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Franck-Condon overlap integrals are calculated to fit ion energy distributions (IED's) resulting
from photon- or electron-stimulated desorption. The WKB or quasiclassical trajectory approxima-
tion is used to compute the final-state wave function. The final-state potential consists of a repul-
sive exponential and an image term. The calculated IED's compare well with those found previ-
ously using the reflection or classical trajectory approximation. Both methods agree well with a
wide range of experimental IED's all of which are mildly asymmetric Gaussian functions of the
ion energy. It is shown how these two approximations are related through the classical limit of
the final-state wave function. In addition, the quasiclassical wave function is generalized to in-

clude an optical potential giving rise in a natural way to the reneutralization reduction factor.
The Gaussian asymmetry in the IED's is usually to the high-energy side reflecting a "normal" ex-
ponential repulsion. However, in a few anomalous cases the Gaussian is skewed to the low-energy
side of the IED peak. This anomaly cannot be explained by expected influences on the initial-state
wave function such as anharmonicities. On the other hand, the reneutralization factor, when it
predominates, provides a natural explanation for this effect. In addition, this reneutralization fac-
tor can cause significant shifts in the IED peak, away from the Franck-Condon peak.

I. INTRODUCTION

In a recent report' we presented an analysis of ion
yields from photon- and electron-stimulated desorption.
It was based on the Franck-Condon model using the
well-known reflection approximation (RA), where the
final-state wave function of the desorbing ion is taken to
be a 5 function, corresponding to its classical trajectory.
There it was shown that in the RA model, the ion energy
distribution (IED) is a reflection of the square of the
initial-state bound vibrational wave function. The final-
state potential-energy curve serves as the "mirror" in this
graphical process. The IED is essentially a mildly asym-
metric Gaussian distribution. The normal asymmetry to
the high-energy side is a result of the exponential final-
state potential. It was suggested that a more complicated
potential based on an effective reneutralization process
gives rise to an anomalous asymmetry to the low-energy
sides of the IED in some cases. This is observed in Nb-
H+ and Mo-0+ [see Figs. 1(h) and 1(i)]. In the present
work we present an extension of our theory of the IED
that results in a more natural and rigorous treatment of
reneutralization. This in turn leads to an explanation of
the anomalous asymmetry. We do this by looking in de-
tail at the final-state wave function —especially in the
neighborhood of the classical turning point. In particular,
we show how this quasiclassical state goes formally into a
5 function in the classical limit. More importantly, how-
ever, the final state is also studied in the very important

case of a complex potential where the imaginary part
represents the decay of the ion via reneutralization. We
show how this naturally leads to a reduction factor in the
ion desorption probability. Energy dependence of the
form seen in Figs. 2 and 3 gives rise to asymmetries and
energy shifts.

We have also found that the existence of the two elec-
tronic states, ion and neutral, as the desorption occurs
also leads to the possibility of interference phenomena
similar to that which is observed in various ion spectros-
copies. These interference effects will be the subject of a
future communication.

II. GENERAL FRANCE-CONDON THEORY
FOR A REAL FINAL-STATE POTENTIAL

Experimentally determined ion energy and ion angle
distributions from electron-stimulated and photon-
stimulated desorption have been explained in terms of two
processes: (a) initial-state (IS) effects from which structur-
al, spectroscopic, and chemical bond information can be
inferred, ' and (b) final-state (FS) effects wherein ion-
surface interactions determine the classical ion trajec-
tories, using model potentials. In previous work using the
Franck-Condon principle theory, ' both IS and FS
effects were taken into account and information regarding
the initial ground-state adsorbate wave function and
final-state potential were inferred. In addition, all trajec-
tory effects (final state —due to ion-surface interactions as
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FIG. 1. Comparison of WKB calculated IED with experimental results for a representative set of metal-ion systems. Note
anomalous asymmetry in Figs. 1(h) (Nb-0+) and 1(i) (Mb-0+).
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FIG. 1. (Contin ued).

well as modifications due to reneutralization) were intro-
duced into the theory. In the following we give a brief re-
view of our previous formalism.

A. General formulation of the desorption cross section

Born-Oppenheimer approximation the wave function is
factorizable as f(r, R)=g, (r, R)P„(R), thus T can be
written as

Tf; ——f dRQ,*, p, . , f dr g,* Tp,

From the viewpoint of formal scattering theory the pro-
cesses of electron- and photon-stimulated desorption (ESD
and PSD) can be described by a transition matrix element
of the form

Tf; ——f dr f dRpf(r, R)TQ;(r, R),
where r represents the coordinates of all electrons and R
the coordinates of all of the nuclei. The transition opera-
tor T, in general, operates on all coordinates of the system
but to first approximation it can be assumed to operate
only on the electronic coordinates. For electronic excita-
tions the T operator can be derived from the Coulomb po-
tential, namely

V= —,
' g 1/~ r; —r~

~

and for excitations due to photons, from A.P. In the

The vibrational wave function P„(R) requires two indices
to label it since the nuclei move in the field created by the
electron-charge cloud and thus in effect depend on e. The
ESD and PSD differential cross section rr(efvf, e;v;) can
therefore be written as

rr(efvf, e;u; ) =o., (efuf, e; u, , R, )
~
IFc(efvf, e; v; )

~

(3)

where o., is the electronic contribution to the cross sec-
tion, i.e.,

o, (efuf, e;v;, R)= f dRQ; (r, R)TQ, (r, R) (4)

In obtaining Eq. (3) it has been assumed that o, is a slow-
ly varying function of R and is therefore evaluated at the
equilibrium position R, . The Franck-Condon overlap in-
tegral IFc is given by

IFc= f dRQ, „(R)p,„(R) . (5)



4126 WILLIAM L. CLINTON, SIPRA PAL, AND RONALD E. JUTILA

C
3

L

U

U 2

U
CJ

c0

U

hl

U
E
0

Z

0 ) 2 3 4

Energy (eV)

7 8
Energy (eV)

(c)

U
Q

U
2

U
E
0
Z

1

3
C

2
U

U
0)

C0

E ne rg y (eV)

0 1 2 3 4

Energy (eV)

6 7 8

FIG. 2. (a) Comparison of the experimental data (+ ) to the theoretical ( —) Franck-Condon factor E =exp[ —(E E)'/2b, '], —
where E~=1.7 eV, full width at half maximum (FWHM) is 1.7 eV, and 5 =0.5231 eV . (b) Plot of the reduction factor
P(E)=exp( —2/E'~ ) where 3 =5.65 eV' . (c) Plot of P(E)=exp( —3/E' ) and Q(E)=exp[ —(E E;)'/2A ], wher—e 3 =5.65
eV', E; =0.16 eV, and 6 = 1.2 eV . (d) Comparison of the experimental data (+ ) to the theoretical ( —) IED cross section including

reneutralization. Y= exp[ —(E E; ) /2h ]exp( ——A /E' ), where 6 =1.2 eV, 3 =5.65 eV'~, and E; =0.16 eV. These fitting pa-

rameters were calculated for the known value of Y = 10 for W-H+ system.

The overlap integral between the adsorbate vibrational
state and the final scattering state wave function is a result
of the initial photon or electron impact on the adatom
producing a bond breakage, resulting in a change of the
potential-energy curve from, for example, a harmonic well
to a repulsive exponential. This change occurs in a time
much shorter than the nuclear vibrational period such
that the instantaneous value of the nuclear coordinate R
and momentum pR remain unchanged (Franck-Condon
principle). The above model of obtaining the cross section
works for all the diherent mechanisms of bond breaking"

and the distinct electronic processes involved in the
desorption resides in the calculation of o,

B. Evaluation of IFC via the reAection approximation

The evaluation of the Franck-Condon overlap integral
requires a knowledge of both the ground-state (vibration-
al) and the final-state (desorbing) wave function of the ad-
sorbate. The ground-state function rt, , (R) can for most

I I

purposes be taken to be a Gaussian since the particle can
be thought to be bound in the ground state of an harmon-
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FIQ. 3. (a) Comparison of the experimental data (+) to the theoretical ( —) Franck-Condon factor Y=exp[ —(E E~) /&& ], —
where E =5.75 eV, F~HM is 3.4 eV, and 6 =2.085 eV . (b) Plot of P(E)=exp(A/E' ), where A =10.5 eV' . (c) Plot of
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experimental data (+ ) to the theoretical ( —) IED cross section which includes reneutralization. Y=exp[ —(& —&;) /2~ ]
exp( —A /E ' ), where 6 =4.2 eV, A = 10.5 eV', and E; =4.0 eV.

ic well of characteristic frequency determined from spec-
troscopic studies. The final-state wave function ((), , (R)

ey UI

can be obtained if the ion-surface final-state interaction
potential is known. A simple choice of ((), „(R)would beI I
a stationary-state WKB solution. Since a WKB wave
function has its predominant peak close to the classical
turning point (see the Appendix), numerical integration
shows that IFC is approximately equal to P, , (Rc) where

R~ is the classical turning point. This is equivalent to
saying that at t =0 when electronic transitions occur, the
final-state wave function is a 6 function at R&. This is the
essence of the reflection approximation. The final-state
ion-surface interaction potential, therefore, acts as a mir-
ror refiecting the ground-state function P, , (R) into the

j I

observed ion energy and ion angle distribution patterns.
Further justification of the reflection approximation is dis-
cussed in the Appendix Sec. 1. The results of the RA cal-
culation of IED were the subject of Ref. 1.

C. Evaluation of IFC using WEB Anal state
with a real potential

The Franck-Condon overlap integral IFc(E) was calcu-
lated for normal desorption using a final-state WKB wave
function calculated as described in Ref. 12. A potential is
composed of a repulsive Born-Mayer (exponential) term
and an attractive image term initially using the same pa-
rameters as in Ref. 1. If the overlap integral is expressed
as
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where HR ——T;+ V(Z) denotes the real part of H and T;
is the kinetic energy operator of the ion. Since the Hamil-
tonian is non-Hermitian, its eigenvalue is no longer real.
For a very small dissipative potential W(Z) a quasiclassi-
cal, quasistationary wave function may be chosen. Thus
the eigenvalue problem becomes

(y, , ~

W ~y, „,&=r. (10)

We choose a quasiclassical form for the wave function

P, , (Z)=,&2exp —f p„(Z')dZ', (ll)
[p,. (z)]'"

[Hz(Z)+iW(Z)]P, , =(E—iI )P, , (9) where p„(Z) is a complex momentum, namely

Noting the fact that the expectation value of the real part
of the Hamiltonian has to be real, the expectation value of
W(Z) can be written as

p„(Z)=(2MIE —V(Z)+i [W(Z) —I ]I )'~ . (12)

Substituting Eq. (12) into Eq. (7), we obtain

T/; ——T, , (Z, ) f dZ P, , (Z)exp f' ', 'dz' p f' ", :—' f'p(z')dz'
z, p (Z') iii z, p (Z') iii zc

(Z)]1/2

where p~(Z)= I2M[E —V(Z)) I
'~ and Z, is the classical turning point. Since W'(Z) is assumed very small, the argu-

ment of the exponential varies very slowly compared to the rest of the integrand; therefore, factoring it out yields

I

TI; ——T, , (Z, )exp —f, f dZ P, , (Z)exp f, exp f p (Z')dZ' [p„(Z)]'",zc AV(Z C

(14)

v(Z) being the local velocity Aga. in [E —V(Z)] in the
denominator of the integral is much greater than
[W(Z) —I ] (which is very close to zero), except at the
classical turning point. Therefore one can again evaluate
the integral at the classical turning point where
[E —V(Z)]=0 and

exp (i/h') f dZ'p(Z') p' (Z)

becomes a 5 function, therefore,

which can be associated with the reneutralization of the
ions.

B. Time-dependent theory

The previous approach was the quasistationary approxi-
mation. Here we derive the result more generally. The
Hamiltonian for complex potential can be written as the
sum of the Hermitian and the anti-Hermitian part namely

H =H~+H~, (17)
I

T, =T, , (Z, )exp —f, dZ' P, , (Z, ) .
C

(15) where HH ——(H +H+ ) l2 and H = (H H) /2. Using-
the Schrodinger equation,

The exponential term can be identified as the ion survival
probability amplitude or the reneutralization reduction
factor. Since the desorption cross section is proportional
to

~
T&; ~, the ion yield reduction factor would be

P =exp —2 f dz'W(Z')/A'v(Z')
Zc

(16)

From the above calculation it is seen that with a simple
choice of wave function, namely a WKB, the reduction
factor comes out automatically from the Franck-Condon
overlap factor provided one uses an optical potential.
Thus this treatment accomplishes a number of things:
first it allows the reneutralization factor to come in a nat-
ural way without just appending it as is often done,
second it establishes the exponential form, and finally it
establishes the precise quantities occurring in P. For ex-
ample, the imaginary part of the potential defines the
reneutralization rate and later we will also see how it is
related to the energy-level broadening of the one-electron
state of the adsorbate. The particular choice of the
quasistationary wave function implies probability drain

f Q,*, OP, , dz

H 0 —OH+, , dZ.ef Vf Bt

(19)

Since H~ = H~, Eq. (19) can —be written as

f Q,*, OP, , dz

Hp„O [Hg, O]+ P, , dZ . —

(20)

i' (Z, r)=HQ, , (Z, r),. ay
efvf f f

the time rate of change of the expectation value of any
operator 0 can be written as' '
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The probability I(t) is defined as

f P,*, (Z, t)P, , (Z, t)dZ . (21)

dI (t) 2i= ——(H„(t))I(t) .
dt

The solution of the above equation is

(24)

= ——f P;, (Z, t)H„P, , (Z, t)dZ . (22)

Then from Eq. (20) replacing 0 by the unit operator gives
I(t) =I(0)exp ——f H~ ((Z ),&)dt'

0

where

(25)

In the problem of reneutralization HH ——T, + V(Z) and
Hz ———iW((Z), &). This choice makes W an explicit
function of time and in the classical limit (Z),~

is the
classical path, which is consistent with MGR model.
Thus

I(0)= f P,*, (Z, O)$, , (Z, O)dZ,

and P, , (Z, O) satisfies the time-dependent Schrodingerf f
equation

(H„(t))= f P, , (Z, t)H„Q, , (Z, t)dZ

and

I (t), (23)
[T, + V(z)]P, , (Z, O)=E(0)P, , (Z, O), (26)

and can be modeled to have a simple WKB-like form.
Equation (25) can be rewritten as

f dZ P,*, (Z, t)P, , (Z, t) = fdZ P,*, (Z, O)P, , (Z, O)exp ——' f 'Hz ((Z),t)dt' (27)

Since the above equation is true for all values of time and
all volume elements, without loss of generality one can
write

P, , (Z, t)=P, , (Z, O)exp ——f H(( Z),~)dt'

exp ——f (Hz(t'))dt'
0

=exp ——f W((Z), ~)dt'
0

(29)

X exp[if(Z, t)], (2&)

Also (Z), ~
defined below is the classical expectation value

and is an explicitly time-dependent real quantity,

(Z)„= f P,*, (Z, t)ZQ, , (Z, t)dt . (30)

where exp[if (Z, t)] is some arbitrary phase factor with
the restriction f (Z, O) =0. It can be noted that the argu-
ment of the exponential is real since H„=iW'((Z), ~)

and Z is Hermitian. Thus

The transition matrix element can then be written as

Tf, (t)=T, , (Z, ) f dZQ,*, (Z, t)p, , (Z) .

Substituting for P, , (Z, t),ef Vf

Tf;(t)=T, , (Z, ) f dZ exp ——f W((Z),~)dt e'f' '"P,*, (Z, O)P, , (Z) .
0

(31)

Under the reflection approximation, P, , (Z, O) is a 5 function around the classical turning point namely whereef vf

E (0)= V(Z, ). The desorption cross section at t = oo or at the detector is proportional to
l Tf; (t = ~ )

l

2 or,

l Tf (~)
l

=exp ——f W((Z)„)dt
l P, , (Z)

l

' . (32)

Therefore it is seen that this particular choice of the com-
plex potential, the desorption cross section again factor-
izes into a product of two terms —the Franck-Condon
factor evaluated at t =0 and a reduction factor which is a
measure of the ion survival probability.

only a real potential. Some of the data, however, showed
asymmetries that could not be accounted for in that sim-
ple theory. We will now address this problem using the
full IFC derived in Sec. III. The level width function in
the case of the time-dependent perturbation theory' is
defined as

IV. CALCULATION OF THE EFFECTS
OF RENEUTRALIZATION ON IED (t) =—& l

v„,(t)
l

'fi(E —e„), (33)

In Sec. II we saw how a WKB final state could be used
to represent a large variety of experimental curves using whereas the reneutralization rate in the case of the MGR
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model is defined as (the golden rule)

W(t) =R (t) = & l
v„„(r)

l

'&(E—Ek) .

This difference in the factor of 2 results because

exp —I b (t')dt'

(34)

represents the instantaneous probability amplitude rather
than the probability itself. In general, the results of the
time-dependent perturbation theory are more complete
than those of the MGR approach but there are limiting
cases where both methods yield the same result. As
shown in Ref. 17 the result of the constant affinity level
Ed(t) and a constant velocity of the desorbing atom, one
obtains

n( oo )=—,'(1 —e )+(1—e ~) ———exp2~P
2 7T 15/v g

I: & Ed~ ~Z &d (35)

where A=ho/%yves and p=e with vz the normalQZo

component of the velocity and cF the Fermi level. The
above result is obtained by assuming an exponential time
dependence for b(t), namely b(t) =boexp[ —1'(Zo+uzt)].
The MGR model, on the other hand, under the same ap-
proximation, yields

P( oo ) =exp( —2Ap ) . (36)

V. CONCLUSION

We have shown how ion energy distributions for a
broad class of metal-adsorbate systems are well represent-
ed by a final-state wave function in the quasiclassical limit
using a complex potential. The latter leads to a reneutral-
ization reduction factor which accounts for a number of
anomalous effects left unexplained by our previous treat-
ment using only a Franck-Condon factor calculated in the
reflection approximation. The imaginary part of the opti-
cal potential experienced by the ion is simply related to

For the case of reneutralization of positive ions (in which
case the adiabatic limit is often used) the time-dependent
approach yields P(oo)=1 —n(oo). For most cases of in-
terest it is seen that rr

~
ez —ed

~

is of the order of a few
eV whereas 60 is of the order of 1 or 2 eV. Under these
circumstances the leading contribution to P(oo) for the
case of E~ ~ ed and small u~ is the same as Eq. (36). Simi-
lar results can be obtained for more realistic time depen-
dence of the affinity level. Thus one can conclude that
the adiabatic limit is a small velocity limit of the more
rigorous time-dependent theory, especially in the cases of
resonant charge transfer where the resonance width is
much smaller than the difference of the work function and
affinity level.

In this section we use the MGR model for the reduc-
tion factor I' in obtaining further corrections to the IED
curves of hydrogen from tungsten and oxygen from
molybdenum. From Figs. 2 and 3 it is seen that aug-
menting the Franck-Condon factor (which is essentially a
Csaussian around the peak energy) with a factor represent-
ing the ion survival probability is capable of explaining
observed right and left skewing of the observed IED.
Another interesting result of the energy dependence of P
is that it can cause significant shifts in the peak of the
IED making it apparent that one must take care in inter-
preting the empirical parameters that come from fitting of
experimental data.

the reneutralization rate and hence the electron tunneling
probability from metal to adsorbate. We have also shown
how the reflection approximation is valid under cir-
cumstances beyond those usually stated. Thus, using
WKB final-state wave functions in the Franck-Condon
model, the IED were in substantial agreement with those
calculated previously. ' This appears to be due to cancel-
ing effects in the final quasiclassical state beyond the prin-
cipal maximum that occurs near the classical turning
point.

Finally, we have shown how the classical and quasiclas-
sical approximations are related using both time-
independent WKB wave function as well as time-
dependent Gaussian wave packet. We thus have seen the
technical details as well as the real meaning of the
reflection approximation corresponding to the classical
trajectory as a final-state representation of the ion. In ad-
dition, the Appendix, Sec. 1, in particular, points the
direction to other potentially useful approximations as a
formal series in A.

APPENDIX

1. Connection between the classical limit
and the RA approximation

It is often stated that the reflection approximation is a
result of replacing the final-state wave function by a 5
function. ' ' Since the momentum of the desorbing parti-
cle is large compared to the electronic momentum, for
most purposes the final-state ion trajectory is justifiably
treated classically. The notion of trajectory therefore im-
plies a dynamical system and thus one ought to deal with
a time-dependent wave function. The Franck-Cond on
overlap integral is then evaluated at the time t =0. In
this section we show how the 6 function results from the
usual A~O limit of a quantum wave function. For sim-
plicity of notation we will drop subscripts; i.e.,
P, , (X,t)= P(X, t) and treat —the problem in one dimen-

j" f
sion. The formal generalization to three dimensions is not
very difficult.

Quantum mechanics is generally said to reduce to clas-
sical mechanics in the A~O limit. According to Yaffe
this statement needs justifying. In order to obtain the
classical limit, the quantum system has to be prepared in
such a way that ensures a state whose uncertainty in both
position and momentum vanishes as A tends to zero. Fol-
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lowing Heller ' we choose a wave function as a Gaussian
about the classical path X, =IX)/(P ~P). A Gaussian
wave function is the solution to the Schrodinger equation
for a harmonic potential For a smoothly varying V(X)
one can always expand the potential about the classical
path and retain up to the quadratic term, namely

v(x) = v(x, )+av(x)/ax
~

(x —x, )

2 2

M
0't —~xx/»' —pr = ~x (A4)

Substituting Eq. (A2) into the Schrodinger equation
ifidgldt=HQH and collecting coefficients of (X —X, )",
where n =0, 1,2, . . . , the following equations are ob-
tained:

1 a v(x)+
BX X=X

(X —X, )

A Gaussian wave function of the form

(Al)
f3, = a, +p, /M —V(X, ) —p, /2M .

M
(A5)

In deriving Eqs. (A4) and (A5) the fact that X, =p, /M
has been used. If H(p„x, )=p, /2M+ V(X, )=E then
the equation of motions are

P(x, t)=, exp —a, (x —X, )
(2vrh) '

+ —p, (X —X, )+

X, =aH/ap„p, = —aa/aX,

&i = —(2/M)&t' —
Vxx /2

13, =ilia, /M+p, /M E. —
(A6)

(A2)

may be chosen as the solution to the Schrodinger equation
where p, =(p)/(P/P) and P, are chosen such that
(PIP) = l. In general a, and P, are complex and p, and
X, are real quantities. (Here P, takes care of any time-
dependent normalizing constants. ) The Hamiltonian for
the particle is

2M QX2
+ V(X, )+ Vx(X —X, )+—'Vxx(X —X, )

I /2
Vxx

2 M +p, /M —e,
(A7)

2

p, = Er+ f—'dr
0 M

1/2
~xx

2 M

In order to write p(X, t) as a Gaussian coherent
state, ' we let a, be purely imaginary and equal to
i(Mvxx)' /2 such that a, =O. This choice makes

where Vx ——a V(X)/aX
~ x and Vxx ——a V(X)/aX

(A3) Equation (A7) implies that in addition to the ordinary
phase factor —iEt /A we have another time-dependent
contribution arising mainly due to the normalization.

1/2
~xx

2 M
(b(x, t)= exp. — (X —X, ) +(i/A)p, (x —X, )+(i/k) f dt' E+-

(2M/a, )
' (A8)

with a, =(MVxx)' /2. The Gaussian representation of a
6 function

6(x) = —lim exp( —X /E),1 . 1

v'~ .-0 v'e

automatically implies that in the limit 6~0,
$~5(x —X, ). Thus in the classical limit the particle is at
its instantaneous classical location X, . It is easily verified
that the Fourier transform of $(x, t) is a Gaussian around

p, which again in the A~O limit results in a 5 function at
p„ i.e.,

P(p, t)=, f dX exp( ipx/fi)P(x)—
(2rriii)'~

( 2iat)' —
. (p pi) ~iexp —i — X, —iy, /A

27PR t

(A9)

The Franck-Condon overlap integral can also be evalu-
ated in the momentum space where P, , (p, O) will now be

t i

evaluated at classical momentum p, =0. Since most of the
information regarding bond length and bond direction can
be easily inferred in coordinate representation, it is most
common to use coordinate space wave functions. Assum-
ing that Vxx (r =0) is a mild energy-dependent quantity
[energy dependence coming from the classical turning
point where V(X, ) =E]one can write

~
I„c as

IFC
I

' (A10)

where X, represents the location of the particle at t =0,
namely the turning point.

Another approach to the reAection approximation is to
show how the quasiclassical WKB wave function when
treated in the linearized potential approximation, valid
near the turning point, leads formally not to a 6 function
but to an infinite series of correction terms in successively
higher orders of A'. The Airy function solution to the
Schrodinger equation for linearized potential at large dis-
tances goes over to the WKB. Therefore near the turning
point where the potential can be effectively linearized, the
integral representation of the Airy function gives a formal
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series of derivatives of the 6 function. This is discussed
next.

2. 5 function representation of the Airy function

Since the integrand is an even function of t,

Re t'
Ai(+y)= f exp i +yt+ — dt,

277 oo 3
(A15)

d2

2M dZ2++K'(Z) P(Z) =0, (A 1 1)

We will show here how the quasiclassical wave function
when treated in the linearized potential approximation,
valid near the turning point, leads formally not only to a
5 function but to an infinite series of correction turns in
successively higher orders of A.

We begin with the one-dimensional Schrodinger equa-
tion,

But

1 d+ — e-"'= it
exp(+iyt )

n

1

2~ — n! 3
dt . (A16)

where k (Z)=(2mlfi )[E —V(Z)]. Let Z, =Z be the
classical turning point. We expand k (Z) about Z, and
since E= V(Z, ), k (Z, )=0. Thus k (Z)=a(Z —Z, )+,where

whence,

(it l3)"= +—,exp(+iyt) .
~ = -1d'

dg

~z) c) V(Z)
az

Equation (Al 1) now becomes

z=z
C

=2mF(Z, )A'

Ai(+y) = 1 1 d +iyt+ — exp dt
277 —oo „o 3 dy ..

d

Thus we have a formal representation of Ai(+y);

d2

dZ2
+a (Z —Z, ) P(Z) =0 . (A12) (+1)" 1

&(y) . (A17)

Defining y = —a'~ (Z —Z, ), Eq. (A12) can be written as
Since

d
(A13)

5(y)= f exp(+iyt)dt .
27T —oo

which is the difFerential equation satisfied by the Airy
functions Ai(y) and Bi(y). The scale factor a determines
the period of the Airy function, that is the narrower func-
tion results from increasing the scale factor a and thus
corresponds to approaching the classical limit %~0. Us-
ing the integral representation for Ai(y), we find

oo

Ai(+y ) = — cos +yt dt—
7T 0

This of course means, in the usual way, that the right-
hand side of Eq. (A17) is equivalent to Ai(+y) when used
in an integral. For n =0 the Franck-Condon overlap in-
tegral is,

IFc ~ dy P, , (y)Ai(y)

IFc "0..., (y=o),

1 f ~

2' oo

cos —+yt dt .
3

(A14)
with P, , (y) being the vibrational ground state of the ad-

sorbate.
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