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Ruderman-Kittel-Kasuya-Yosida range function of a one-dimensional free-electron gas
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The dependence of the calculated Ruderman-Kittel-Kasuya-Yosida range function of a one-
dimensional free-electron metal on the order of the integrations over the occupied states, and over
the Fourier components of the perturbation is discussed and clarified. The correct result is de-
rived. The range function of a magnetized layer (e.g. , a magnetic layer in a multilayer material)
is also calculated and compared with the range functions of point sources in the one-dimensional
and in the three-dimensional cases.

In connection with recent experiments ' on ferromagnet-
ic metallic superlattices which, as far as the interaction
between layers is concerned, may be viewed as one-
dimensional (1D) systems, I was led to consider the
Ruderman-Kittel-Kasuya- Yosida (RKKY) interaction in
1D systems. In a review article Kittel derives the RKKY
range function in three-, two-, and one-dimensional free-
electron systems. In a subsequent erratum, he states that
his derived result is incorrect for the 1D case, due to his
having interchanged the order of integrations in momen-
tum space: k and q being, respectively, the wave vector of
a state of the Fermi sea and the momentum transfer due
to the perturbation, the integrations in Ref. 2 were done
first over q and then over k, while the allegedly correct re-
sult is obtained by integrating first over k and then over q.
There seems to be no discussion in print of the reason for
the difference between the two results, or of what deter-
mines the correct choice between them, or of the actual
calculation of the final answer. It is the purpose of this
paper to address these points and clarify the situation in
the 1D case. In addition, I will calculate the range func-
tion of a single ferromagnetic layer (e.g. , of a superlat-
tice) in 3D space. It will be seen that if x is the direction
of the normal to the layer, the range function of this
pseudo-1D system falls off asymptotically as
sin(2kFx)/x, while for a true 1D system the range func-
tion falls off as cos(2kFx)/x.

Following Ref. 2, consider the function

F(q) =P—gL k Ek+q —Ek

for a 1D free-electron system. Here L is the length of the
specimen, the factor 2 includes the summation over spin,
and nk and Ek are, respectively, the occupation factor and
energy of state k. If magnetic moments Pp and P~ are at
positions xo and x& and they interact with the free-
electron spins according to

H;„,=AP„gcr; 8(x; —x„),
where o.; is twice the spin of electron i and n =0 or 1, then
the RKKY interaction between pp and p& is given by

H = —A zPpP(@(x )
—xp),

where the range function C&(x) is given by the Fourier

transform of F(q),
fO + OO

e(x) = J F(q)e'~"dq .
2z' (2)

To evaluate (2) at 0 K one may evaluate (1) and substi-
tute it in (2). The result for (1) is

pyg
++kF 1F(q) =-

g 2 J kF 2kq+q2

2pyg 1 2kF +q—ln
+&2 q 2kF —

q

2kq —
q

(3a)

(3b)

where kF is the Fermi wave vector. The integration of (2)
with F(q) given by (3b) appears complicated. Kittel sub-
stituted instead (3a) into (2) and changed the order of in-
tegration. Integrating over q first, he obtained

@(x)= — Si(2kFx),2m

xA
(4)

where Si is the sine integral function. The correct result
quoted in the erratum is obtained by changing Si(2kFx)
in (4) into Si(2kFx) —n/2, thus

e(x) = ——Si(2kFx)2m z
zA

(s)

One may ask which feature of the integrand in (3a) is re-
sponsible for the dependence of the double integral on the
order of integration. One is led to suspect that it is the
strong singularity at the point q =O, k =0. To verify this,
consider the integrand of (3a) and define

"+"dq 1 1Iq(eg) = dk q + , (6)
q q+2k q

—2k

where e and g are two positive numbers. The subscript q
on I means that the integration over q is done first. We
find at once that

t+' dk
1

k+2@
k k —2g

and integrating over k, we obtain

Iv (e, rj) = —2[Lz(2e/rI) —Lz( —2e/r/)],

where L2 is the dilogarithm function. Similarly, if the
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order of integration in (6) is changed, we find

II, (e, i)) =2[L2(r)/2e) —Lz( —rl/2E) l (8)

Subtracting (7) from (8), and making use of relations
(4.2) and (4.3) in a paper by Mitchell we find

II, (e, ri) I, (e—, q) =gr', (9)

which does show that the singularity at q =0 and k =0
contributes differently, depending on the order of the in-
tegration. It can similarly be seen that the lines of singu-
larities q = + 2k, qWO give no contribution to the
difference so that the whole effect of interchanging the or-
der of integration is given by (9). Comparing (4) and (5)
it is seen that the diA'erence is in fact given by (9).

The inference is then that the physically correct way to
obtain @(x) is to integrate over k first. The justification
for this can be seen by going back to (1) and noticing that,
at finite k, but

~
k

~
( kF, the Pauli principle rules out any

contribution from small q. The order of the integrations
must hence be such that if we take (rl/e) && 1, the value of
the integral over the singularity must vanish. Since L2(x)
vanishes in the limit x =0, it follows that (8) vanishes in
this limit, which shows that to obtain the physically
correct result one must integrate over k first.

An alternative and direct way to obtain (5) is to make
use of an ingenious observation due to Van Vleck: He
noticed that in the 3D case the analytic form of F3(q) is
such that in the evaluation of the range function the in-
tegral over q is not changed if the contour of integration is
deformed to go infinitesimally above a cut along the real q
axis from —2kF to 2kF. In the present 1D case the form
of F(q) is such that this device can also be used. The re-
sult is that, to within the factor m/x Ii, the range func-
tion is given by

~+'kF dqe(x ) -ix) q e'~",
2kF q+ lB

where the factor i+ is the difference

(10)

2kF+q 2kF+q
ln —ln

2kF —
q 2kF —

q

and q is in the interval —2kF to 2kF. Note the
infinitesimal i8 in the denominator of (10), which arises
from the deformation of the contour. The integration of
(10) is immediate and gives the result (5), the term iB
contributing the constant term x/2 in (5).

Having discussed the one-dimensional case we now con-
sider a three-dimensional free-electron system in which an
atomic plane (e.g. , the y =0, z =0 plane in a simple cubic
lattice) is populated with ferromagnetically ordered mag-

where rdr =pdp is the element of area in the y =0,z =0
plane at constant x. Equation (11) can be integrated by
parts. Defining X=2kFx, the result is

( ) 1 n' S.(X) cosA + slllX
2 2 X (12)

This range function differs from that of the true 1D case
in its last two terms. At large X, the asymptotic value of
(x/2 —Si(A') is cosA'/A'+ sinA'/A so that N, (X) behaves
asymptotically as sinX/X . In contrast, the asymptotic
behavior in the 1D case is @(X)—cosA/X. Thus, the
range function of the pseudo 1D case falls amore rapid
ly than that of the 1D case.

There is a simple reason for this difference: In general,
the stronger the singularity of F(q) at q =2kF, the slower
the fall-off rate of @(x) with increasing x. In the 1D
case, the singularity of F(q) is logarithmic. In the pseudo
1D case, which is three-dimensional as far as the electron
gas is concerned, the susceptibility function is the three-
dimensional susceptibility F3(q). The ferromagnetic lay-
er in the plane y =z =0 produces a response at the point r
which is proportional to

C, (x)—g g exp [iq (r —r') ]F3(q), (13)

where r' is a source point in the yz plane. If q has a non-
vanishing component in that plane the sum over r' van-
ishes, while if q is normal to it the sum is independent of r'
and proportional to

a&, (x)-J F3(q)e'~"dq .

The singularity of F3(q) is only in its derivative, not in the
function itself, and so it is weaker than that of F(q).
Hence C&, (x) falls off more rapidly than @(x). Finally,
N, (x) falls oA' less rapidly than +3(r) of the 3D case be-
cause (13) has no contributions from the q's that are not
normal to the yz plane, and so there is less destructive in-
terference among the different q contributions than in the
3D case.

netic moments. We may refer to this system as pseudo
1D, since in the continuum limit of the moment distribu-
tion the range function &, (r) becomes independent of y
and z. If the x axis is chosen to go through the observa-
tion point r then the range function @,(x) is given by the
following integral over the source points of the 3D range
function:

p OO

@,(x) —„(rdr/r ) [sin(2kFr) —2kFr cos(2kFr)]
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