory. Results compatible with experimental observation
are obtained and, in agreement with the recent work of
Tsuei, ' it is found that the correlation is not universal as
has frequently been supposed.

In Sec. II A we derive the self-consistency equations
basic to the present theory, in which the effects of dephas-
ing are included. Central to our discussion is the random
multicomponent reference system introduced by us previ-
ously. ' '" This consists of atoms or molecules, each pos-
sessing a random self-energy and mutually interacting via
an appropriately chosen classical interaction potential
(which for convenience is assumed spherically symmetric
and pairwise additive). In Sec. II B we examine the
asymptotic behavior of the distribution function f (b, ) for
the imaginary part —6 of the site self-energy. A
knowledge of the asymptotic properties of f (b, ) enables
us to construct an explicit self-consistent algebraic equa-
tion for the most probable value, 6, of A. The pure lo-
calization problem is examined in Sec. III A by analysis of
the self-consistency equation for 5 appropriate to a van-
ishing dephasing rate. Critical exponents for the transi-
tion are determined, an explicit expression is deduced for

in the domain of extended states, and the general re-
sults are illustrated by application to a specific problem.
The effects of a nonzero dephasing rate, and the interplay
between localization and dephasing, are investigated in
Sec. III B; a rich variety of physical behavior is found, as
alluded to above. Finally, in Sec. III C the problem of
Mooij correlation' is examined within the framework of
the present theory.

II. THEORY

A. Derivation of the basic equations

In previous work' ' we have developed a self-
consistent theory of localization in a tight-binding model
of spatially disordered systems, a central element of which
is the disordered reference system mentioned in Sec. I.

Following AAT, this approach to localization centers on
a probabilistic analysis of the following equation for the
self-energy obtained from second-order renormalized per-
turbation theory (which is exact for a Cayley tree):

S;(Z)= g =E;(Z) ib, ;—(Z) .
,
.
)

Z —e, —Sj(Z)
(2.1)

Here [e;[ are the site energies and [ VJ ] the transfer-
matrix elements. The former are assumed to be indepen-
dent random variables with a given distribution P(e;); the
source of off-diagonal disorder (randomness in the V~'s) is
taken to be the topological disorder inherent in the
Boltzmann center-of-mass distribution for particles in-
teracting via the chosen classical potential. Z=E+ig
where E is the energy and g a positive infinitesimal. With
(2. 1) the question of whether or not states of energy E are
localized becomes one of self-consistency, by demanding
that the probability distributions of the self-energies on ei-
ther side of (2.1) be self-consistently determined.

In the usual approach to localization, one starts from
the assumption that states of energy E are localized
[b,;(E)~ r)], so that (2.1) reduces to

E—c~ —E

~

V,, ~

'(q+b, , )

(E—e, E~)—
(2.2)

By employing (2.2), and averaging over the disordered
reference system, a nonlinear integral equation is de-
rived" for the joint probability distribution function
F(E;,b,; ). The limits of stability of localized states with
energy E are inferred from the limits of stability of solu-
tions to the derived integral equation: When a solution
exists the states are localized, and when there is no solu-
tion states are assumed to be extended.

With the above procedure, one can study the break-
down of localized states with decreasing disorder (such as
increasing density); in particular, one locates mobility-
edge trajectories reasonably well ~ Unfortunately, howev-
er, and by virtue of the assumption leading to (2.2), one
cannot work from the other extreme to study how extend-
ed states collapse with increasing disorder to form local-
ized states. To do this necessitates consideration of the
full equations obtained from (2.1) for the real and imagi-
nary parts of S;, which are given by

i V;J i
(E—e, Ei)—

j (E e, E, ) +(ri+b—,,)—
[ V„/

' r)+ 6,
j (E —e, E) +(g+&,)—

(2.3a)

(2.3b)

By averaging over the disordered reference system a gen-
eral nonlinear integral equation may be derived for
F(E;,b, ;), which in its full form is hopelessly intract-
able. ' ' One aim of this paper is to analyze this problem
in an approximate but physically transparent manner by
enforcing self-consistency not on the full probability dis-
tribution function, but on the most probable value of the
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imaginary part of the self-energy.
As mentioned in Sec. I, a second aim of the paper is to

incorporate the efI'ects of dephasing, and to examine the
interplay between dephasing and Anderson localization.
When analyzing the zero-temperature localization prob-
lem by itself, the imaginary part of the energy, g, is taken
as infinitesimally small. As pointed out by Thouless and
Kirkpatrick, however, retention of finite g is equivalent
to introducing a dephasing process characterized by a
time scale ~=A/2q. The specific physical source of de-
phasing depends of course on the problem under investi-
gation. With low-temperature electronic transport in dir-
ty metals for example, a nonzero g (corresponding to the
imaginary part of the dynamical electron-phonon self-
energy' ) simulates the effects of inelastic scattering
caused by electron-phonon interactions (although strictly
speaking the assumption of a Poissonian process for the
scattering is only realistic for white-noise phonons).
When considering the transport of electronic excitons, ~
might correspond to a lifetime for excitation decay at a
given site, caused for example by fluorescence or addition-
al nonradiative processes; and in dealing with vibrational
excitons in liquids, ~ might represent a time scale charac-
terizing pure dephasing processes.

In this paper then, g is to be regarded as a parameter
characterizing the time scale of dephasing interactions.
To derive our basic self-consistency equations we define
the averaged distribution f (b,; ) by

f(b; )= J "dE,F(E;,b, , ) . (2.4)

The most probable value of f (b; ) (for a given energy E)
will be denoted by 6 . We now consider a specific parti-
cle, i, immersed in the random multicomponent reference
system such that the imaginary parts of the self-energies
of all particles j&i are constrained to have the value 6
F.; and 6; are thus given by

I Vj I
(E—ej Ej)—=g'Ivj.

I
xj,(E—s E) +p —j

I Vj I'p
, = X'

I v(j I'Yj .
(E sj Ej) +p— —

(2.5a)

(2.5b)

~here p=g+4 . By averaging over the multicom-
ponent reference system, an explicit functional form for

where the angular brackets denote an average over the
phase space I of particles interacting via the chosen clas-
sical interaction potential. Thus

f(&;)=(f f rrdEJd~, P(~, )fo(E, )
J

x5 b, , —g'
I

V,, I'Y,
J

(2.6b)

where

fo(Ej ) = f "dA, F(E&,6, ) (2.6c)

(for any j). From (2.6a), the function fo is given by solu-
tion of the following integral equation:

f (E;) (f f r=r'dE, dF, P(c, )f (E, )

J

x5 E; —g'Iv, , I x,
J

(2.6d)

With fo known, Eq. (2.6b) constitutes an explicit form for

f (b; ); self-consistency is then enforced in the manner re-
ferred to above.

To reduce (2.6b) and (2.6d) to a usable form, we define
the Fourier transform

f(k) = J dh; exp(ikh; )f(b, , ), (2.7)

and similarly for fo(k). From (2.6b) f(k) is given by

f(A;) is determined as a function of b, ; and p, . Self-
consistency is enforced by requiring that the most prob-
able value of the resultant distribution f(b;) be equal to
the ("input") most probable value, b

With this procedure, F(E;,6; ) is given by

F(E;,E;)=( f . . f rrdEdE, dF.,P(e., )F(E,E, )

J

x5 E; —g'IvjI xj
J

x5 b, ; —g' Iv;jI Yj r
J

(2.6a)

7 )~ r JI, IE,c I
f(k) = exp ik g' I V;, I

's

(E —s, Ej) +p— (2.8a)

where the double angular brackets denote an average over the reference system. Equation (2.8a) is formally equivalent
to10, 11,23

f(k) = exp( —b p,„,/k' T), (2.8b)

where T is the temperature; hp;„, is the excess interaction chemical potential for atom i dissolved in the multicomponent
reference fluid when it interacts with the other atoms in the system via the complex "potential" U(i,j ), embodied in the
argument of the exponential in (2.8a). As discussed elsewhere, " hp;„, may be calculated by the standard Onsager-
Kirkwood charging strategy of liquid-state theory; for convenience we assume V; = V(

I
R, —Rj I

) (where R; denotes the
center of mass of particle i) With this proce.dure, discussed in detail in Ref. 11, Eq. (2.8a) reduces to
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f(k) = exp 4' f "
dR R go(R) f+"dZ M(Z) exp

0 oo Z +p
where

M(Z)= J dcfo(E+Z —E)P(E) .

(2.9a)

(2.9b)

p is the number density of particles and go(R) the pair distribution function for particles interacting via the chosen classi-
cal interaction potential Uo(R). We note in passing that the reduction from (2.8a) to (2.9a) is exact for a perfectly ran-
dom, spatially uncorrelated system.

A similar analysis, starting from (2.6d) and employing the charging strategy, may also be applied to derive the integral
equation satisfied by fo(k); specific details are given in Ref. 11. The resultant integral equation is given by

fo(k)= exp 4' f— dR R go(R) 1 —f f dZ P(k )fp(k )
0 Qo 277 00

X exp ik'—(E —Z)+ ik ~V(R)~ Z
Z +p

(2.10)

where P(k) is the Fourier transform of P(c). An approxi-
mate solution to this equation in the p~O limit, and with
P(E) given by a Lorentzian distribution, is described in
Ref. 11.

Equation (2.9) is the central equation of this section and
the starting point for our analysis. With fo given by solu-
tion of (2.10), and a given functional form for P(E), M(Z)
in (2.9b) is known explicitly. Equation (2.9a) then consti-
tutes an explicit expression for f(k) and thus f(b). Self-
consistency is enforced by requiring that the most prob-
able value of the resultant distribution f (6) be equal to
the most probable value b, (=p —ri) in Eqs. (2.5); this
leads to a self-consistent algebraic or transcendental equa-
tion to be solved for 6 . The pure localization problem
corresponds to the q~O+ limit of the resultant self-
consistency equation. When in this limit the solution for

is found to be finite, states at the given energy are ex-
tended at the density under consideration; in contrast, if

is found to be proportional to g, states at the given
energy are localized. Mobility edges are located by
searching for that value of p (or appropriate parameters
specifying the disorder) at which a transition between the
two regimes occurs. The method developed here is thus
capable of bridging the domains of localized and extended
states by examining either the breakdown of localized
states with decreasing disorder, or the collapse of extend-

ed states with increasing disorder. In addition, the
method enables us to assess the interplay between locali-
zation and dephasing by examining the self-consistency
problem as a function of the dephasing time scale
~=A'/2g.

The derivation of (2.9) outlined above stems from the
approximate but physically transparent starting equa-
tions, (2.5). We note, however, that (2.9) may also be de-
rived via a systematic reduction of the full equation for
F (E;,b, ; ) obtained from Eq. (2.3).

In the following section we consider the asymptotic be-
havior of f(k) and f(h) in the large- and small-p limits.

B. Asymptotic behavior of f(h)

We consider first the behavior of f(b, ) in the @~0+
limit, i.e., the limit in which g~O+ and 6 ~g, corre-
sponding to the regime of localized states in the absence
of dephasing interactions.

In this limit the Z =0 value of the function M (Z), Eq.
(2.9b), is directly related to the system's density of states
defined by D(E)= ~'(( ImGI+'—(E))), where G;+'(E)
= lim„0+ G;;(E+ivi), and G;;(Z) = [Z —e; —S;(Z)]
is the diagonal Green's function. D(E) is thus given
generally by

D(E)=~ ' lim J dE; I dh; j de; F(E;,b, ;)P(c;) .
q-o+ — ' — — (E —e; E; )'+ (g+ &, )'— (2.1 1)

If E corresponds to a localized state then 6; ~ ii~0+, whence (2.11) reduces to

D(E)= j def0(E —e)P(E) .

From (2.9b) we thus have

M(0)=D(E), p o+ .

(2.12)

(2.13)

[Note that M (Z)&D (E +Z) for Z&0, as fo(E; ) depends implicitly on E.]
We now consider the p, ~O+ behavior of f(k), Eq. (2.9a), and restrict ourselves henceforth to three-dimensional sys-
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tems, for which D(E) is nonsingular. Provided V(R) falls off at large R more rapidly than R, and provided E is not
very close to the band edges of the density of states, the behavior of the Z integral in (2.9a) is dominated by its Z~O be-
havior and f(k) asymptotically approaches

p~0+
f(k) — exp. 4mpD(E) f dR R g0(R) f dZ exp —1

0 oo Z2
(2.14)

J, (p)=4mp f "dR R g0(R)
~

V(R)
~

0
(2.16)

Note that V(R) must indeed decay more rapidly than

The case V(R)-R, corresponding to dipolar excitons,
requires a more subtle analysis which will be described
elsewhere; this rejects the fact that dipolar excitons are
believed never to be strictly localized at any finite densi-
ty."'" The restriction that E is not arbitrarily close to
the band edges ensures that M(Z) has no singularities on
the real axis, so that the Z integral in (2.9a) is dominated
by its Z ~0 behavior. [That (2.14) yields the @~0+ lim-
it off(k) under the conditions specified may be verified by
direct calculation with a specific V(R ).]

With the substitution u =Z[kp,
~

V(R)
~

] ', and us-
ing

f du [ exp(i/u ) —1)= —(2m. )' (1 i),—

(2.14) reduces to
p~0+

f(k) — exp[ —(1—i)(2mkp)'~ D(E)Ji(p)], (2.15)

where

p~Q+
f(A) — yb, ~ exp( —~y /b, ),

where

y=p' 'Ji(p)D(E) .

(2.17a)

(2.17b)

Note that while the mean value of 6 obtained directly
from (2.17a) is infinite, the function is normalized to unity
and has a well-defined most probable value b (p), given
by

p S 0+.=2~ 2 (2.17c)

We now consider the asymptotic behavior of f(b, ) in
the p —+ ~ limit where the dephasing time scale ~=A'/2g
becomes extremely small. When dealing for example with
low-temperature electronic transport in dirty metals, this
corresponds to a situation where, e.g. , inelastic electron-
phonon interactions lead to extremely rapid dephasing.
In this limit Eq. (2.9a) asymptotically approaches

R for the integral (2.16) to converge.
Taking the inverse Fourier transform of (2.15) leads to

the following asymptotic behavior for f(b, ):

f(k) —h(k/p)= exp 4ttp f dR R g0(R) exp
+ ~ ik

~
V(R)~

0 p
(2.18)

gl
(p)=, p~ oo

p
(2.20)

where 6' is independent of p. Equation (2.20) thus gives
the explicit p dependence of b, (p ) as p ~ ao . As an
estimate of b,

' we take b, '=p(b(p))

where we use the fact that M(Z) is normalized to unity.
The resultant most probable value, b, (p), of f(b, ) is
given by that nontrivial solution of B+(b, ) =0, i.e. ,

0= f dk k exp[ ikh(p)]h—( kp/); p~ oo,

(2.19a)

for which f(b ) takes on its largest value. Note from
(2.18) that as p~ oo, f(k) viewed as a function of k and p
depends simply on k /p. Thus, defining Z =k /p and
b, ' =p, h(p ), (2. 19a) reduces to

0= dZ Z exp —iZA' h Z (2.19b)

an equation for 6' which is independent of p. It follows
immediately that (p)= —& ( —p), &p . (2.22)

Consequently, if b, (p) is an analytic function of p for
small p, then it is an odd function of p, i.e.,

p~Q
A~(p) —clP+c2p +O(p ) (2.23)

=p limt, 0 [—iB&h(k/p)], which yields

b, '=J~(p)=4rtp f dR R ga(R)
~

V(R)
~

. (2.21)
0

Having specified the asymptotic behavior of 6 (p) in
the large- and small-p limits, we now stress a general
symmetry property of 6 (p, ). The real and imaginary
parts of the self-energy of atom i as given by (2.5) are, re-
spectively, an even and odd function of p. From (2.6b)
we thus see that f(b;p)=f( —b, ; —p) where the p depen-
dence of f is made explicit (equivalently, from (2.9a) with
the p dependence of f explicit, [f(k;p)]"
=f( —k;p)=f(k; —p)). It therefore follows that, quite
generally
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where

(p) —T(p;E)p,

(p) — J2(p)p

(2.24a)

(2.24b)

We have so far established the following asymptotic be-
havior: [4J,(p) —E']'", E' & 4J,

. vr 4Jqp

0, E )4J2. (2.28c)

(2.28c) is a familiar semielliptic Hubbard density of
states with bandwidth B =2Jz (p), and will be em-
ployed in specific applications in the following sections.

T(p;E) = [Ji(p)D (E)]' .
3

(2.25) III. DISCUSSION

To analyze (2.9a) in detail beyond these limits is numeri-
cally feasible, although complex analytically, requiring
specification of a particular V(R) and P (c), and a detailed
knowledge of M(Z) [via solution of the nonlinear integral
equation (2.10) for fo(k)]. To interpolate between the es-
tablished large and small p limits of b, (p) we therefore
employ the simple Pade approximant

)
T(p;E)pmP=

1+T(p;E)J2 '(p)p
(2.26)

T (p;E)(rl+ & )

1+T(p;E)J2 '(p)(g+b, )' (2.27)

Equation (2.27) is the central result of this section and
will be examined systematically in the remainder of the
paper, beginning with the g~O+ regime corresponding
to the absence of dephasing interactions.

Before proceeding further, we note that an approximate
solution to the integral equation (2.10) for fo(k) has been
given in Ref. 11 for the p~O+ limit. In the case of la-
teral disorder alone [P(s)=5(e—eo)] this leads to the fol-
lowing form" for fo(E; ):

Note that, in addition to yielding the limiting behavior of
(2.24), this approximant has the necessary virtue of repro-
ducing correctly the small p analytic structure embodied
in (2.23).

Equation (2.26) gives the most probable value of the
distribution f(b, ) for (the imaginary part of) the self-
energy of atom i. Self consistency is now enforced by re-
quiring that the most probable value of this distribution
be equal to the most probable value 6 =p —g of the
self-energies of all other atoms j&i Thus, . setting

p =g+ 6 in (2.26), we obtain the following self-
consistent algebraic equation for 6

A. Anderson localization

Tb, (0;p;E)
(0;p;E)=

1+TJp '[b~(0;p;E)]
(3.1)

Note that T(p;E) and Jz(p) are necessarily positive.
Thus, for p or E such that T & 1, the only solution to (3.1)
is 6 =0, corresponding to Anderson localized states.
From (2.25), the condition T (p;E) = 1 becomes

J i(p)D (E)= 1 .
3

(3.2)

For given p, the critical energies E, (p) for which (3—.2) is
satisfied yield the upper and lower mobility edges separat-
ing regions of localized and extended states. Equivalent-
ly, for given E, the critical density p, (E) for which (3.2) is
satisfied yields the density at which the chosen energy is a
mobility edge; in particular for E=0, p, (0)—:p„gives the
Anderson transition density.

For (p, E) such that T&1, 6 (0;p;E) is finite corre-
sponding to the regime of extended states, and is given
from (3.1) by

(0;p;E)=
1/2

[T(p;E)—1]J,(p) T&1 . (3.3)
T p;E

In this section we examine the behavior of
(g;p;E) in the limit of a vanishing dephasing

rate, i.e., the limit g ~0+. This corresponds to the
"pure" Anderson problem, and the method here
developed enables us to investigate the localization-
delocalization transition as it is approached from either
domain.

For g=O, the self-consistency equation (2.27) reduces
to

a(E)~

f (E. )
—. a (E)+(E;—,'E)—

o(E; —xo(E)), E &4J2,

where E=E—co and

(2.28a)

pc

(O,p;E) — c(p —p, )', p & p,
E~E—

(0;p;E) — b+
~

E, E~ ", E, & E —&—E,

(3.4a)

(3.4b)

Assuming T(p;E) to be analytic in p as p~p, (E) and in
E as E~E, (p) (3.3) yields—

a(E) = —,
' [4J~(p) E]'~—

2xo(E) =E+ [E —4J2(p)]'
(2.28b) c}T

b+ ——

Bp p

aT
(jE E+

with exponents s = —,
' =s' and

(3.4c)

the upper (lower) root in xo(E) refers to E &0 (E &0).
Together with (2.12) this leads to the following expres-
sion" for the density of states D (E) in the p~O+ limit:

Note that the localization transition is here predicted con-
tinuous, in agreement with the scaling theory of localiza-
tion. This is at variance with the conclusions of Girvin
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and Jonson' ' based on a numerical study of localization
on a Bethe lattice, although it is not unambiguously clear
that the statistics in Ref. 14 point to a discontinuous tran-
sition.

To illustrate the above results we consider explicitly the
simple exponential transfer-matrix element

(o) 0.3-

0.1—

V (R ) = —Vp exp( —R /(2H ) . (3.5a)

This form is applicable both to a discussion of triplet elec-
tronic excitons in (for example) the impurity band of
mixed organic crystals, or to a discussion of electronic
transport in disordered materials; in the latter case aH is
an effective Bohr radius for the electron under considera-
tion. For simplicity we consider the case of pure lateral
disorder alone [P(E)=5(s)] with a perfectly random spa-
tially uncorrelated system for which gp(R)=1. The in-
tegrals (2.16) and (2.21) may be evaluated yielding

(b)

0.03

0.3-

0:04 „0.05
P

J3(p*)=83r Vpp*,

J2(p*)=3r Vpp*,
(3.5b)

-0.0 -0.2 0 0.2 Q.L+

where p*=paH is a reduced (dimensionless) density. We
take D(E) to be given by the approximate form (2.28c),
whence the instability condition (3.2) reduces to

(4vrp* —g )=1,
377

(3.5c)

where g=E/Vp is a reduced energy. For /=0, (3.5c)
yields the Anderson density, for which

pq aH ——0.29 . (3.5d)

This falls well within the domain of previously estimated
values of pz aH for exponential transfer-matrix elements,
a partial summary of which is given in Ref. 11 and which
range from -0. 1 to 0.37. We also note that for uncom-
pensated semiconductors, the critical impurity concentra-
tion necessary for a metal-insulator transition is found
empirically to satisfy p' aH =0.26, with which our esti-
mate is in reasonable agreement.

Mobility-edge trajectories for the exponential transfer-
matrix element are given directly frotn (3.5c) by

(p4)+21 /2(43)1 /2p4)p4 3 (3.6)

(3.7)

The above results for the exponential transfer-matrix
element are illustrated in Fig 1(a) wher. e we plot Vp 'b,
as a function of p* for the three different energies /=0,

[We add, however, that in accordance with the discussion
following equation (2.14), (3.6) may not locate mobility
edges well when they lie close to the band edges of D (E).]
For g such that g, (p*) & g & g+(p*), states at the chosen
p* are extended; equivalently, from (3.5c), we see that for
p* )p,*(g)=(3~+32(' )/1283r states at the chosen energy
are extended. In the regime of extended states,

(O,p*;g) is given from (3.3) by

1/2

V 'b, (0;p*;g)=(rrp*)' 1—
32(4rrp* —g )

FIG. 1. (a) Vo '5 (0;p*;g) vs p* as appropriate to the ex-
ponential transfer-matrix element (3.5a), and for the three ener-
gies /=0 (A), 0.3 (B), and 0.45 (C). The Anderson transition
density is marked by an arrow. (b) Vo 'b, (0;p*;E) vs g for
three difT'erent densities p*=1.05p& (A), 1.28 p& (B), and 2p&
(C).

0.3, and 0.45, and in Fig. 1(b) where we show Vp 'b, as
a function of g for three different densities p*/p~ ——1.05,
1.28, and 2.

We note that the analysis given here is quite readily ex-
tended in two directions.

(i) The influence of the static structure of the system
upon the localization characteristics can be investigated by
employing a more realistic structural correlation function
gp(R). For example, even if one uses merely the low-
density limit of gp(R) appropriate to a hard-sphere fluid
with hard-sphere diameter d, one can assess the relative
influence of the competing length scales aH and d in deter-
mining the metal-insulator transition density (see, e.g. ,
Refs. 11 and 26).

(ii) The effects of band structure on the localization
characteristics may be incorporated into the problem. As
discussed in Ref. 12, these effects stem from the irreduc-
ible many-body interactions neglected in the second-order
renormalized perturbation-series expression for the self-
energy, Eq. (2.1). Incorporation of such interactions leads
to the simple transfer-matrix element V~ being replaced
by an effective transfer-matrix element' (t;~(p;E), which is
spatially screened or antiscreened according to the region
of energy and density under consideration. This in turn
leads, ' for example, to an asymmetry in the mobility-
edge trajectories which is not observed in the present level
of formulation, as is evident from (3.6) where the
mobility-edge trajectories are symmetric in energy about
/=0.

Finally in this section, we wish to comment on the
infinite-time behavior of ((P;;(t))), the ensemble-averaged
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probability that an excitation created on site i at time t =0
will be found on that site at time t. As is well known,
((P;; ( oo ) » is given by

i » =
(( z ~

o,"'
~ ')), (3.8)

~
C;

~

= . 1 + lim [6 (rt;E )lg]
q~0+

(3.9)

where the g and E dependence of 6; is made explicit, so
that (3.8) reduces to

(3.10)

The diagonal Green's function G;; (E+i rl) is related to
the I C 'I by

where C; is the coefficient of the site orbital ~i & in the
expansion of the (normalized) stationary state of the
tight-binding Hamiltonian with energy E . Only local-
ized states of energy E give a nonvanishing contribution
to the sum in (3.8), as C ' is nonzero only if atom i partici-
pates in a localized state of energy E . (In fact C is of
order N ' if particle i participates in a state localized on
N sites, an observation which forms the basis for use of the
inverse participation ratio, L = g,.

~

C ' ~, as a cri-
terion for the existence or otherwise of localized states. )

As shown by Thouless, for localized states
~

C '
~

is
given by

and thus the density of states for a given realization of the
system, 1V; (E)= v—r ' ImG;+'(E), is given by

A;(E)= g ~

C ' 5(E E~—) . (3.12)

The ensemble-averaged density of states ((X;(E)» will in
general be denoted by N(E); in accordance with the usage
prevalent in Sec. II B we shall employ the notation D(E)
for the ensemble-averaged density of states only if states
of energy E are localized.

With (3.12), Eq. (3.10) reduces to

((P,, ( i))= lim J dF-(( & ))

(3.13)

which is exact. If now we make the approximation of re-
placing b, ; by its most probable value, 6 (rl; E), Eq.
(3.13) reduces simply to

((P;;( ) » = lim f dE
~-p+ ~- 1+rl '6 (rl;E)

(3.14)

where E+ are the band edges of D(E). Equation (3.14)
may also be obtained rather more directly from the exact
expression due to Economou and Cohen

«P, , ( ) » = »m f dE«
~

G„(E+t„)
~

'»,
q ~0+ & —oo

(3.15a)

G;;(E+iil) = g E —E +ig
(3.1 1)

which is equivalent to (3.8). By replacing b, ; (rl; E) in

G;;(Z) by its most probable value, 6 (il;E), (3.15a)
reduces to

((P(~)&&= lim f dE f dE f" dE,n-p+ —- —- —- (E —s, E, )'+(rl+b,—)' 1+rt
P(E;)fp(E, ) (3.15b)

The only nonzero contributions to (3.15b) come from lo-

calized states, for which 6 (rl;E) ~ il as r)~0+, whence
(3.15b) reduces precisely to (3.14) with D(E) given by
(2.12). With a knowledge of both D(E) and b (il;E) (for
all E), Eq. (3.14) constitutes a simple and practical
prescription for estimating ((P;;( oo ) ».

There is, however, one general aspect of the preceding
discussion that we wish to stress. From the exact expres-
sions (3.8) or (3.13), and also from (3.14), it is clear that
only states of energy E which are localized contribute to
((P;; ( oo ) ». Note then that all localized states in the
band contribute to (( P;; ( oo ) ». It follows that
((P;; ( oo ) » =0 only if all states in the band are extended.
We define the density pD such that ((P;;(oo ) »~0 as

p —+pD from below. pD does not, of course, correspond to
the insulator-metal transition density pM. The latter
occurs when states at the Fermi energy EF become ex-
tended; in particular, if 1V(E) is symmetric in E, EF ——0,
and the insulator-metal transition density corresponds to
the Anderson transition density pz. As p is increased

above pM, a progressively larger fraction of states in the
band become extended, i.e., the mobility edges move pro-
gressively towards the band edges. As p~pD &p~, all
states in the band become extended, and thus
((P;;( oo ) » ~0. We mention this because Loring and Mu-
kamel ' ' have recently developed an approximate
mode-coupling theory of quantum percolation, and also
an effective dephasing theory for the optical analogue of
an Anderson metal-insulator transition; ' both theories
are based on a tight-binding description. In each case,
however, Loring and Mukamel conflate the critical disor-
der required to delocalize all states in the band with the
critical disorder required to induce an insulator-metal
transition. This is clearly incompatible with the above
general remarks, and its validity would seem questionable.

B. Dephasing interactions

In this section we examine the general g dependence of
as given by solution of the self-consistency equation
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~J —1/2(p)

(g;p;E)=A (g;p;E)J2 ' (p) .

Equation (2.27) thus simplifies to

(3.16a)

(3.16b)

(2.27), in order to investigate the interplay between de-
phasing and localization.

The problem is simplified by defining the reduced vari-
ables g and 6 given by

0.8-

'~ 06E

0.4

T(p;E)(g+ b, )

1+T(p; E)(rI+ 6 )'
(3.17) 0.2

where we note that the entire p and E dependence of 6
is contained in the function T(p;E) given by (2.25), i.e. ,

(rI;p;E)=b, (g;T). We wish to solve (3.17) for b,
given g, p, and E (or q and T) as input; in particular, we
are interested in the g dependence of 6 for given p and
E. Equation (3.17) is a cubic equation for b, , the physi-
cal solution of which, with given T(p;E) and a real posi-
tive g, is necessarily real and positive. A convenient
means of analyzing (3.17) is to note that it is a quadratic
in g with solution

1+[1 4T '(p;—E)b, ]'
2A

(3.18)

and with the roots chosen such that both 6 and q are
real and positive. Analysis of the problem thus resolves
itself into two principal domains.

(1) 0& T(p;E) &2: for 0(g&g,„=[2—T(p;E)]l
2[T(p;E)]'~, the negative root of (3.18) is appropriate,
while for q) g,„ the positive root is chosen. As dis-
cussed below, this domain may be subdivided further into
the regions 0 & T & 1 and 1 & T & 2.

(2) T(p;E)) 2: here only the positive root of (3.18) is
ever appropriate. The physical significance of the
classification will be discussed shortly, after describing the
g dependence of 6 characteristic of each of the three
T (p;E) intervals.

Region la: 0& T(p:E) & I

For g =0, this region corresponds to the regime of An-
derson localized states, as described in Sec. IIIA. For
T (p; E) & 1 the general g dependence of b, (or
equivalently b, versus rl) is shown as case A of Fig. 2;
the specific example is for T=0.9. As g is increased
from zero, 5 increases from zero through a maximum,

,„, occurring at g,„(as indicated by an arrow), de-
creasing thereafter with increasing g to the asymptotic
form

00 0.5 1.0 2.0

FIG. 2. 5 (g;p', E) vs q as obtained from solution of Eq.
(3.18) for T(p;E)=0.9 (A), 1.25 (B), and 2.5 (C). The max-
imum 5 for cases A and B is indicated by an arrow. Case A
corresponds to a regime of zero-temperature Anderson local-
ized states, and case B illustrates the domain of incipient locali-
zation or weak delocalization.

(rj;p;E) — ' g+O(g'), T & 1 .T(p;E)
1 —Tp;E (3.20a)

Similarly, for T(p;E) =1, (3.18) yields

g~O
b. (g;p, ;E) —rI', T(p;E) = 1, (3.20b)

or equivalently, b, (g;p, ;E)—[Jz(p, )q]' . For
infinitesimally small, (3.20a) is precisely the behavior asso-
ciated with localized states, and (3.20b) gives the g~0+
behavior of 5 at T(p;E)=1, i.e., for p, (E) at given E or
for E, (p) at given p. Fo—r given T(p;E) & 1 and with g
finite, (3.20a) is valid in a range of g such that

(g) «b. ,„=[T(p;E)]' l2. For rl finite we thus
see from Fig. 2 or Eq. (3.20) that dephasing effects lead to
erstwhile localized states of energy E becoming extended,
and that 6 increases linearly with q for small q. In deal-
ing for example with low-temperature electronic trans-
port, one expects g to be an increasing function of temper-
ature, ' ' so that 6 is itself an increasing function of
temperature at sufficiently low temperatures. Under these
circumstances the mechanism of electronic conduction is
phonon-assisted transport between zero-temperature An-
derson localized states.

(3.19a)

or
g~ oo

(rl;p;E) — Jp(p)g (3.19b)

The small-g behavior of 6 may be quantified by consid-
ering the small-q behavior of (3.18). For T (p;E) & 1 [with
the negative root of (3.18)] this leads to

2. Region Ib: I & T(p, E) &2

For g=0 this region corresponds to a regime in which
states of energy E are extended, such that

(0;p;E)=—b, is finite and given by (3.3). For
1 & T(p;E) &2 the general q dependence of b, is shown
as case B of Fig. 2, the specific example being for
T(p;E)=1.25. As g increases from zero, b, increases
mon otonically from 6 through a maximum
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occurring at il,„(as indicated on the figure), decreasing
thereafter with increasing g to the large g asymptotic
form (3.19). With the exception that b, (0;p;E) is finite,
the qualitative behavior of 6 versus q is the same as that
of region la; in particular 6 goes through a maximum,
although we note that g,„shifts progressively towards
zero as T increases towards T(p;E)=2. The small-i) be-
havior of 6 in this region will be quantified below.

3. Region 2: T(p, E))2

As with region lb, b, (0;p;E) is finite corresponding to
a domain of g=O delocalized states of energy E. In con-
trast to regions la and lb, however, 6 (r);p;E) decreases
monotonically with increasing rI from b, [given by (3.3)]
at iI=0 to the asymptotic form (3.19); the maximum
value of 6 (il;p;E) thus occurs at rI=O. This behavior is
shown as case C of Fig. 2 for the specific value
T(p;E)=2.5.

For regions lb and 2, then, b, (0;p;E) is finite corre-
sponding to extended states of energy E for q=O. For
the case of electronic transport, and considering in partic-
ular E=EF (the Fermi energy), regions lb and 2 corre-
spond to zero-temperature metallic behavior. In contrast,
region 1a is a zero-temperature insulating domain. The
low-temperature (small-il) behavior in the two regions cor-
responding to states which are extended for q =0, can be
found from (3.18). In both cases (1 & T & 2 and T) 2) it
is found that 6 (rj;p;E) —6 (0;p;E) is linear in r) for
small g, i.e.,

b. (rt;p;E)=b, +C~i)+, T(p;E)) 1, (3.21a)

where b, is given by Eq. (3.3). The coefficient Cz is

given by

1 2 T(pyE) T(
2 T(p;E) 1'— (3.21b)

Thus, for 1 & T(p;E) &2 (region lb), 5 initially increases
with increasing q from its g=0 value, 6; whereas for
region 2 [T(p;E))2] 6 decreases with increasing
from b at r)=0. The condition T(p;E)=2 therefore
corresponds to a crossover point in the low-temperature
behavior of 6 (rI;p;E), from a 6 which initially in-
creases with increasing temperature (region lb) to one
which decreases as the temperature is increased from zero
(region 2). This crossover behavior is central to the dis-
cussion of Mooij correlation' given in the following sec-
tion.

Note further from Eqs. (3.20a) and (3.21b) that the
low-temperature behavior of 5 for regions 1a
[T (p; E) & 1] and lb [1 & T (p;E) & 2] are both such that

initially increases with increasing temperature —from
zero at g=O in the former case, and from 5 &0 in the
latter. It is on account of this behavior that we have
classified both regimes together as region 1. Region 1b is
thus the domain of "incipient localization" or "weak delo-
calization" in that, although states of energy E are extend-
ed at T=O K, they are suSciently weakly delocalized
that the effects of incipient localization are manifest in the
low-temperature behavior of 6, where inelastic dephas-

ing interactions lead to an initial increase in 6 as the
temperature is increased from zero.

We now refer briefly to the large-g asymptotic behavior
of b, , which is given by (3.19) for all regions. This corre-
sponds to the limit of incoherent transport (large dephas-
ing) with a small dephasing time scale, r=fi/2rI, a regime
usually treated via a Pauli master equation approach.
From Eqs. (2.3b) or (2.5b), the probability that an electron
initially on site i will escape outwards
in unit time, given by 2A '6;, reduces to
2iii ' g'.

~
V7 ~

/il as g~ oo, i.e. , the hopping rate from
site i to j is 2

~ V7 ~

/i)A', as inherent in approaches to the
incoherent limit based on a master equation description.

To illustrate the discussion of this section we consider
the simple example discussed in Sec. III A, namely the ex-
ponential transfer matrix element (3.5a) under conditions
of pure lateral disorder, and for a perfectly random spa-
tially unc or related system. For this example
T(p*;g) =32(4rrp* —g )/3n where p* and g are the re-
duced variables defined previously. We consider a fixed
density, p*=—,'pq ———,",, . For rI=0 (zero temperature) the
mobility edges are given from (3.6) by g,

—(p*)=+0.665;
states of energy g) g+ or g & g, are localized, while states
such that g, & g & g+ are extended. Confining ourselves
for convenience to the lower half band (g &0), case A of
Fig. 2 [T(p*;g)=0.9] corresponds to g= —0.687 and
represents a zero-temperature localized state. For this sit-
uation the low-temperature behavior of 6 is given from
(3.20a) by b, —9r), and electronic transport is due to
phonon-assisted tunneling between zero-temperature An-
derson localized states. Case C of Fig. 2 [T(p*;g)=2.5]
corresponds to extended midband (/=0) states, far from
the mobility edges; for this case,

(0;p*;g)—=5 =(—,')', and the low-temperature be-
havior of b, is given from (3.21) by b, —6 ——,'rI or,
equivalently, 6 /6 —1 —0.215'. For extended states
far from the mobility edges, low-temperature transport is
predominantly bandlike, due to coherent propagation in-
terrupted by random inelastic electron-phonon interac-
tions which act to diminish 5 as the temperature is in-
creased from zero. In contrast, case B of Fig. 2

[T(p*;g) = l. 25] corresponds to g = —0.607 and
represents a state which, while extended, is sufficiently
weakly delocalized that the effects of incipient localization
are clearly recognizable in the low-temperature behavior
of b, . From (3.21) this is given by 5 —b, + —,'i) with

= 5 ', or A~ /5 —1+3.35'. The positive temper-
ature coefficient of 6 in the region of extended states just
before the onset of localization reflects the increase in
electronic mobility due to phonon-assisted tunneling
caused by dynamical electron-phonon interactions. ' ''
For a given small temperature (fixed il), the relative im-
portance of the phonon-assisted transport over the zero-
temperature 6 contribution increases as g~g, from
above (or g~g+ from below), i.e., as T(p';g)~1+. For
example, with T (p*;g) = 1.05 (g= —0.653 ),

/2 ' —1+43'.
The above remarks may also be illustrated by consider-

ing the density dependence of 6 for a fixed energy and
for a variety of different g's. In the context of our specific
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FIQ. 3. Vo '5 (i);p*;g) vs p* for the exponential transfer-
matrix element (3.5a), at the fixed energy (=0 and for (i) i'd=0
( ), (ii) Vo 'g=0. 01 ( —- —), (iii) V~ 'g=0. 075 ( — - —), and
(iv) Vo 'g=0. 3 ( —~ ~ ~ - —). The q=0 curve corresponds to case
A of Fig. 1(a), and the Anderson transition density p& is indicat-
ed by an arrow.

example this is shown in Fig. 3, where we plot Vo '6
versus p' at the fixed energy /=0 and for Vo 't)=0,
0.01, 0.075, and 0.3. The g=0 curve corresponds to case
A of Fig. 1(a), and pz is the Anderson transition density
at which /=0 is a mobility edge and such that for
p* & p z states at g =0 are extended. For finite tempera-
tures (rI&0) the concept of a mobility edge is of course ill
defined and the pristine g=0 transition is smeared out. It
is however clear that the effects of zero-temperature locali-
zation and weak delocalization are apparent at sufficiently
low temperatures.

Finally, for the purposes of simplicity, an implicit as-
sumption in the preceding discussion is that all tempera-
ture dependences are contained in the dephasing variable

This is not generally correct; temperature dependences
will in addition enter the problem via both a phonon-
renormalized transfer matrix element and a dependence of
the pair distribution function g&&(R) on temperature. Al-
though omitted in the preceding discussion, such effects
are readily incorporated into the theory.

C. Electronic transport in dirty metals
and Mooij correlation

Some years ago Mooij' observed a striking correlation
in many disordered materials between the temperature
coefficient of resistivity (TCR) and the residual resistivity
I/oo. For weakly disordered ("clean" ) metals with small
residual resistivities, the TCR is positive, reflecting an in-
creased resistive scattering from phonons as the tempera-

ture is raised. For strongly disordered ("dirty") metals,
however, the situation is frequently reversed. Mooij '

found that as the resistivity increases, the TCR decreases,
and becomes negative for systems with residual resistivi-
ties greater than 150 pQ, cm. He concluded furthermore
that this behavior was universal, independent of material
composition, and holding for both disordered crystalline
and amorphous systems.

Much theoretical attention has since been devoted to
the problem; for recent reviews see Refs. 4, 5, and 41. In
particular, recent work' ' ' ' has sought to explain
the phenomenon from the standpoint of Anderson locali-
zation or incipient localization. An explanation along
these lines was first proposed by Jonson and Girvin, ' '
who pointed out that for large disorder the static phonon
approximation fails, and in the region of weakly extended
states close to the onset of localization dynamic electron-
phonon interactions cause an increase in electronic mobili-
ty due to phonon-assisted tunneling. In this section we
examine the Mooij correlation in the context of our
present theory. In addition we comment on the frequent-
ly cited universality of the threshold resistivity, an aspect
of the problem addressed very recently by Tsuei. '

To obtain an estimate for the dc conductivity in the
strong disorder regime, we follow essentially the pro-
cedure described in the Appendix to Ref. 14. Consider the
familiar relation, due to Thouless, for the conductance
G (L ) of a cube of side L:

e b,E(L)
2tii 5E(L)

(3.22a)

5E(L) is the mean spacing of the cube's energy levels,
and hE(L) the mean of the fluctuation in the energy lev-
els consequent upon a change in boundary conditions
from periodic to antiperiodic; G(L) =o(L)L defines the
conductivity, which is independent of L in the Ohmic re-
gliile. 5E(L) is giveil by

3

5E(L)= a
L

1

N(EF)
(3.22b)

2
o. = N(EF)b, (rI;p;EF) . (3.23)

Before discussing the starting equation (3.23), we note
that it differs from that derived in Ref. 14 in one
significant respect. Instead of b. appearing in (3.23),
Girvin and Jonson ' have tl + {b, ), where {6 ) is the
ensemble-averaged imaginary part of the electron self-
energy (more precisely the forward-hopping self-energy, as
their analysis was performed on a site-diagonally disor-
dered Cayley tree). The form o = (e /gaia )N(EF )(il

where a =p '~ (p is the number density of particles) and
N(EF ) is the density of states per site at the Fermi energy.
For strong disorder, hE(L) =Pi/tL, where tL L /D is-—
the time taken for an electron to diffuse a distance L and D
is the electronic diffusion constant. The time wl

——I /D for
an electron to travel a distance of the order of the mean
free path I-a is given by rt ——A'/2b, (rt;p;EF), whence
tt ——(L /a ) fi/2b. (rI;p;Ez ). The conductivity is thus
given by
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+ (b, ) ) cannot, however, be correct; for if the transfer-
matrix elements V~ are set to zero, transport cannot occur
and the conductivity should be zero: that this is not the
case for the above expression is clear, since for V~=0,
(b, ) =0 but N(EF) is still in general well defined. We
stress, however, that this criticism applies solely to the re-
sult in the Appendix of Ref. 14. The central analytical
expressions derived by Girvin and Jonson do conform
correctly to the V~ =0 limit.

To estimate the dc conductivity we take
N(E~) =D(EF), which is tantamount to assuming that the
density of states at the Fermi energy is fairly insensitive to
whether states there are localized or weakly extended.
Thus

turn reAects the structural characteristics of the specific
disordered material. This is of particular relevance, for as
recently stressed by Tsuei, ' a threshold residual resistivi-
ty of pro, ' ——150 pA cm has often been ascribed fundamen-
tal significance as a universal boundary which divides the
positive and negative TCR regimes. From analysis of ex-
tensive experimental data, however, Tsuei' has shown
that the threshold resistivity is not universal, that it de-
pends on material characteristics and can have a wide
range of values from —30—500 pQcm and above. This
conclusion was also presaged to some extent by Nagel.

To illustrate the above remarks we consider a system
with both site-diagona1 and topological disorder present.
We take the distribution of site energies to be a Lorentzi-
an

e
o = D(EF)b, (i)p;EF), (3.24)

—[Ji (p» (EF )]'= 1
3

(3.25a)

with a resultant crossover residual conductivity o.o, given

by

which we expect to provide a reasonable estimate in the
dirty limit. The g (temperature) dependence of b, (and
hence cr) has been discussed in detail in Sec. III B. The
region 1 & T(p;EF ) & 2 is the regime of weak delocaliza-
tion and is illustrated as case B of Fig. 2. As seen
from the figure, o initially increases with increasing
temperature from the residual value o.

o

=(e /gaia)D(EF)b, (O,p;EF) at zero temperature; this is
the negative TCR regime. As temperature is increased
further, o. goes through a maximum and decreases slowly
thereafter with increasing temperature, corresponding to a
positive TCR. Note further that as b, —:b, (0;p;EF ) de-
creases, the initial temperature slope of b, (rj;p;EF) in-

creases, i.e., as the residual resistivity o.
o increases the

TCR becomes progressively more negative, in harmony
with experimental observation. ' ' ' In contrast, as
T(p;EF) increases progressively towards the value 2, 6
progressively increases and the TCR becomes less nega-
tive. For T (p; EF ) & 2, as shown in Fig. 2, 6 is a de-
creasing function of temperature; this corresponds to the
usual positive TCR behavior. The crossover behavior in
the temperature dependence of o thus occurs at
T (p; EF ) =2 (for which 6 = [Jz(p)/2] ' ~ ), i.e., for

&(c,) =
A, +(E—Eo)

(2.26a)

where the half-width A, characterizes the degree of diago-
nal disorder. D (E) is given by (2.12) with fo(E; ) given by
solution of the integral equation (2. 10) for p=O, an ap-
proximate solution of which is given in Ref. 11. This
leads to the following expression for D(E) at the Fermi
energy EF ——co,

277 '
D (EF)=

A, +[A. +4J (p)]'~
(2.26b)

which reduces correctly to (2.28c) for X=O. Equations
(3.25), which together determine the threshold residual
conductivity, thus simplify to

2Ji(p)
1/2(3~)'"j A. + [A.'+4J, (p)]'"I

(3.27a)

~ 2'"~ A, +[X'+4J,(p)]'" (3.27b)

With specified forms for the transfer-matrix element and
pair distribution function, J

&
and Jz may be evaluated

from (2.16) and (2.21). As a specific example we consider
the exponential transfer-matrix element (3.5a) with a sim-
ple pair distribution function go(R) =e(R —d) where d is
a hard-sphere diameter. The integrals J

&
and Jz are here

given by

3

gaia 2~ J, (p)
(3.25b)

a~
JI =4~Vo

a
d d+2 +2 exp( —d /aH ),

aH

Equations (3.25a) and (3.25b) together determine the
threshold residual resistivity O.o, . With explicit expres-
sions for D (EF ) and J, (p), Eq. (3.25a) determines the ma-
terial parameters required for crossover behavior to occur
at the chosen a =p ', and with a further knowledge of
Jq(p), Eq. (3.25b) then determines cro, . It is evident that
D (EF ), J, (p), and Jz (p) all depend on the material
characteristics of the system. From (2.16) or (2.21), for
example, we see that the band integrals JI and Jz depend
on the particular choice of transfer matrix element, and
on the pair distribution function of the system which in

z aa
Jq ——~Vo

a

3 2

2
d

QH

(3.28)
d+2 +1 exp( —2d/aH),

QH

and reduce to (3.5b) for d =0. For this example, (3.27a)
with (3.28) interrelates a=p ', the structural parame-
ters d and aH, and the degree of diagonal disorder A. ,
which are required for threshold behavior; (3.27b) gives
the threshold residual conductivity.

To obtain a numerical estimate for o.o, we consider the
case of lateral disorder alone (A. =O) for which (3.27b)
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reduces generally and simply to

0.23e
oo,—,A, =O . (3.29a)

from the regime of extended states has been described in
Sec. III A [see Eqs. (3.3) and (3.4)]. Extrapolation of
(3.23) down to the metal-insulator transition suggests

It should of course be remembered that a and the
structural parameters required for crossover are intercon-
nected by

(3.29b)

[which depends on the particular V(R) and go(R)], so
that oo, is dependent on material characteristics. Turn-
ing to (3.29a) we note that this estimate for the threshold
residual conductivity is considerably larger than Mott's
minimum metallic conductivity, ' ' o.m;„=0.03e /Aa,
which appears to hold experimentally. ' For a in the re-
gion —I.5 —4 A, (3.29a) yields a threshold resistivity of
-250—700 pQ cm, which we regard as reasonable agree-
ment with the experimental situation. ' Note further
from (3.27b) that with site diagonal disorder included, the
threshold residual conductivity will be less than the A, =O
estimate (3.29a), as one expects physically.

Finally, we consider the expression (3.23) for o. in the
zero-temperature (g =0) limit. The behavior of
b. (0;p;E) as the localization transition is approached

~c
o. — const X (p —p, )', (3.30)
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with a mean-field critical exponent s= —,', and similarly
o -constX

~
E, E—

~

—' as E~E,+ for—the E dependence
of the conductivity. This mean-field result differs from
the generally accepted exponent s = 1 for three-
dimensional systems, obtained from various scaling ap-
proaches to the problem ' ' (although we note that the
original scaling theory predicted s & I ). However, as
stressed recently by Kramer et al. and Mott and Ka-
veh, the correct exponent cannot be said to be known
with certainty, and we shall not comment further here on
the problem.
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