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Critical fluctuations in high-T, superconductors

C. J. Lobb
Division of Applied Sciences and Department of Physics, Harvard University, Cambridge, Massachusetts 02138

(Received 28 May 1987)

The Ginzburg criterion suggests that the Ginzburg-Landau theory will break down within —0.1

K of the transition temperature of the new high-T, superconductors. Theoretical consequences of
this include a weak divergence in the specific heat at T„and a correlation length which diverges
as (T—T, ) " with v=—0.67. Conventional Ginzburg-Landau formulas for critical fields and
penetration depths, and mean-field predictions for fluctuation-enhanced quantities, must also be
modified close to T,.

The Ginzburg-Landau (GL) theory is enormously suc-
cessful in explaining the properties of conventional super-
conductors, ' but fails in explaining many other second-
order phase transitions. This is because, strictly speak-
ing, the GL theory neglects fluctuations —an approxima-
tion which is adequate for conventional bulk superconduc-
tors. Even when fluctuations are added on to the GL
theory, as is done for treating corrections to the conduc-
tivity and diamagnetism near the transition temperature,
the fluctuations are assumed small, and are thus treated
approximately.

The GL theory assumes that the free-energy density
may be expanded in terms of the order parameter y by'
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where the magnetic field is taken to be zero, the free ener-

gy is measured relative to the normal-state free energy,
and T p is the mean-field transition temperature.

As mentioned above, fluctuations can be treated ap-
proximately in the GL theory, as long as they are small.
The Ginzburg criterion is derived by asking when the GL
predictions for fluctuations in y become of the same order
as y itself. This yields a temperature range close to T, in
which the GL theory is not expected to be valid:
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and

g(T)=g(0)[(T o T)/T o]

[Equation (2), and all subsequent equations, are for
three-dimensional systems. ] Outside of the temperature
interval defined by (2), the GL theory will hold (provided,
of course, that i T —T,o i/T, o is still small). Inside of this
temperature interval (which is referred to as the critical
region), the GL theory breaks down.

This equation can be evaluated for superconductors by
using the GL results ao/2p=H, (0)/Str and A /2m*ao
=g (0), where

near T,o. Substituting these results into (2) gives
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In a type-II superconductor, the thermodynamic critical
field 0, can be expressed in terms of the measurable
upper critical field H, 2 by H, (T) =H, 2(T)/J2x, where x
is the ratio of the penetration depth X to the coherence
length g. This result, and the GL result H, 2(T)
=Co/2trg (T), where @o=hc/2e is the superconducting
fiux quantum, combine with (3) to give
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In the second part of (4), T,o is measured in kelvin and
H, 2(0) is measured in G. H, 2(0) is not the experimental
upper critical field at T =0, but the field obtained by ex-
trapolating the linear part of H, z(T) near T=T,o [but
outside the range defined by (4)] down to T =0. If a su-
perconductor is anisotropic, x and H, 2(0) are replaced by
their geometric means in (4).

The strong dependence of (4) on T,o suggests that
high-temperature superconductors should have wider crit-
ical regions than conventional superconductors. Typical
parameters for conventional superconductors are x = 10,
T,o = 10 K, and H, z(0) = 10 G, which gives i T —T,o i

& 10 K in order to observe non-GL behavior. By con-
trast, transition temperatures in the 90-100 K range are
reported for the new materials. Extrapolated H, 2(0)
values vary, but are typically between 500 and 1000 kG.
Values of g(T) can be obtained from H, 2(T); combined
with values for X(T), which can be inferred from H, i(T),
these give an experimental value for v. A value of K =100
is plausible, but lower values (—50) and higher values
(—200) have been reported, or can be inferred, from
measurements on the 40-K superconductors and the 90-K
superconductors. Using tc =100, H, 2(0) =750 kG,
T,o =95 K gives i

T —T,o i
& 0.12 K. If x'=200,

i
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& 1.96 K; a smaller value of H, 2(0) is not in-
conceivable and could increase the extent of the critical
region by a factor of 2 more. (If x =50, the critical region
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shrinks to approximately 8 mK. ) It is, of course, possible
to raise x by shortening the electronic mean free path.

Inside the critical region, the behavior of a supercon-
ductor is quite difl'erent from the behavior outside. (A
number of important differences are summarized in Table
I.) The phase transition will occur at a temperature T,
which will be, in general, different from the GL transition
temperature T,o. The thermodynamic properties of a su-
perconductor within the critical region are the same as a
three-dimensional XY model, and can be seen experimen-
tally2 in the superfluid transition in He. The specific
heat should have a weak power-law divergence at T„ in
contrast to the discontinuity of the GL theory. This diver-
gence can be written as C—

~
T —T, (

' with a=0.
Since the specific heat is proportional to the second
derivative of the free energy with respect to temperature,
this says that f—

~
T —T,

~

'. An immediate conse-
quence of this last result is that the thermodynamic criti-
cal field, which is proportional to f '/, varies as
H, (T)—(T, —T) below T„just as in the GL theory, be-
cause a is small.

A second important difference between critical behavior
and GL behavior is that the correlation length
g(T) —(T —T, ) ", with v=0.67. [In the GL theory, the
correlation length diverges as (T —T, ) '/ J Energetic
arguments imply that the upper critical field should vary
as @o/(, independent of whether the GL theory holds,
which implies that H, 2(T) —(T, —T)', in contrast to
the linear GL temperature dependence. It is interesting to
note that measured upper critical fields have an upward
curvature close to T„crossing over to linear behavior at
lower temperatures, although this may be due to sample
inhomogeneity.

The order parameter y, which is proportional to the
square root of the superfluid density n„varies as
y(T) —(T, —T)~ close to T„with P=—0.33. (The GL re-
sult is, again, a square-root dependence. ) As long as the
superconductor is in the local limit, this suggests that
X(T)~1/n, '/ —(T, —T)

Unlike the GL case, where X and ( have the same tem-

TABLE I. Exponents which characterize the temperature
dependence of various physical quantities near T,. Critical ex-
ponents characterize the transition close to T„. farther from T„
the GL exponents should be seen. The o.' exponent crosses over
twice as T approaches T„ from —

—,
' to —0.67, and then from

—0.67 to —0.33 still closer to T,.

perature dependence near T„ in the critical region the
correlation length diverges faster than the penetration
depth. The parameter ic=X/g- (T, —T) is no longer
temperature independent, but goes to zero as T ap-
proaches T,. Close enough to T„superconductors will
become type I. This suggests that magnetization curves
close to T, can be used to observe the crossover to critical
behavior. In the GL regime, H, ~ and H, 2 have the same
linear dependence on (T,n

—T). Closer to T„H,i(T)—(T, —T) while H, 2(T) —(T, —T)' "; the devia-
tions from GL behavior are in opposite directions.

The analogy to He, plus dynamic scaling arguments, '

can be used to make estimates of other properties. In the
absence of a more complete theory, dimensional analysis
and physical arguments will be used to obtain formulas
for fluctuation diamagnetism and fluctuation-enhanced
conductivity above T, .

Fluctuation diamagnetism is simpler to deal with be-
cause it does not require knowledge of the time depen-
dence of fluctuations. In an argument first suggested by
Schmid, '3" a three-dimensional superconductor above
T, can be viewed as a collection of small droplets, of size
g(T), which fluctuate independently. Neglecting factors
of order unity, this leads to a susceptibility X',

Z' = —(kT/@ti)g(T), (5)

e Tc
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which will diverge as (T —T, ) . The GL result
L'-(T —T,o) '/, which should be distinguishable from
(5), is expected to hold outside the critical region.
Corrections may need to be made to (5) for the effects of
finite external field, as has been done for the GL case. '

Fluctuation-enhanced conductivity is more complicated
because it depends on the time dependence of fluctuations.
In the mean-field regime, the fluctuations cause the elec-
trical conductivity to increase by an amount a' which is
given by cr'e:((T), according to Aslamazov and Larkin
(AL). ' ' This suggests that o' should vary as
(T T,n) '/ in the m—ean-field regime, crossing over to
(T—T, ) o in the critical region defined by (4). This
differs from the thermal conductivity of He, which exper-
imentally' diverges as (T —T, ) ' — . A full
dynamical scaling theory' predicts that the thermal con-
ductivity varies as ('/ —(T —T,),which agrees well
with experiment. This difference occurs because the tem-
perature dependence of relaxation times changes close to
T, ~ It is thus expected that

Quantity

C

lktl

0,
Hci
Hc2

Critical exponent

—a=0
—v=- —0.67
P=0.33
—P= —0.33
1 —a/2= 1

2P —=0.66
2v= 1.34
—v= —0.67
—v= —0.67 —v/2=0. 33

GL exponent

(discontinuity)
I

2
I
2

2

1

I
2
I
2

where a(T) = —,
' outside the critical region, crossing over

to a(T) =0.67 in the static critical region, and finally
crossing over to a(T)=0.33, closer still to T„where
dynamical scaling effects come into play. Corrections
may need to be made to account for the Maki-Thompson
term, especially for samples in the clean limit.

Freitas, Tsuei, and Plasket' have recently reported
measurements of fluctuation diamagnetism and
fluctuation-enhanced conductivity in Y ~ Ba2Cu309 —$.
The data presented in their figures, which extends from
about 1 K above T, to more than twice T„are well fit by
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the classical AL and Prange theories, as might be expect-
ed since most of their data are outside the critical region
defined by (4). They do, however, note deviations from
the Al theory for (T —T, ) (0.5 K, which is suggestively
close to the estimates given for the critical region here.
Further measurements are clearly needed. For comparing
theory with experiment, it is useful to note that (5) and
(6) predict different deviations from the GL-based
theories. The susceptibility X is expected to diverge faster
than the Schmidt-Schmid result, while the conductivity is
expected to initially diverge faster, crossing over to a
slower divergence very close to T, .

In summary, the high values of T, and x in the new
high-temperature superconductors should cause the GL
theory to break down within 0.1 K or more of the transi-
tion temperature. The behavior of these materials close to
T, should be analogous to the critical behavior of He
near the X transition. Existing experimental results con-
tain hints of such behavior, but samples which have a nar-
rower distribution of T, 's (due to inhomogeneity), and
measurements closer to T„are needed. The accessibility
of the critical region creates a variety of opportunities for
experiments on more exotic eA'ects. Depending on
material-dependent parameters, it may be possible to ob-
serve a predicted weakly first-order transition' closer still
to T, than the region described here, when the crossover

to type-I behavior has occurred. If, on the other hand,
type-II behavior persists close enough to T„an inverted-
XYtransition is expected. ' Finally, in a magnetic field, a
type-II superconductor is expected to have a first-order
transition at 0,2.

'

After this manuscript was submitted, I received a copy
of unpublished results' describing specific-heat measure-
ments in YBa2Cu307 q. The authors of that paper esti-
mate the Ginzburg criterion using the specific-heat jump,
and obtain a predicted critical region of a few mK, close
to the smallest estimate obtained above. The reason for
the difference between the specific-heat estimate and the
critical-field estimates presented here is probably the
sixth-power dependence of the Ginzburg criterion on
correlation length g(0); more accurate measurements are
needed to resolve this discrepancy.
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was supported in part by the National Science Foundation
through Grant No. NSF-DMR84-04489.
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