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Series analysis of randomly diluted nonlinear networks with negative nonlinearity exponent
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The behavior of randomly diluted networks of nonlinear resistors, for each of which the
voltage-current relationship is I V I

=r
I I I, where a is negative, is studied using low-

concentration series expansions on d-dimensional hypercubic lattices. The average nonlinear resis-
tance &R) between a pair of points on the same cluster, a distance r apart, scales as r~ ' ", where
v is the correlation-length exponent for percolation, and we have estimated g(a) in the range
—1 ~ a ~ 0 for 1 ~ d ~ 6. ((a) is discontinuous at a =0 but, for a (0, g(a) is shown to vary
continuously from g,„, which describes the scaling of the maximal self-avoiding-walk length (for
a 0 —), to gas, which describes the scaling of the backbone (at a= —1). As a becomes large
and negative, the loops play a more important role, and our series results are less conclusive.

Kenkel and Straley' proposed a model of networks in
which bonds on percolation clusters consist of nonlinear
resistors, each of which obeys the generalized Ohm's law

AV=r
I
I I 'sgnI,

where hV is the voltage drop across the resistor, I is
current Bowing through it, r is the nonlinear resistance,
and a is the exponent characterizing the nonlinearity. In-
terest in this model centers on the region of concentration
p for p-p„where p, is the critical concentration for per-
colation.

Blumenfeld and Aharony showed that the nonlinear
resistance R,(L) between two terminals on the same clus-
ter, a distance L apart, reduces to some geometrical
characteristics of the cluster for specific values of a. For
a 0+ the nonlinear resistance describes the length of
the minimal path between the two terminals, while for
a ~ the resistance reduces to the number of singly con-
nected bonds between the terminals. For a=1 the non-
linear resistance reduces trivially to the linear one. Conse-
quently, the exponent g(tt), which describes how the non-
linear resistance R,(L)—L~' scales with the distance L
for L«g, where g is the percolation correlation length,
should reduce in the above limits to the exponents that de-
scribe the scaling of the corresponding geometrical quan-
tities. These results were confirmed by series expansions
and the e expansion.

Recently, we proposed that the above results could be
extended to negative a, where again the resistance for
some particular values of a corresponds to other geometri-
cal characteristics of the network. In particular, for
a 0 — the resistance reduces to the maximal self-
avoiding path between the terminals; for a = —1 the resis-
tance describes the number of backbone bonds (the num-
ber of bonds that carry current), while for a —~ the
resistance scales with an exponent z I a I, where z de-
scribes the scaling of the maximal "cutting surface" of the
backbone between the terminals, i.e., the largest number
of bonds, N, „, which one can cut in order to break the
backbone into two pieces, each connected to one terminal,

N,„—L'. Based on available values for g(a)—:g(a)v,
where v is the exponent that describes the scaling of the
correlation length, at a =1,0+, and —1, we constructed
an approximant function for g(a), which is reproduced
(for d=2) in Fig. l.

In this work we carry on the series expansion described
in Ref. 3 (later referred to as I) to negative a, in order to
obtain estimates of ((a) for all d and a.

The percolation susceptibility is defined by

vji

av

(2)

Ztt(a) = gR;, (tt) v;, (3)
. J

where R;J(a) is the nonlinear resistance between i and j.
In Eq. (3) we interpret R;I(a) vj to be zero when v;J =0
and R;z (a) =~.

Section II of I describes in detail the construction of the
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FIG. 1. Approximant function for g(a) at d=2 (from Ref. 5)
(solid line), and series results (solid circles).

where v;j is 1 if the two sites i and j belong to the same
cluster and zero otherwise, and [ l,„denotes an average
over all configurations of occupied and unoccupied bonds.
The nonlinear resistive susceptibility is defined by
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series and we will not repeat it here. However, for nega-
tive a there is an additional complexity. As described in
Ref. 5, one may find a number of solutions to the non-
linear KirchhoA"s equations, each of which corresponds to
a given allowed assignment of directions of the currents on
the bonds. Each solution corresponds to a local extremum
of the power

a+1 b a+1
(4)

Z~(a) =+A(a, k, l)p"d' . (5)

For a= —1 all the solutions coincide and we recovered
the series for the backbone. For a 0 —,the series for
the nonlinear resistance, which give the maximal power,

where the sum is over occupied bonds b (No. te that this
definition is slightly diA'erent from that of the power in
Ref. 5). Allowed regions 0 in voltage space correspond to
choosing current directions such that h, V is irrotational
and has no internal sources or sinks. Each region 0 has a
boundary 8 on which one or more of the h, Vb's vanish, so
that for —1 & a &0 P is infinite on 8. Thus, for this
range of a each region 0 has a local minimum of P corre-
sponding to a solution to Kirchhoff's equations,
8P/8V; 0. Since there is a priori no reason to choose
any one of these solutions as the "physical" one, we con-
structed the series both for the solution that gives the
minimal power and for the one that gives the maximal
power. We found no difference (within our error bars) in
the estimates for the exponents for these two, although
their amplitudes do diAer. In this way one constructs a
series in p and d,

reduce to the series for the length of the maximal self-
avoiding walk between the two terminals on the cluster,
which we constructed independently. In Table I, we give
the coefficients A(a, k, l) of the series for the nonlinear
resistance susceptibility for a = —2, based on the solu-
tion which minimizes the power P.

In order to analyze the series, we divided the coefficients
of each series (for any a), by those of the series for the
percolation susceptibility, E~, term by term. One can
show (see, e.g. , Ref. 8) that if two series diverge at the
same critical point, the series that results from dividing
one by the other, term by term, diverges at p = 1 no matter
what the value of the critical point was, with an exponent
that is equal to the diA'erence between the two exponents
plus one. Since in our case we believe that the series
diverge at p„and the difference between the exponents is
g(a), the constructed series is expected to diverge at p = 1,
with an exponent P(a) + l. In this way, we obtain an esti-
mate for ((a) which is not biased by the value of p, nor by
the value of y~, the exponent that describes the divergence
of X~. The resulting series were analyzed by the nonho-
mogeneous differential Pade method. The results of the
analysis, however, are less conclusive than those for posi-
tive a. In the range —1 ~ a~0 one can still obtain
reasonable results, and those for a = —1, ——,', 0, and
for 2 (d ( 5 are listed in Table II and shown (with the
error bars) for d=2 in Fig. 1. For d=1 and at dimen-
sions d) 6, one has ((a) —= I exactly. We also list the es-
timates obtained in I for g(0+). The values of g( —

—,
' )

are very close to those of g(0 ), and this agrees with the
prediction of Ref. 5 that the derivative of g(a) vanishes as
a 0 —.Also, as predicted in Ref. 5, there is a finite
difference between g(0+) and g(0 ) which corresponds
to the diAerence between the exponents that describe the
scaling with separation of the maximal and minimal self-

TABLE I. Series coeIIicients for X~ as in Eq. (5) for a = —
—,
' . Z~( —,

' ) dp+ (4d2 —2d)p2+ (12d3
—12d +3d)p'+(32d —48d +12.828d +7.172d)p +g, A( —,', l, m)p'd

5,5
5,2
6,5
6,2
7,6
7,3

8,8
8,5
8,2
9,8
9,5
9,2

10,9
10,6
10,3

1 1,1 1

1 1,8
1 1,5
1 1,2

A(2, l, m)

80
79.373
—480

—22.836
—1344

798.010
1024

1207.713
—9571.211

—9216
1692.313

190601.658
—23040

—2005.823
—454 888.320

11264
—9325.247

494 997.289
—17049 095.324

I,m

5,4
5, 1

6,4
6, 1

7,5
7,2
8,7
8,4
8, 1

9,7
9,4
9, 1

10,8
10,5
10,2

11,10
1 1,7
1 1,4
1 1,1

—160
—49.686
237.625

—126.307
858.088

—2686.202
—3584

1548.465
8363.771
9266.144

25 934.034
—76 950.607

27 822.079
73 309.420

1 319 107.895
56320

—19507.448
—7 058 955.097

5 843 918.501

1,m

5,3
6,6
6,3
7,7
7,4
7, 1

8,6
8,3
9,9
9,6
9,3

10,10
10,7
10,4
10,1

1 1,9
1 1,6
1 1,3

55.314
192

205.518
448

559.637
1373.467
2918.624
1899.363

2304
2011.409

—145 633.951
5120

1220.992
—183 113.648
—763 522.594

79 855.740
186423.664

17 576 754.921
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TABLE II. Estimates of ((a).

a= —1
1a= a=0 a =0+

2
3
4
5
5a

2.4 + 0.5
1.7 + 0.2
1.37+ 0.18
1.15 ~ 0.15
1.14

1.95+ 0.15
1.4 + 0.3
1.17 ~ 0.05
1.1 ~ 0.2
1.12

2.0 ~ 0.2
1.43 w 0.06
1.17 ~ 0.02
1.1 + 0. 1

1.1 1

1 ~ 51 ~ 0.08
1.15+ 0.03
1.08 ~ 0.02
1.03 ~ 0.01
1.04

'Numerical evaluations of e expansion (Ref. 4) extended to neg-

ative a.

avoiding walks between the terminals, g,„and (;„,re-
spectively. The value of g;„, obtained in I, agrees very
well with the results of several workers (see Table I in I).
On the other hand, we are aware of only one other work'
which estimated g,„(by real-space renormalization
group), and gave the value $,„=1.835 in two dimensions,
which is slightly smaller than our estimate, but still within
the error range. Our results can also be compared with
the continuation to negative a of the t. -expansion results,
where m=6 —d. For instance, we find g,„:—

t,"(0 ) =1+
(3e/28), gas=/( —1) =I+a/7, and g( —

—,
' ) =1 +(e/14)

& [1+2 'i2ln(1+2'i )], each of which is given in Table
II for d=5.

As a decreases towards —~, the series are dominated
by the smaller currents, which run through the bonds in
the loops. Our series, which involve clusters with up to 11

bonds, are not sensitive enough to the small currents.
Therefore, as a decreases the analysis of the series be-
comes harder and the estimates obtained for the ex-
ponents are less trustworthy, especially for two dimen-
sions, where the loops play the most significant role. One
can see this already for a = —1, where our results for gqa,
which agree with other estimates from series expansions,
are significantly larger than the value 2.16~0.03 ob-
tained from Monte Carlo simulations " in two-
dimensions. Thus we could not check the prediction of
Ref. 5 on the behavior of the exponent g(a) as a

To conclude, we constructed and analyzed series for the
nonlinear resistive susceptibility for negative a and
confirmed the prediction of Ref. 5 that there will be a
discontinuity in g(a) at a=0. (This discontinuity does
not appear in structures with high symmetry, like those
studied in Ref. 12.) We also confirmed the predictions
that the resistance reduces to the length of the maximal
self-avoiding path and the number of backbone bonds for
a 0 —and a = —1, respectively, and our results also
agree well with the prediction that dg/da =0 at a 0+.
For a less than —1 our series did not lead to any con-
clusive results.

This work was supported in parts by grants from the
U.S.-Israel Binational Science Foundation (BSF) and
from the Israel Academy of Sciences and Humanities.
One of us (A.B.H. ) acknowledges the hospitality of Tel
Aviv University.

'Permanent address: University of Pennsylvania, Philadelphia,
PA 19104.

'S. W. Kenkel and J. P. Straley, Phys. Rev. Lett. 49, 767
(1982); J. P. Straley and S. W. Kenkel, Phys. Rev. B 29, 6299
(1984).

~R. Blumenfeld and A. Aharony, J. Phys. A IS, L443 (1985).
Y. Meir, R. Blumenfeld, A. Aharony, and A. B. Harris, Phys.

Rev. B 34, 3424 (1986).
4A. B. Harris, Phys. Rev. B 35, 5056 (1987).
5R. Blumenfeld, Y. Meir, A. B. Harris and A. Aharony, J. Phys.

A 19, L791 (1986).
6R. Fisch and A. B. Harris, Phys. Rev. B 18, 416 (1978);

J. Adler, A. Aharony, and A. B. Harris, ibid 30, 2832 (.1984).
7D. C. Hong and H. E. Stanley, J. Phys. A 16, L475 (1983).
8See, e.g. , D. L. Hunter and G. A. Baker, Jr. , Phys. Rev. B 7,

3346 (1973);Y. Meir, J. Phys. A 20, L349 (1987).
J. L. Gammel, in Pade Approximant and Their Applications,

edited by B. R. Graves-Morris (Academic, New York 1973).
'oD. C. Hong and H. E. Stanley, J. Phys. A 16, L525 (1983).
''H. J. Herrmann and H. E. Stanley, Phys. Rev. Lett. 53, 1121

(1984); H. J. Herrmann, H. E. Stanley, and D. C. Hong, J.
Phys. A 17, L261 (1984).

' L. de Arcangelis, S. Redner, and A. Coniglio, J. Phys. A 18,
L905 (1985).


