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Green's-function techniques are used to calculate the static correlation functions for the S
xy and antisymmetric exchange chains in a transverse magnetic field. The spin correlation func-
tions are the same for the zero-field case, and the correlation functions are different when there is
a symmetry-breaking external field. Possible compounds are proposed where this effect could be
observed experimentally.

The compounds AMC13 2H20, where A =Cs,Rb and
M=Co, Fe, are examples of chainlike magnetic com-
pounds with a weak interchain exchange interaction and a
stronger anisotropic (Ising-like) intrachain exchange in-
teraction. The compound with A =Rb and M =Co
(RCC) has recently generated a bit of controversy.
McElearney and Merchant' concluded, on the basis of
susceptibility and magnetic specific-heat measurements,
that RCC is an example of a linear-chain Dzialoshinsky-
Moriya (DM) magnet with no measurable symmetric ex-
change. This was determined by comparison of experi-
mental results with exact theoretical calculations for the
spin- 2 DM chain.

The usual mechanism leading to antisymmetric ex-
change is spin-orbit coupling which is small compared to
the symmetric exchange interaction and can be treated as
a perturbation. Indeed, it has been shown that the mag-
nitude of the DM interaction relative to symmetric ex-
change is D/1 =kg/g, where g is the g value at the metal-
ion site. Therefore, the conclusion in Ref. 1 is very
surprising. Recently, Nijhof, van der Ulist, Puertolas, and
Gerritsma have published dynamic susceptibility and
electron-spin-resonance data for RCC, and their data
were analyzed in terms of a spin- —,

'
xy Hamiltonian. The

experimental data obtained to date appear to indicate that
RCC might be either a pure DM chain or an xy chain.
The existence of a pure DM chain would be very interest-
ing to experimentalists, although it is very unlikely that
one would exist. This theoretical work investigates the
possibility of experimentally determining if a chain is
represented by a DM or xy Hamiltonian.

The spin- —,
' xy model and the DM antisymmetric ex-

change model in one dimension represented by the fol-
lowing interactions have exact solutions.

vector D, it is not surprising that these two solutions are
similar except for a relative shift of the peak of the k-
dependent spin-correlation function. If, however, there is
an external field not parallel to the D vector, the symme-
try is lowered, the coordinate rotation cannot be done, and
in this case one expects field-dependent diff'erences in the
thermodynamic quantities for the two interactions. The
corresponding classical problem for both the xy and DM
interactions has attracted attention because of the ex-
istence of sine-Gordon solitons. Transfer-integral tech-
niques have been used to obtain the static thermodynamic
properties for the classical easy-plane symmetric and an-
tisymmetric exchange models, and not surprisingly there
is a diff'erence between these two interactions in the pres-
ence of an external field. In particular, the DM interac-
tion will modify the soliton contribution to the free ener-
gy.

In this paper we compare the static properties of both
the spin-2 xy and DM chains. The spin-2 case is chosen
because exact zero-field correlation functions are used in
this calculation. The method used to obtain the exact re-
sults transforms the spin operators to Fermi operators and
because of the symmetry of the Hamiltonian, complicated
phase terms will cancel and the problem is equivalent to
the free-fermion problem. However, the lower symmetry
introduced by the external field results in phase operators
which do not cancel and the transformation to Fermi
operators becomes unwieldy. For this reason spin Green's
functions are used to obtain the static thermodynamics.
We obtain the external field dependence of the static
spin-correlation function for both the xy and DM chains.
As expected, the correlation function is the same for the
two systems in the absence of an external field and
differences occur for nonzero field.

First consider the xy interaction

H„y=Jg (S,"S,". ~ ( +S; S;+ ) ), H„,=Jg (S,"S,"+,+S,'Sf„) ngs, ", —

HD~ =QD(i, i+ I ) S;XS;+)

Since the DM Hamiltonian is related to the symmetric ex-
change Hamiltonian by a coordinate rotation about the

with the field defining the x direction. Since we will con-
sider the zz spin-correlation function, begin with the
Green's function G;J (t ) =((S;.

~ SJ ) ), where operators to
the right of the bar are evaluated at time t =0 and opera-
tors to the left of the bar are evaluated at time t. The
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equation of motion for G;~ (t ) results in a system of equa-
tions involving higher-order Green s functions and this set
of equations is truncated by two approximations. First, a
modified symmetric decoupling is defined which will lower
the order of the higher-order functions. Second, only
terms up to second order in h/J are retained. The decou-
pling procedure is illustrated for one of the higher-order

Green's functions

((S;,S;.S;, i
S')) =f(T)G;

where f(T) is a function of temperature that will be
determined from the exact zero-field results. A list of the
Green's functions and their space- and time-Fourier-
transformed equations of motion is

EGk =iJ(At, —Rt, ) —ihFt, ,

EFk =iXkk+ihGk,

E) t, =iJ{a+2h(T)[1+cos(2ka)] —4g(T)cos(ka)jFk —ihAt, ,

EAk =2iy("[1 —cos(ka)] —iJa[1 —cos(ka)]Gk+ih). t, ,

ERk = —2iyf'[1 —cos(ka)]+i Ja[1 —cos(ka)]GI, +ihsk,

Est, = —iJ{2g(T)—[a+4h(T)]cos(ka)+2g(T)cos(2ka)]Fk —ihRt, ,

where

G,, =((s;is;)), F,, =(( sf is)), x,, =((s;,s;+s,"„s;is;)),
A,, =((s,",s~+s~s,"„is;)), R,, =((s,',s;+s~„s,"is;)&, s,, =((s;,s,"+s,"s;, is;&&,

the functions h(T) and g(T) are defined by

((S("S,"+(SfiSJ')) =g(T)Fq , ((S;.S;+)Sf i. Sf)) =h(T)Fq, a=2(s )+2f(T)
and y„'t'=(S;SP+„)is a static correlation function. From the Green's functions and the spectral theorem, the k-
dependent spin-correlation functions are obtained. For the zero-field case, the zz correlation function peaks at ka =g
and the value of the correlation function at the peak can be related to quantities such as the correlation length and the
static susceptibility. Therefore, Eqs. (1) are solved for the special case ka =tr and after a bit of algebra we arrive at the
Green's function for the xy chain

4Jl/I""(2E —23,J—+h )
G, (E) =

E (E —h —hJ ) —4aJ (E —hJ ) —2h J (5+a) —h (E —h )
(2)

1

a
(3)

from which a can be obtained since y]" and yk'= g, are
known from Ref. 1. The Green's-function results are in
this way forced to be exact for zero field and approximate
for nonzero field. The xx correlation function is used to
determine 6 in terms of a as follows: the Green's function
M;~ =((S,"

i Sg) & can be determined from the second-order
equation of motion

where d = —,
' +2f'+4g+4h.

Next the functions a and 6, are determined for the
zero-temperature and zero-field case as follows: when
h =0, Eq. (2) has poles at ~ 2JJa and from the spectral
theorem we get the spin-correlation function yk'= /, . For
T=O this is

correlation function is

yXX yZZ

2A
(5)

The exact correlation functions in Eqs. (3) and (5) from
Ref. 1 yield a number for the ratio A/a =0.17. This ratio
is then used to approximate the correlation function at
any small field in terms of the parameter a. The tempera-
ture dependence of a is determined by forcing the zero-
field Green's function results to agree with the exact re-
sults at various temperatures, as we have done for zero
temperature. We will not go this far; instead, the correla-
tion functions are determined in terms of a, and the field
dependence rather than the temperature dependence of
thermodynamic quantities will be of interest. Using the
Green's function in Eq. (2), the correlation function at
k = tr/a is

2J(l/fi I/ff )
Mk- t, (E) =- E' —2WJ'

(4) y"(J)=-—477'l/f ] 1—
Ja

2. &8 h'
a J

for the space- and time-Fourier-transformed M;~ evalu-
ated at k =tr/a, and from Eq. (4) the corresponding static where only terms second order in h/J are kept.
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Next consider the DM interaction

H =D g (s,"s», —s»s,",) —it g s, (7)

with the external field perpendicular to the D vector. The
same zz correlation function will be determined at
k =x/a, but the Green's functions and their equations of
motion will be diA'erent. The list is

Notice that if h =0 and J=D Eq. (9) will be the same as
Eq. (2) since yP for the pure DM chain is the same as
y; for the xy chain. This is expected because both sys-
tems are related by a coordinate rotation. However, for
nonzero h the Green's functions for the two chains are
different. Using Eq. (9), the zz correlation function for
the DM chain is

EGk- ], =iD(B+C) —ihF,
EF =iDr+i.hG,
EB = —4i yP+ 2iaDG+ih (r+ A),
EC = 4iy~ +2iaDG

EI = —iDaF —ih(B —L)

EA =iDaF —ih (B —L )

EL = —ih(I +A),
where

r =«s;,s' —s's»,
~

s'&)

«sx sx sxsx
~

sz))

A=«s;, s» —s»s;, ~s;&&,

L=«s' s' —s's' ~s'&&

B =«s», s» —s»s»„~s;)),

(8)

4n'y) ~
y"(D) =-—

Ja
1 h1—

2a D
(10)

to second order in h/D. Comparison of Eqs. (6) and (10)
shows that they are the same if h =0. However, for
nonzero h the xy chain correlation function has a stronger
field dependence than the DM chain.

The correlation functions obtained above are exact if
h =0 and they should be a good approximation for small
nonzero h. Possibly one could distinguish between the two
models by susceptibility versus field measurements. It
would perhaps be useful to compare RCC data with data
obtained from the same measurements of other known
spin- —,

'
xy magnetic chains. Two possible compounds that

we are aware of are Co(N2Hs)2(So4)2, which was deter-
mined to be an xy chain from zero-field specific-heat mea-
surements' and Cs2CoC14, which was again studied by
specific-heat measurements. "'

4Dll "»(2E —2aD —Sh )
GD(E) =-

(E 4QD 462)(E2 ttD2 g2)
(9)

and F and G are defined in Eqs. (1). G(E) is determined
by solving Eqs. (8): The author would like to thank Professor George

Tuthill for helpful discussions. This research was support-
ed by National Science Foundation Grant No. ISP80-
11449.
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