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Magnetic phase diagram of the half-filled Hubbard model for a simple cubic lattice
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We have calculated the U Tphase -diagram of the half-filled simple-cubic Hubbard model (U:
interaction, T: temperature) by making use of the two interpolation theories, the single-site spin-
fluctuation (SSF) theory proposed by Hubbard and Hasegawa and the Gutzwiller-type variational
approach (VA) by Kakehashi and Fulde. The results are compared with those of the recent
Monte Carlo (MC) calculations made by Hirsch for a three-dimensional 4x4x4 lattice. The
Neel temperatures T~ calculated with the MC method are about 70% higher than those calculat-
ed with the mean-field-type theories of the SSF and VA though the U dependence of the ampli-
tudes of the local moments and charge fluctuations agrees well with our results. This suggests an
overestimation of T~ up to 100% in Hirsch s calculations, whose conceivable origins are discussed.
We present also the result of the internal energy as a function of T and U calculated using the
SSF and VA.

Quite recently Hirsch ' has reported the results of
Monte Carlo (MC) simulations of the three-dimensional
half-filled Hubbard model with a cluster of 4x4x4 or
6x6x6. He has obtained various quantities such as the
energy and susceptibility as a function of the temperature
T and the electron-electron interaction U. This type of
"exact" calculation has been expected for a long time for
a deeper understanding of magnetism of three-
dimensional systems.

On the other hand, several approximation theories
for three-dimensional finite-temperature magnetism,
which interpolate between the weak- and strong-
interaction limits, have been proposed in the last several
years. All of them employ the functional-integral
method within the adiabatic approximation. They have
been applied to the semielliptic-band model ' and to vari-
ous problems of transition metals and their alloys.

We discuss in this Rapid Communication the U- T
phase diagram of the half-filled simple-cubic Hubbard
model. Stimulated by Hirsch s MC simulations for this
model, we have applied to it the two typical interpolation
theories: the single-site spin-fluctuation (SSF) theory
developed by Hubbard and Hasegawa and the varia-
tional approach (VA) proposed by Kakehashi and Fulde.
Then we compare the calculated results with those in the
MC simulations. ' This is certainly meaningful because
the validity of the existing theories and of the MC cal-
culations for the three-dimensional systems has not been
established yet.

The SSF and VA interpolate between the delocalized
and localized limits within the two-field functional in-
tegral method. They are mean-field theories in which the
short-range magnetic order is neglected, so that the sys-
tem under consideration is regarded as a collection of lo-
cal moments' which is treated within the coherent poten-
tial approximation (CPA). The VA theory employs the

Gutzwiller-type approximation' to take account of the
efI'ect of the local electron correlation, which is neglected
in the SSF. The SSF and VA in the weak-interaction lim-
it are nothing but the Hartree-Fock approximation. In
the opposite strong-interaction limit, both SSF and VA
reduce to the molecular-field approximation to the
Heisenberg model with Anderson's superexchange in-
teraction. The free energy at T=O K in the VA agrees
with the Gutzwiller-type variational energy. ' '

The input parameters for numerical calculations in the
SSF and VA are the density of states of noninteracting
system, the electron-electron interaction U, and the elec-
tron number n. We adopt n=1.0 and the density of states
for the simple-cubic lattice with the nearest-neighbor hop-
ping t, which yields the total bandwidth of &=12

~
t ~.

The Fermi-distribution function has been correctly includ-
ed in this work.

The U-T phase diagrams' in the SSF and VA are
shown in Fig. 1. The calculated Neel temperatures in the
weak- and strong-interaction regions asymptotically
reduce to those in the Hartree-Fock approximation and
the molecular-field approximation to the Heisenberg mod-
el, respectively, as mentioned before. In the intermediate
U region, the Ttv curve has a maximum at 2U/ W= 1.35
(1.5) in the SSF (VA). The Neel temperature in the VA
is lower than that in the SSF due to the eAect of the elec-
tron correlation.

We show, by the dot-dashed curve in Fig. 1, the result
of Moriya and Hasegawa who made calculations along
the interpolation theory of Moriya and Takahashi (MT).
Among various representations for the functional integral
method, they employed the vectorial scheme, which com-
pletely neglects the quantum eff'ect. We note that the cal-
culated T& is only about —,

' —
6 of those in the SSF and

VA. An underestimate of T& by a factor of 3 is expected
in the strong-interaction region because of a classical
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FIG. 1. The U Tphase dia-gram (Ref. 18) of the half-filled
simple-cubic Hubbard model, showing the antiferromagnetic
state (AF), the paramagnetic metal (PM), and the paramagnet-
ic insulator (PI). They are calculated by SSF (dashed curves,
Refs. 2 and 3), VA (solid curves, Refs. 4 and 5), MT (dot-
dashed curves, Refs. 6 and 7), and MC methods (open circles,
Ref. 1). Wdenotes the total bandwidth (12

I
t I ). Dotted curves

show the Neel temperatures in the Hartree-Fock (HF) approxi-
mation, and the molecular-field (MF) and high-temperature ex-
pansion (HE) approximations for the Heisenberg model.

treatment of spin in the MT theory [i.e. S/(S+1) =
3

for S —,
' ]. It should be noted that the quantum eA'ect is

included in the two-field theories of the SSF and VA,
which reproduce, for example, the correct Curie constant
of the susceptibility in the strong U limit. A further
lowering of T~ in the MT theory is due to the eff'ect of the
short-range magnetic order, which is neglected in the SSF
and VA.

The Neel temperatures of the Monte Carlo calculations
by Hirsch' are shown by open circles in Fig. 1. The re-
sults are about 70% higher than those in the SSA and VA,
and about twice as large as the Heisenberg result in the
local-moment regime (2U/W+2). Hirsch attributed his
large Trv to a lack of charge fluctuations ((8n) ) in the
Heisenberg model. His argument does not, however, ex-
plain the disagreement with the SSF and VA results. In
order to clarify this point, we calculated the amplitude of
local moments, (m, )', at T—T~ as a function of U.
Figure 2 shows that the results calculated by the SSF and
VA are in good agreement with those in the MC simula-
tion. This implies that SSF and VA correctly takes the
eff'ect of charge fluctuations into account since
((Bn) ) =1 —(m, ) for the half-filled case.

We expect that the SSF and VA overestimate T~ by
about 50% for simple-cubic lattice since they are of
single-site molecular-field theories; note that TIv(VA or
SSF)/T~(exact)=6/3. 83 in the insulator limit. ' There-
fore we speculate that Hirsch's MC method overestimates
T~ by more than 50% or probably up to 100%.

One of the conceivable origins of this overestimate in
T~ is the finite-size eff'ect. Simple calculations show that
because of the finite-size eff'ect both uniform and stag-

FIG. 2. The amplitude of local moments, (m, ) '~, at
2T/W 0.083 as a function of the electron interaction U in the
VA (solid curve, Refs. 4 and 5), SSF (dashed curve, Refs. 2 and
3), and MC (open circles, Ref. 1).

gered susceptibilities of noninteracting system are overes-
timated at 2 T/ W 0.15 in Hirsch's calculations for
4X4X4 lattice [see Figs. 8 and 9(a) in Ref. 1]. This is
also seen in his two-dimensional lattice calculations (see
Fig. 7 in Ref. 20). Since the Neel temperatures calculat-
ed in the MC are 2T~/WSO. I3 one expects that the
finite-size eff'ect might overestimate the staggered suscep-
tibility for interacting case.

The other possible origin of the enhanced Tiv is expect-
ed to be the self-consistent boundary approximation '

which Hirsch introduced for a calculation of the Neel
temperature. In this approximation the interaction m, is
replaced by (m, )m, outside the cluster, just as in the
mean-field or Bethe-Peierls approximation. This certainly
underestimates the short-range magnetic order and leads
to 15% overestimate for the Ising model. ' Since there ex-
ists further reduction due to the transversal quantum Auc-
tuations, Hirsch's MC calculations of T~ with the addi-
tionally introduced boundary approximation might
overestimate the Neel temperature more than 100%. This
shows that although the self-consistent boundary condi-
tion was reported to be useful for the classical systems, '

it might not be so for the quantum systems, like the Hub-
bard model, for some reason, although we cannot draw
any definite conclusions until the Binder's boundary ap-
proximation ' is examined by further MC calculations by
increasing systematically the cluster size.

Figure 3 shows the internal energy E as a function of
the temperature for various interaction strengths calculat-
ed by the SSF and VA. The curves have cusps at the Neel
temperatures. We can obtain the specific heat from the
derivative of E with respect to the temperature. The
specific heat in the SSF and VA has a large peak just
below the Neel temperature and a small tail above it.
This is a characteristic of the mean-field-type theories.
We show in Fig. 4 the U dependence of the internal ener-
gies at 2T/W=O. O and 0.0833 in the SSF and VA. For a
comparison, the results of E of the MC calculations are
plotted in Figs. 3 and 4. The ground-state energies of the
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