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The results of calculations for a number of electron-phonon interaction effects for tantalum are
presented. The calculations are based on Korringa-Kohn-Rostoker energy bands, Born —von Karman
phonons, and the rigid-muffin-tin approximation for the electron-phonon matrix element. The calcu-
lated Eliashberg spectral function a F is compared with the earlier tunneling data of Shen and the
proximity tunneling data of Wolf et al. The calculated and tunneling transverse-phonon peaks agree
well, but the height of the tunneling longitudinal-phonon peak is smaller than the calculated results.
The calculated electron-phonon coupling parameter A, is 0.88, which is larger than the A, determined
from superconducting tunneling and superconducting T, measurements, but is slightly smaller than
the k determined from electronic specific-heat measurements. Calculated phonon linewidths along
various symmetry directions are presented. The temperature dependence of the electrical resistivity
due to phonon scattering is calculated in the lowest-order variational approximation and it agrees
with experiment. The point-contact spectral function of Kulik, G(co), is determined and compared
with a F(co). The agreement between calculated and measured electronic specific heat and high-
temperature electrical resistivity gives strong support to the validity of the rigid-muffin-tin approxima-
tion for electron-phonon matrix elements. The main disagreement between calculated and measured
results is for superconducting properties for which an ad hoc Coulomb interaction p* must be used.

I. INTRODUCTION

In recent years it has become possible to perform de-
tailed calculations of electron-phonon effects in both sim-
ple metals and transition metals. Such calculations typi-
cally use realistic electronic structures, a realistic descrip-
tion of the phonons, and realistic models of the electron-
phonon matrix elements. Examples of quantities calculat-
ed using realistic models are phonon linewidths in Nb,
the anisotropic electronic lifetime in Al, Cu, and In, the
anisotropic mass enhancement in Zn, Cu, and In, the
electrical resistivity of Al, Zn, Nb, Pd, Cu, ' and the
hexagonal metals Zn, Cd, and Mg, " the thermal resistivi-

ty in Al, Zn, Nb, , Pd, and Cu, ' the point-contact
spectral function G(co) of Kulik' for the alkali met-
als, ' ' and the superconducting transition temperature'
T, for V, Nb, Ta, Mo, W, Pd, and Pb.

Many of these calculations first involve determining the
Eliashberg spectral function a F(co). Although a F(co) is

not a directly observable quantity, it enters into the gap
equation that determines the superconducting transition
temperature. In strong-coupling superconductors it has
been possible to deduce a F from tunneling data. ' To
our knowledge, there are only three cases for the simple
metals for which a F(co) has been both calculated for
realistic models [calculations on Pb (Refs. 15 and 17), In
(Ref. 18), Al (Ref. 19)] and also determined experimental-
ly. The calculated a F(co) agrees well in each case with
that determined from tunneling' or from proximity-effect
tunneling measurements. On the other hand, Nb is the
only transition metal for which there exist calcula-
tions" ' ' together with experimental determinations
from proximity-e6'ect tunneling and ordinary tunneling
of a2F. (In the work of Ref. 15, a F is presumably calcu-
lated for Ta; however, the results are not presented in the
published paper. ) For Nb there is a marked disagreement
between the calculations and the results deduced from the
tunneling experiments. The lower-energy transverse peak
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in a F for Nb is essentially the same in location, height,
shape, and width whether determined by direct calcula-
tion or from tunneling experiments, and the longitudinal
peak occurs at the same energy independent of the
method. However, the strength of the longitudinal peak
determined from tunneling experiments is smaller than
that determined from direct calculations. Possible reasons
for this suppression have been suggested.

The most central and problematic aspect of these calcu-
lations is the determination of the electron-phonon matrix
elements. Although this problem seems to be well under-
stood in principle (i.e. , it is known that the electron-
phonon matrix elements should be calculated from the
change in the charge self-consistent crystal potential
caused by an infinitesimal displacement of a single nu-
cleus in an otherwise perfect crystal ), in practice ap-
proximations are usually required for actual calculations.
In addition it is often difficult to assess the degree of suc-
cess of a particular approximation for the electron-phonon
matrix elements. Usually there are other approximations
involved in the calculation, and the interpretation of most
experimental determinations of the strength of the
electron-phonon interaction is not completely straightfor-

wardd.

In this paper the "rigid-muffin-tin" approximation
(RMTA) is used to calculate the electron-phonon matrix
elements of Ta. This approximation applies the rigid shift
of one of the muffin-tin potentials used to calculate the
electronic structure of the perfect crystal instead of the
change in the self-consistent crystal potential effected by
the displacement of a single atom. Although this approxi-
mation may be criticized as ad hoc it has the feature of
being a "first-principles" method in the sense that the ma-
trix elements are calculated from the electronic structure
and no adjustable parameters are involved. It also has the
virtue that it satisfies the total-force sum rule. '

In order that we may assess the validity of the RMTA
we have attempted to perform the remainder of the calcu-
lation as carefully as possible. We have used a self-
consistent, relativistic potential to calculate the electronic
structure, and have generated wave vectors and wave
functions on a dense mesh of points at the Fermi energy.
The frequencies and polarizations that enter the calcula-
tions were obtained from Born —von Karman fits to the
experimental phonon dispersion curves.

We are also interested in testing a second transition-
metal superconductor to see whether or not the same
suppression of the longitudinal peak in a F occurs accord-
ing to tunneling data, as is the case for Nb. Tantalum is a
good candidate because there exist good experimental tun-
neling data ' and proximity-effect tunneling data from
which a F(co) has been determined. We present here our
calculations of a F(co) for Ta for comparison with the
tunneling a F.

We have also calculated a wide range of other proper-
ties that may be compared with experiment. A very im-
portant measure of the electron-phonon interaction is the
temperature-dependent electrical resistivity. The 1inear
coefficient of the electrical resistivity at temperatures
greater than the Debye temperature is a good measure of
the overall strength of the electron-phonon coupling, and

the temperature dependence contains information about
the frequency dependence of the coupling. One of the
most direct measures of the electron-phonon interaction is
the phonon linewidth. This function gives the contribu-
tion of each phonon mode to the coupling. We also cal-
culate the point-contact spectral function which contains
information similar to that contained in the Eliashberg
spectral function.

In Sec. II we discuss our model and method of calcula-
tion. In Sec. III we present the results; then in Sec. IV
we present our conclusions.

II. METHOD OF CALCULATION

The calculations discussed in this paper are based on
techniques described previously' ' so only a brief discus-
sion will be presented here. The process of calculating the
electron-phonon parameters involves several separate
steps. First the electronic structure in the vicinity of the
Fermi energy must be determined. Then matrix elements
must be calculated for scattering between various points
on the Fermi surface. Finally, the electronic information
and the phonon frequencies and polarization vectors must
be combined and properly averaged to generate the quan-
tities of interest.

The electronic structure problem is solved by using a
Korringa-Kohn-Rostoker (KKR) band-theory program
operated in a constant-energy mode. The muffin-tin po-
tential that we used for our calculations on Ta was one
determined self-consistently in Ref. 35 using Xn ex-
change. Operating in a constant-energy mode allows us
to efficiently generate many points on the Fermi surface of
Ta without having to resort to linearized schemes or inter-
polation methods. The wave-function coefficients are
determined simultaneously with the k vectors. The pri-
mary difference between the present electronic structure
calculations and those reported in Refs. 1, 9, and 34 is
that in this paper we include relativistic effects ' (omit-
ting the spin-orbit interaction).

After the Fermi-energy electronic structure is obtained,
the wave-function coefficients are used to calculate the
electronic part of the electron-phonon matrix elements in
the rigid-muffin-tin approximation:

I„„=(f„~ VV
~
f„),

where gk is a Fermi-energy Bloch function, x is a direc-
tion cosine, and V is the muffin-tin potential used in the
band calculations. The square of Ikk is then averaged
over both k and k' on the Fermi surface taking care to
distinguish all scattering processes with different values of
q where q=k —k':

(2~)
g ~(q)= g 5(EF —Ek)6(EF —ek )

%(EF) kk,

&& &(k —k' —q)I kk'I k'k

Here X(eF) is the Fermi-energy density of states and 0,
is the volume per atom. In carrying out the double sum
in Eq. (2) of k and k' over the Fermi surface, we use a
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mesh of points on the irreducible ( —,', th) Fermi surface. k
is confined to the —,', th part but k' is determined on all

points on the Fermi surface by first locating a mesh point
on the irreducible part and then carrying out the point
operations of OH symmetry to generate 48 k' points for
each mesh point.

Once Eq. (2) has been evaluated, the quantity g p(q)
can be used to derive the electron-phonon parameters.
The phonon linewidth arising from the electron-phonon
interaction is given, for example, by

y, (q)= N(EF) g E'(q)ep(q)g p(q),
a a,p

where M, is the atomic mass and EJ (q) is the ath com-

ponent (a=1,3) of the phonon-polarization vector of po-
larization j. The phonon frequencies and polarization
vectors are obtained from a Born —von Karman fit to the
experimental dispersion curves of Ref. 38. Similarly, the
Eliashberg electron-phonon spectral function a I'(co) is
given by

a'F(co)= g g g &'(q)&~p(q)g p(q)5(~' —~q, ), (4)
aa,pqj

where cuqj is the frequency of a phonon with wave vec-
tor q and mode index or polarization j.

The electron-phonon parameters associated with trans-
port can be obtained from quantities defined similarly to

g p(q), but which include the Fermi velocities:

g 5(EF —Ek)Vk

y 5(EF —Ek)5(EF —Ek )5(k —k' —q)Ikk Ik kV k
(2~)' k, k

Iap&q& =
a

g 5(EF —Ek)Uk
k

g 5(EF —Ek)5(EF —Ek )5(k —k' —q)IkkI (kvk. vk
(2' ) k, k'

'Pap& q& =
a

Here vk is the group velocity of an electron at point k on
the Fermi surface. The results of Eqs. (5) and (6) may be
used to calculate the transport spectral function a,g (~)
and the electrical resistivity in the lowest-order variational
approximation (LOVA). Explicitly,

a,„F(co)= Q g QE'(q)e~p(q)5(co —coqi)
a,p q j

x [q'p'(q) —g'"p(q)]

and

6~k~T ~ dao x2
pLovA= 2 ze'~(EF) U' 0 ~ sinh'x

Here x is ficol2ks T, and (v ), the mean square Fermi ve-

locity, is given by

(V ) =[N(EF)] '+5(EF —Ek)Vk .
k

The point-contact spectral function of Kulik' G(co) is
closely related to the transport spectral function. It is
defined by

G (co)= g g g Ei (q)ei&(q)g p(q)5(co coq, ), —(10)
a a,p q j

where the point-contact g given by

7/ p(q) = y 5(EF —E„)5(EF—E,„)pc (2vr)

a F kk'

X5(k —k' —q)K (v, v')Ikk If k

is similar to g p of Eq. (2) but with the addition of the
"geometrical structure factor"

K(v, v )=, +( —U, v, ),
Vuz —V'Uz

(12)

III. RESULTS

Table I shows the calculated Fermi-energy density of
states decomposed according to irreducible representation.

where v (v') is the electron velocity for state k (k'), and v,
is the component of the velocity normal to the plane of
the point contact. The function e(x) is the usual step
function, which ensures that the only scatterings which
contribute are those in which the electron reverses direc-
tion with respect to the point contact.

The geometrical structure factor [Eq. (12)], which
weights large-angle scatterings more heavily than small-
angle scatterings, obviously diverges for 180' scattering
(k'= —k), but the sum over k and k' in Eq. (11) is never-
theless convergent. However, because of this divergence,
care must be taken in carrying out the k, k' sum in (11).
We have evaluated this sum in two different ways for a
given number of mesh points on the Fermi surface. First,
we evaluated Eq. (11), throwing out (i.e., setting equal to
zero) all contributions in which k' is exactly equal to —k.
Next we reevaluated Eq. (11), and each time we encoun-
tered a case of k' exactly equal to —k, we changed the
direction of k' slightly in a random way using a random
number generator. We compared the results for the two
methods of evaluation and with the mesh-size parameter
N, equal to 12 and 24 (the latter corresponding to
5.07X10 k, k' pairs), and in this way determined that the
results were converged.
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Angular
momentum
component

25'

25

15

Present
work

(states/spin Ry)

0.152
1.702
4.729
1.027
0.282
0.110
0.026
0.015

Ref. 35
(states/spin Ry)

0.129
1.834
4.959
1.058

TABLE I. Calculated Fermi-energy density of states for Ta.
Comparison is made with previous work of Ref. 35. See text for
an explanation of the dift'erences.
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Our results are compared with the results of Boyer
et al. , who used a Slater-Koster tight-binding parame-
trization scheme for analyzing the Fermi surface. The to-
tal densities of states are in excellent agreement. The
differences in the component densities of states are pri-
marily due to the fact that the two techniques decompose
the density of states in fundamentally different ways. In
the KKR method the entire density of states within a cell
is expanded in terms of angular momentum basis func-
tions centered at the cell center. In the tight-binding
method, on the other hand, the tails of functions on one
site that extend into neighboring sites maintain their origi-
nal identity as s, p, or d states even though they would
contribute to difterent types of symmetry if they were ex-
panded about the center of the cell they are in.

The total Fermi-energy density of states of 8.04
states/Ry spin may be compared with the enhanced densi-
ty of states deduced from the linear term in the low-
temperature electronic specific heat using the relation

C,'= 23rr kgTN*(EF—) . (13)

The values of the enhanced Fermi-energy density of states
X*(EF) determined from Eq. (13) using experimental
values for C; vary from 15.7 statesIRy spin (Ref. 39) to
17.2 states/Ryspin. These experimental values of the
density of states are enhanced by the factor 1 + k over the
band density of states where k is the electron-phonon
mass enhancement parameter. Thus dividing these values
by our calculated density of states yields the enhancement
factor 1+X=X*(EF)IX(EF). The value of A, necessary
to make the experimental enhanced density of states con-
sistent with the calculated band density of states is be-
tween 0.95 and 1.14. This is in reasonably good agree-
ment with our calculated value for A. of 0.88.

In Fig. 1 our calculated Eliashberg spectral function
a F(co) for Ta is plotted, together with the results from
tunneling ' and from proximity-effect tunneling experi-
ments. As in the case of Nb, there is fairly good agree-
ment between the calculated transverse-phonon peak and
that determined from the two experimental methods. The
experimental curves are slightly larger than the calcula-
tion at low frequencies (in the neighborhood of 7 meV).

FIG. 1. Eliashberg spectral function o.'F(~) and frequency-
dependent electron-phonon coupling parameter a'(co) for Ta.
The solid line is our calculated function a F(~) while the dashed
line is a (co). The open circles are from Ref. 33 using
proximity-eff'ect tunneling results, while the open triangles are
from Refs. 26 and 32 using tunneling. The two experimental
curves are so close to each other that we have not drawn in the
triangles over much of the energy range.

However, the calculated transverse peak is larger and
sharper than the analyzed experiments. In the region be-
tween the two peaks the calculated result is slightly larger
than experiment.

We remark that the overall agreement is very good and
the disagreements are relatively minor for co & 15 rneV.
As with Nb, the main disagreement is at the longitudinal
peak where the calculated result is much larger than that
from tunneling. Unlike the case with Nb, the longitudinal
peak from tunneling is slightly larger than the transverse
peak. It is only in comparing the tunneling longitudinal
peak with the calculated longitudinal peak that it becomes
apparent that the tunneling peak is suppressed.

From a2F(co), we determine A, , which is a good mea-
sure of the overall strength of the electron-phonon interac-
tion; it is given by

A. =2 f d Q7 (14)

Our calculated result for Ta is X=0.877 compared to
k =0.69 from the analysis both of tunneling' and
proximity-effect tunneling experiments.

Table II lists some of the calculated electronic parame-
ters related to the superconducting transition. See Ref. 41
for the definitions of (co ) '~ and co~,s. The superconduct-
ing transition temperature T, is calculated using co~,g and
p*=0.13 in the Allen-Dynes formula. ' In this table we
compare with calculated values for Ta from Ref. 42. The
calculated value of T, =7.01 K is to be compared with
the experimental value of 4.5 K.

We have calculated the phonon linewidths for various
phonons in Ta by means of Eq. (3). These are plotted in
Fig. 2. We have carried out these calculations for the lon-
gitudinal and both transverse modes along the three sym-
metry directions [100], [110], and [111]. The results are
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TABLE II. Calculated values of electronic parameters related to the superconducting transition and transport in tantalum. For the
superconducting transition temperature T„ the Coulomb pseudopotential p* is set at 0, 13 and co],g is used in the Allen-Dynes formula
of Ref. 41.

Present work
Re~. 42
Expt: Ref. 43

( 2)1/2

(K)

166.5
148

QP]pg

(K)

150.8 0.88
1.05

'l.
(eV/A')

7.82
7.40

T.
(K)

7.01

4.5

0.572

N(EF )

(states/spin Ry)

8.04
8.29

E
(Ry)

0.6972
0.6924

X
C)
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0.10

0.09
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very similar to the case' of Nb: the only large phonon
linewidths are for the longitudinal phonons in the [110]
direction [Fig. 2(b)]. The longitudinal-phonon linewidth
reaches a peak value of 0.25 THz near the Brillouin-zone
boundary at the point N. This maximum in the [110]
longitudinal phonons is about half that of the same pho-
nons in Nb. The smaller phonon linewidths for Ta than
for Nb is consistent with the values of A. . We do not
know of any experiments that have been carried out on
the phonon linewidths in Ta. Such measurements in Ta
would appear to be very difticult, since the phon on
linewidths in Nb were at the limit of the experimental
resolution.

The transport spectral function a„F(ro) is needed to
calculate the electrical resistivity in the lowest-order vari-
ational approximation. Using Eqs. (5), (6), and (7), we
have calculated this spectral function and it is plotted in
Fig. 3. This spectral function is smaller than a F by al-
most a factor of 2. In terms of the relative shapes of these
two spectral functions, the transverse peak in n F is small-
er compared to its longitudinal peak than is the case for
a„F. This is clearly seen from the plot of the ratio
a„F/a F in Fig. 3 (the dashed curve). This ratio is small-
er at the longitudinal peak than at the transverse peak.
The ratio also approaches zero as co goes to zero, in keep-
ing with a F going as co for small co while a«F goes as co

for small co.

We have calculated the LOVA electrical resistivity by
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FIG. 2. Calculated phonon linewidth for Ta along symmetry
directions. The solid line is for the longitudinal mode while the
dashed curves are for the transverse modes. In the [110] direc-
tion the two tranverse modes are not degenerate. However, the
two sets of linewidths for this direction are essentially equal
within the accuracy of the calculation. Note that the ordinate
scales are different for the three graphs.

I I

0 2 4 6 8 IO 32 14 16

ENERGY 4cv (me'I/')

I

18 20 22

FIG. 3. The transport spectral function a,„F(co) (solid line)
calculated for Ta in the lowest-order variational approximation
(LOVA). For comparison with a F (co ), the ratio
a„F(co)/a F(co) is plotted as the dashed line.
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means o qs. anf E s. (8) and (9) and have plotted the results in
the ex-Figs. 4 and 5 as the solid lines. Also displayed are t e ex-

1 1 for the temperature-dependent
art of the resistivity, i.e., subtracting off the residua

resistivity. The agreement between theory and experiment
is remarkable in the temperature range T, (OD, as shown
in Fig. 4. We have not carried out calculations with the
more refined variational approximations as was done in
Refs. 8, 9, and 11. In those papers it was found that the
largest corrections in using better distribution functions
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FIG. 5. The temperature-dependent part of th yrt of the resistivity di-
vided by temperature at high temperature.re. The solid line is the
result of our calcu ations wi1 1 th LOVA. The experimental results
are the circles (Ref. 44), the triangles (Ref. 45), and the squares
(Ref. 46). The dashed curve is drawn through the experimental
points. Note that the ordinate does not begin at zero.

0
0 20 40 60 80 100 3 20 140 l 60 180 200

TEMPERATURE (K)

0FIG. 4. Temperature dependence of the electrical resistivity of
T d to the electron-phonon interaction. TheThe solid curve isa ue o e

'mationour calculation wi e'th th lowest-order variation approximat
ex erirnental results of(LOVA). The dashed curve gives the experimental results o

Ref. 44 while the open circles are experimental rental results of Ref. 45.
In both sets of experimental data we have subtsubtracted the low-
temperature impurity resistivity.

0occur at temperatures below OD and the maximum effect
is a 20—30 % reduction in p( T) at the lowest tempertures.
Comparing wit e ca'th th calculations on Nb (Ref. 9) (which is
ex ected to be most nearly like Ta) and taking into ac-expecte o e

t the lower phonon frequencies of Ta, we ewe estimatecoun e o
" t e calcu-that a better distribution function would lower t e c

lated result in Fig. 4 by about 20% at 30 K, about 8%%uo at
60 K, and about 4% at 100 K. Thus, if a better solution

'ned the calcu-to the Boltzmann equation had been obtaine, e
lated curve in Fig. 4 would probably lie very slightly
b 1 the experimental one below 100 K.cow

Fi . 5. InThe high-temperature resistivity is shown in ig.
this temperature range, the LOVA resu ssuit should be very
close to results with better distribution functions. Here
we have divided p —po by T. On such a plot, if p —po is

1 T expected at high temperature from
theories based on the Boltzmann equation, the curve wil

LOVA calculation does indeed approach a constant value
of 0.0446 pB cm/K at temperatures at 1600 K and above.
On the other hand, the experimental points reach a max-
imum at about 450 K. The reason for the decrease of
p po)/T w—ith T of the experimental data at higher tem-

peratures is no nt known. A very similar phenomenon is
observed in Nb and Pd. We ascribe this high-temperature
deviation from linearity to one or more of the following.
(1) An increase in the phonon frequencies with increase in
temperature. This behavior is atypical, but not impossi-
ble. (2) A shift of the Fermi level relative to the structure
in the d bands due to the finite width of the Fermi func-
tion at high temperature. (3) The smearing of the energy
bands due to the finite electron lifetime at high tempera-
ture. (4) Changes in the band structure in the vicinity o
the Fermi energy due to band shifts resulting from the
electron-phonon interaction. Another possibility is that
this is the onset of the Mott type of resistivity satura-
tion. All of these effects are interesting but lie outside
the scope of this paper.

For temperature up to about 1000 K there is very good
agreement o ourf LOVA calculation and experiment.
Note that the ordinate in Fig. 5 does not start at zero.
Our calculations are performed within thethe Bloch-
Boltzmann theory, which does not contain the possibility
of a hi h-temperature deviation from linearity. T e s opeo a ig -em
of the resistivity versus temperature curve a igrve at hi h Tis

roportiona to „, w icp 1 k hich is a measure of the electron-p p
phonon interaction strength. T e g g

9 ood a reement be-
tween theory and experiment up to where resistivity devi-
ation from linearity begins to have an effect indicates t at
our calculated A, of 0.88 is probably correct. This is in
contrast with A, of 0.70 determined from tunneling, which
is compromise y ed b th fact that the unknown Coulomb
coupling p* enters into the analysis.

We can compare the tunneling X with the high-
temperature resistivity in the following manner. We ave
taken a F(co) from tunneling ' and, at each co,

lied it by the ratio a«F(u)/a F(co) from our calcula-
tions. Assuming that our calculated ratio is correct even
if the individual magnitudes might not e we thus obtain
an a«F(co) based on tunneling. This modified spectral
function was use od t calculate the maximum value of
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FIG. 6. The Kulik point contact spectral function G(co) cal-
culated for Ta (solid curve). For comparison with a F(~), the
ratio G(co)/a F(co) is plotted as the dashed line.

p/T. We find a value of 0.034 IUQcm/K which is 23%%uo

low (it is below the lowest ordinate value in Fig. 5) com-
pared to experiment. This indicates that (if our calculated
ratio of a,„/a is correct) the tunneling k and the high-
temperature resistivity are not consistent with each other.

On the other hand, the A, from electronic specific-heat
measurements of 0.95 to 1.14 is consistent with the mea-
sured high-temperature resistivity A, and our calculated k
of 0.88. We again want to emphasize that the analysis
leading to a measured superconducting A. involves the ad
hoc p . The specific-heat A, and the electrical-resistivity k
do not involve p*.

Because of the disagreement on the longitudinal peak
between the calculated a F and the a F from tunneling,
it would be interesting to compare the calculations of a
different spectral function with what is obtained from ex-
periment. Since the electrical resistivity depends on a„F
only in a gross way, the detailed structure of a„Fcannot
be obtained from resistivity measurements. However,
point-contact spectroscopy gives detailed information on
the point-contact spectral function G(oo). We have car-
ried out the calculation of this function for Ta using
Eqs. (10)—(12) and plotted the result in'Fig. 6 as the
solid line. A comparison of the magnitude of G (oo) with
a F(oo) is not very meaningful [G (co) is smaller because
the geometrical structure factor cuts out all small-angle
scattering]. However, a comparison of the shapes of the
two functions can be achieved by plotting the ratio
G(oo)la F(oo), the dashed line in Fig. 6. This line is not
constant, indicating that the two functions do not have
the same shape [in fact the variation of the ratio
G(oo)la F(oo) in Fig. 6 is about the same as the varia-
tion of a„F(oo)/a F( o)tin Fig. 3]. However, G/a F has
about the same value at the transverse peak as at the
longitudinal peak (unlike the situation with a„F/a F)
indicating that, first, the two peaks occur at the same
frequencies for these functions [as also for a„F(oo)], and
second, the ratio of the heights of the two peaks is about
the same for G(co) as for a F(oo). That is, G(oo) has a
large longitudinal peak compared to the transverse peak
just as in the case of a F(oo). We are not aware of any

point-contact measurements that have been made on Ta.
It is important to have such results to see if, in the ex-
perimental G(oo), the longitudinal peak is suppressed
compared to the calculations, as in the case of a F.

IV. CONCLUSIONS

The most important results are (1) that the calculated
quantities for Ta are remarkably similar to those of Nb
where comparison can be made, and (2) that (as in the
case of Nb) the calculated results with the rigid-muffin-tin
approximation for the electron-phonon interaction effects
in the electronic specific heat and the high-temperature
resistivity agree well with experiment. For the supercon-
ducting properties (a F from superconducting tunneling
and 2 from T, ) there is not as good agreement between
the calculated and measured quantities. However, for the
analysis of the superconducting properties it is necessary
to use an ad hoc constant value p* for the Coulomb
repulsion.

Our calculated a F(oo) agrees well with that obtained
from superconducting tunneling with regard to the loca-
tion of the two peaks and the size and shape of the trans-
verse peak. However, as in the case of Nb, our calculated
longitudinal peak for Ta is much larger in magnitude than
that obtained from tunneling. Our calculated X is approx-
imately 25% larger than the A, from superconducting tun-
neling, which is consistent with the discrepancy in a F.
On the other hand, our calculated high-temperature resis-
tivity is in good agreement with experiment, indicating
that our calculated A, ,„ is correct. In fact, we show that
the experimental tunneling a F(oo), adjusted to take into
consideration the difference in shape between a F(oo) and
a„F(oo), gives a high-temperature resistivity that is about
23% too low.

Similar to the case of Nb, a peak of relatively large size
occurs in the linewidth for longitudinal phonons in the
[110] direction near the zone boundary. Unfortunately,
there are no experimental determinations of the phonon
linewidth in Ta, nor does it seem to be feasible. However,
our good agreement with high-temperature resistivity and
low-temperature electronic specific heat in Ta together
with the good agreement with experiment of both the cal-
culated phonon linewidth' and the calculated high-
temperature resistivity of Nb, seem to indicate that these
calculations with rigid-muffin-tin potentials describe the
electron-phonon interaction properly, at least for these
quantities. This suggests that the calculated a F(oo) for
the transition metals may be closer to the true a F than is
that deduced from superconducting tunneling. It may be,
as was suggested in Ref. 25, that, because of a combina-
tion of low group velocity and short lifetime of the elec-
tron quasiparticles that make the major contribution to
the longitudinal peak in a F, the tunneling experiments
do not measure the full contribution to the longitudinal
peak. Our overestimate of T, remains a puzzle, but our
determination of T, requires an ad hoc p*. The treat-
ment of the Coulomb interaction (p*) in determining T,
certainly is not at the same level of sophistication as is the
model in determining k.

The conclusion that the calculated electron-phonon in-
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teraction effects using the rigid-muffin-tin potential are in
good agreement with experiment is similar to the con-
clusions reached in Refs. 48 and 49. These conclusions
are in disagreement with those of Ref. 15.

The calculated point-contact spectral function G(co) is
similar in shape to the calculated a F with the same large
ratio of longitudinal to transverse peak heights. This is

quite different from the case in the alkali metals' where
the ratio of longitudinal to transverse peak height is quite
diFerent for G(co) from a F(co). For both Na and K,
there is good agreement between theory' ' and experi-
ment. It is important to have experimental results on
point-contact spectra of Ta to compare with our calcula-
tions.
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