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Dielectric breakdown in the presence of random conductors

S. S. Manna and B. K. Chakrabarti
Saba Institute of 1Vuc!ear Physics, 92 Acharya Prafulla Chandra Road, Calcutta 700 009, India

(Received 10 June 1987)

The potential distribution in a random conductor-insulator mixture is obtained here by numeri-
cally solving Laplace s equation on a lattice with arbitrary potential boundaries. A new algorithm
is introduced for estimating the minimum insulation gap. The average breakdown voltage and the
minimum gap for such lattices are estimated for diff'erent concentrations of conductors below per-
colation threshold. Detailed computer-simulation studies in two dimensions indicate that both the
average breakdown voltage and the minimum gap variations near the percolation threshold are
characterized by the same exponent, equal to the percolation correlation-length exponent.

Properties of a random mixture of conductors and insu-
lators have been studied extensively in the past. The
response of such systems can be both linear as well as non-
linear. Linear response, like the electrical conductivity,
decreases with the addition of insulating impurities (dilu-
tion). Near the percolation threshold, this decrease with
dilution becomes nonanalytic, characterized by critical ex-
ponents. Such behavior for the conductivity' is now fairly
well established.

Recently, the problem of the nonlinear response of such
networks or their (irreversible) breakdown properties has
received considerable attention. This has been studied
theoretically in two kinds of electrical networks. In the
random-fuse-network model, each conducting bond is a
fuse, occupied randomly with a concentration p greater
than the percolation threshold p„so that there is a span-
ning cluster of fuses in the lattice. A fuse becomes an in-
sulator if the potential difference across it exceeds a fixed
value. For p) p„such a lattice is conducting for small
applied voltage across the lattice. However, if the exter-
nal voltage is gradually increased, breakdown starts when
the potential difference across any fuse exceeds the
threshold value and the fuse burns into the insulator. The
breakdown voltage (at which the lattice becomes just non-
conducting) of the entire network then diverges near p„
essentially because of the tortuosity of the percolating
paths for p near p, .

In the dielectric-breakdown model of a conductor-
insulator random mixture, the random occupation concen-
tration of conductors is just below p„so that the total sys-
tem is nonconducting. Each insulating bond can with-
stand a fixed potential difference across it and becomes a
conductor if that potential difference is exceeded. There-
fore when the voltage applied to the lattice is raised to
some critical voltage (called the breakdown voltage, which
depends on the configuration), some dielectric bonds
break down into conductors and the lattice becomes con-
ducting. Such systems have interesting properties near

p (p, . For p 0, the breakdown voltage (Vn) of the pure
insulating system scales as the linear size I of the system:
Vn/L 1. For p) p„Vg/L =0 and as p~ p, from
below, Vii/L vanishes as (p, —p)', where t' is the break-
down exponent.

In the first attempt to solve this problem, the break-

down voltage was approximated by the minimum insula-
tion gap in the random lattice. The minimum gap of a
nonpercolating lattice configuration is the minimum num-
ber of conducting bonds which are to be added to get a
connection between the opposite sides of the lattice across
which the external voltage is applied. This minimum gap
(g) averaged over many configurations is supposed to vary
as (p, —p)" and this gap exponent ls was identified with
the breakdown exponent t'. Duxbury, Shukla, Stinch-
combe, and Yeomans indicated tg = v, where v is the per-
colation correlation-length exponent. In another context,
Chayes, Chayes, and Durrett studied the critical behav-
ior of the two-dimensional first-passage time in a model
where bonds have zero and unit passage times with the
probabilities p and 1 —p, respectively, and showed exactly
that the exponent associated with the first-passage time is
equal to the exponent v, indicating that the gap exponent
t~ should be exactly equal to v. However, the real break-
down voltage V~ is not identical with the minimum gap g;
they are quite different quantities and V~ is approximate-
ly evaluated in terms of the minimum gap g in this mod-
el 4'

The direct solution of this problem requires a
knowledge of the potential distribution on such lattices.
As the shapes of potential boundaries are completely arbi-
trary, the only way to get the potential distribution is to
solve Laplace's equation numerically in this geometry.
When the potential distribution is known, the macroscopic
breakdown-initiation voltage is obtained by knowing the
maximum of the potential differences across the dielectric
bonds. In fact such a straightforward solution of
Laplace's equation for a dielectric with a random concen-
tration p of conducting sites or bonds is still lacking in the
literature (see, however, Bowman and Stroud ). Here we
give the results of a detailed solution of Laplace's equation
for a square lattice containing a random fraction (p) of
conducting sites. For each concentration p, a large num-
ber of configurations are considered and for each
configuration the breakdown voltage V~ as well as the
minimum gap g are evaluated. The configurationally
averaged breakdown voltage Vg(p) is then compared with
the average minimum gap g(p); the values of the two
quantities are seen to be quite different except at p =0 and

p =p„although the exponents characterizing the varia-
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tions of both the quantities near p, seem to be the same
(dN'erence being in the prefactors), indicating t'=tg = v
for the real breakdown-voltage exponent.

In the simulation process, we took a square lattice of
size L; all sites on it are randomly occupied (conducting
sites) with probability p and unoccupied (dielectric sites)
with probability 1 —p. For p below p, we check for each
configuration whether or not the lattice is nonpercolating
via conducting sites (for percolating lattices Vti =0). We
apply a unit potential difference between the left and right
sides of the lattice and assume periodic boundary condi-
tions along the up-down direction. All the conducting
sites connected to the left sides are at the left potential
and those conducting sites connected to the right side will
be at the right potential. In between there will be other
isolated conducting clusters surrounded by dielectric sites.
All sites on any of these clusters will be at the same poten-
tial. Different isolated clusters will be at different poten-
tials. To get the potential distribution we proceed through
the following steps.

(a) First, we ignore the conducting isolated clusters and
treat the corresponding sites as dielectric sites. We assign
potential values unity to all conducting sites connected to
the left side, zero to all conducting sites connected to the
right side, and any arbitrarily fixed initial value to all in-
termediate sites. Then, in the first iteration, the potentials
at all intermediate sites are replaced by the solution of the
discretized version of Laplace's equation:

Vl,j (VI+1,j'+ Vl,J+i+ Vl' —I j'+ Vj j' —f)/4

This iteration process over dielectric sites is continued un-
til the maximum of the difference between the potentials
at any site in two successive iterations of the lattice con-
verges to a value less than a small number 8 (=10 ).

(b) Now we consider intermediate clusters one by one
(as if they are now being added to the lattice). We take
the algebraic average of the potentials for all the sites of a
cluster and assign this value to all sites of this cluster.
Other clusters are treated in the same way.

(c) Potentials at all conducting sites are held fixed,
whereas those at the dielectric sites are obtained iterating
Eq. (1) with the accuracy 8 for these new boundary condi-
tions. After that, the potentials at all the conducting sites
are found using the same iteration method, keeping the
potentials at the dielectric sites fixed (at the values ob-
tained in the operations just preceding).

The steps (b) and (c) are repeated until the maximum
of the difference between the potentials at a site in two
successive scannings of the whole lattice becomes less than
6. Obtaining the potential distribution in this way, we
find out the potential differences across all the bonds of
the lattice. We then search for the maximum of these
values. The reciprocal of this maximum value gives us the
initiation voltage Vq. We assume that the potential
difference needed to break a dielectric bond is unity.
Therefore, when the applied voltage is raised up to the ini-
tiation voltage, some dielectric bonds of the lattice have a
potential difference unity [because of linear superposition
solutions of Eq. (1) for that configuration]. At this volt-
age, these bonds will become conductors and the potential
will be redistributed. It is seen that a larger number of
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bonds now face a potential difference greater than unity.
This leads to a cascade of bond breaking, resulting in the
breakdown of the lattice. Therefore the breakdown-
initiation voltage practically gives us the final breakdown
voltage (checked over many configurations).

To estimate the minimum gap, we generalized the algo-
rithm by Havlin, which was used to find the minimum
connecting path length between two points on percolating

)0

O.S—
0 ~ 40

0 ~ 20

0-8—
0

00.7—

0 10

0-06

0.04

06— 0.02

0 ~ 5- 0-01
0.0$

I I I

0-02 0 04 0-08 0 10 p.2p
c- P)

0-4—

0 3—

0 ~

01—

0
0

I

0.1

I

02
I I I

0-3 0-4 0.5
P

I I

0.6 0 7

FIG. 2. Va/L and g/L against p for L 25. The inset shows
the log-log plot of Va(p) and g(p) against (p —p, ).

FIG. 1. This explains the algorithm for estimating minimum
gaps. Liquid is injected from left connected cluster. The posi-
tion of the liquid front at different time instants are shown by
different numbers. The time it takes to reach the right side gives
the minimum gap. The minimum gap is denoted by the wavy
lines.
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clusters. In our case, the minimum gap is the minimum
path between the left connected clusters and the right con-
nected clusters through dielectric bonds. Essentially, this
algorithm deals with the profile of a moving liquid front
through the dielectric sites when it is injected from the left
connected conducting sites and reaches the right connect-
ed conducting sites, assuming that the liquid takes no time
to fill up an intermediate isolated conducting cluster. For
site-diluted square lattices we assume a bond between
every two neighboring conducting sites and estimate the
minimum gap from this bond picture. We thus proceed
through the following steps (see Fig. I).

(a) Assign a value I to all conducting sites connected to
the left side.

(b) Assign a value 2 to all dielectric sites which have at
least one 1 in the neighboring sites.

(c) Get all sites which have at least one 2 in the neigh-
boring sites. If they are dielectric sites, assign 3 to each of
them, and if any of them is a conducting site, assign 3 to
all the sites of the cluster containing that site.

(d) This process of assigning new numbers is repeated
until a conducting site connected to the right side is
reached. The minimum gap of the lattice is equal to one
less than the number which is to be assigned to this (last)
site.

For each p below p„we simulated 1000 configurations
of the site-diluted lattice of linear size L=25. Each such
simulation for a particular configuration took about half a
minute in a Norsk Data 500 computer. The average
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FIG. 3. Log-log plot of g(p) against (p —p, ) for L 100.

breakdown voltage Va(p) and the average gap g(p) are
plotted in Fig. 2 for various values of p. It may be noted
from the figure, that in general Vg(p) is less than g(p) ex-
cept at p =0 and p ~ p, . This happens essentially because
the gaps are measured along the lattice edges while the
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FIG. 4. Potential distribution function f(r) against r( = V/V ). The inset shows a possible fitting with scaling relation
f(r) —r "Y(r/(p —p, )").
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equipotential lines (coming from solutions of Laplace's
equation for arbitrary conductor distribution) often over-
lap along the lattice diagonals. For example, the potential
gradient along the lattice edge is more in the case when
two nearest conducting sites are at diagonally opposite po-
sitions than when the conducting sites are on the same lat-
tice edge but have one insulating site in between; in both
cases the minimum gap (along the lattice edges) is two.
We take the value of the percolation threshold p, for this
finite lattice size (L =25) to be 0.58. The inset in Fig. 2
shows the log-log plot of Vtt(p) and g(p) vs (p, —p). It
gives t'=t~=1.00~0.05, indicating that both the ex-
ponents for the breakdown voltage and the minimum gap
are the same; the differences in Vg and g values near p,
being essentially because of the prefactors. It may be not-
ed that a similar value for Ig was obtained for an L=20
bond-diluted square and site-diluted triangular lattices
(with of course a large error due to averaging over a very
small number of configurations). In view of the exact
value of tg = v = —, in two dimensions, we attribute this
smaller value of tg =1.0 to be due to smallness of our lat-
tice size. In fact, Roussenq et al. also obtained v= 1.1

for such lattice sizes. These simulations thus clearly indi-
cate t'=tg = v. This is also indicated (t'=tg= 1.1) in our
simulations for L=50. However, the configurational
averagings could not be made very accurate here as each
configuration took about 25 min to get Vg and g with the
same value as 6. In fact, for a comparatively bigger size
(L=100) bond-diluted square lattice, averaging over 100
configurations at each p, we find (see Fig. 3) from the
log-log plot of g(p) against (p, —p) (with p, = —,

' ),
kg=1.31 0.05, which is close to the exact value 3 .

For unit voltage across the lattice we found, solving the
Laplace's equation for each configuration at each p, the
distribution of potential diff'erences across the bonds.
From the results for L=25 site-diluted lattices, we fitted

the density distribution f(r) of bonds, having potential
difference V=rV, near its maximum V, to a scaling
form f(r) —r "Y(r/(p —p, ) ) (see Fig. 4) and ob-
tained x =2.2, y =0.1 for two dimension with Y(z) 0
asz

Note added in proof

After the acceptance of this paper, agreement with our
result t'= l. l in the breakdown experiment near p=@, in
a 20X20 diode-resistor network has been brought to our
notice (Professor L. Benguigui, private communication).
However, the difference in slopes of the curves for g(p)
and Vtt(p) near p=0, as observed in our paper, needs
some clarification.

In our site-impurity model, neither g nor Vtt will be
affected by the presence of isolated single-site conductors
in a dielectric environment, but will be affected by fluc-
tuating pairs of conducting sites (occurring in p2 order).
However, the linear variation in p for g and Vg observed
in our model is because, in the layers adjacent to the left
and right boundary, where voltage difference is applied, a
single conductor anywhere reduces the gap by unity (see
Fig. 1). Because of the sharp branch-tip geometry of the
conductor there, the electric field becomes concentrated
(similar to the stress concentration in elastic medium with
sharp cracks) and greatly affects Vtt, which is responsible
for the large slope for Vtt(p) near p =0. The slope would
be strictly infinity in the continuum limit because of
infinite field concentration (from solution of Laplace's
equation) at sharp notches of needlelike conductors.

We are grateful to J. M. Yeomans for useful communi-
cations and comments and to Variable energy Cyclotron
Centre, Computer Centre, Calcutta, for their generous
help in getting the long CPU times.
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