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After a rapid change in temperature of a crystalline solid, the rate of vacancy motion changes
immediately while the concentration of vacancies changes more slowly. We report NMR
diffusion measurements on pure aluminum foil done at constant vacancy concentration by rapid rf
heating from a constant preparation temperature. Thus, the temperature dependence of the
diffusion yields the migration energy E~. Our results for E~, 0.71 and 0.66 eV, are in good
agreement with the accepted value. The experiment reported here should be applicable to all

kinds of solids, provided a means of rapid heating or cooling is available.

Diffusion in most crystalline solids proceeds by a defect,
either a vacancy or an interstitial. ' For diffusion to occur
a defect must be formed, with activation energy EF, and
the defect must migrate amongst the equivalent sites, re-
quiring activation energy EM. Thus, the activation energy
ED describing the temperature variation of diffusion is the
sum of EF and EM. We present here a technique for sepa-
rately determining EF and EM which should be applicable
to essentially all solids.

We consider the case of monovacancy diffusion, the
diffusion mechanism of most pure materials. ' At any
nonzero temperature, vacancies exist at thermodynamic
equilibrium with concentration Xgiven by

—EF/k Tw=e

The activation energy EF is closely related to the binding
energy of the solid. Any vacancy in the solid executes
site-to-site jumps at rate e„„

—E~/kT
mv =ape (2)

The attempt frequency cop is often approximated by the
Debye cutoff frequency; the migration energy EM is often
not very different from EF. The rate at which any typical
atom in the solid jumps is just

—(EF+E~)/kT (3)o)g =+mv =~pe

In a more complete analysis, entropies of activation
and/or temperature-dependent activation energies arise;
the effect of these can be lumped into the prefactor cop

which may then differ by one or two orders of magnitude

from vibrational frequencies. Measurements of the tem-
perature dependence of diffusion yield ED =EF+EM and
are fairly common. Coupled with a determination of ei-
ther EF or E~, the other energy (E~ or EF) is then ob-
tained.

There are several methods for measuring EF or EM.
The concentration of vacancies may be directly deter-
mined by comparing the bulk thermal expansion
coeScient and that of the x-ray lattice parameter. This
method has been used for metals and for rare-gas
solids. ' In general, the method requires extremely high
precision and is particularly dificult for materials that
flow under gravity (e.g. , molecular and rare-gas solids ).

Ionic materials can have vacancies added chemically.
For example, the addition of KF to CaF2 involves K+ sit-
ting on the Ca + sublattice with the production of a va-
cancy on the F sublat tice. Over a range of tempera-
tures, the F diffusion and ionic conductivity are dom-
inated by the extrinsic vacancies and the temperature
dependence of diffusion is determined by EM alone. Of
course, the Coulomb attraction of the vacancy to the K+
complicates the issue, particularly at low temperatures.
The chemical production of vacancies is only available
with ionic solids.

In metals, vacancies created at high temperatures TF
may be frozen in by rapid quenching to a low temperature
Tg. " The concentration of vacancies can be determined
from electrical resistivity measurements at low tempera-
tures because vacancies scatter electrons. ' Typically, the
resistance of the quenched sample is compared to that of a
reference sample at 77 K. The temperature (Tt;) depen-
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—EF/k TF —Err'/k T~
co& =KM„, = cope e (4)

The temperature (TM) dependence of the jump rate coj.

yields the migration energy EM. During the course of this
work, we learned of related but unpublished experiments
on aluminum by Sun.

The pulse sequence is shown in Fig. 1. The metal sam-
ple is rapidly heated from TF to TM with rf eddy currents
from an 80-ms burst of rf magnetic field. By varying the
duty cycle of the burst (chopped at 1 kHz) the final tem-
perature TM is controlled. As a matter of convenience the
heating burst uses the same frequency (22 MHz),
amplifiers, and rf coil as the NMR. The use of rf heating
avoids the eA'ects of forces and torques upon the sample
that would occur with dc heating in the magnetic field. A
relay bypasses the conventional crossed diode transmit-
receive switches during the long heating pulses. At the
end of the heating burst, a 20-ms delay allows the bypass
relay to deactivate, readying the NMR spectrometer.
During the delay, the Al spins return to equilibrium
magnetization: The Al Tj is about 4 ms. To obtain
suf5cient heating we use a 1200-W amplifier, producing
80 G in the rotating frame. A particularly low L/C ratio
is chosen for the tuned circuit to avoid rf breakdown.
The largest temperature jumps obtained after the delay
are about 60 K.

After the 20-ms delay, the Jeener-Broekaert pulse se-
quence is used to measure T&D, the spin-lattice relaxa-
tion time of dipolar spin order. According to Slichter-

dence of the vacancy concentration yields E~. ' ' By
studying the time and temperature (Tg) dependence of
the low-temperature annealing out of the vacancies, EM
may be obtained. ' ' Clearly, this technique is only
available with metals. Finally, positron annihilation has
been used to determine the vacancy concentration. '

None of the current techniques is satisfactory for all
solids. For example, although EF has been determined in
rare-gas solids, ' there are no measurements of EF or
EM in molecular solids, to our knowledge.

When the temperature of a solid is changed, the vacan-
cies present change their jump rate co, almost immediate-
ly. Without direct evidence, it is reasonable that this
change takes a few vibrational periods, about 10 ' s. By
comparison, changing of the vacancy concentration is
much slower. Naively, one would expect that vacancies
diAuse to and from free surfaces or grain boundaries to
come to equilibrium. Actually, dislocations are the most
important sources or sinks of vacancies. In well-
annealed metal foils, quenching experiments found that
the time constant for vacancy equilibration was of the or-
der of 1 s

Our NMR measurement of EM in aluminum involves
preparing the sample at a variable temperature TM with
the (fixed) vacancy concentration appropriate to tempera-
ture TF. The sample is initially at TF and is then heated
rapidly to TM. At the temperature TM the atomic jump
rate co~ is determined from a measurement of the dipolar
order relaxation time Tjo of the nuclear spins. Because
the heating from TF to TM is rapid, the vacancy concen-
tration is expected to be unchanged. Thus, the jump rate
m~ at TM is given by
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FIG. 1. Pulse sequence used in temperature-jump study of
vacancy migration. A long rf heating pulse is followed by a de-

lay; the Jeener-Broekaert sequence is then used to measure T»
(essentially the atomic jump time r~). The lower part of the
figure is a typical temperature-time plot for the aluminum foil
sample. The time scales at top and bottom are the same. The
Jeener-Broekaert sequence lasts typically 1 ms and has been ex-
aggerated in the figure.

TiD 2T] (6)

The factor of 2 in Eq. (6) is justified for uncorrelated fluc-
tuating hyperfine fields at neighboring spin sites. The
above processes are independent so their rates add. The
observed relaxation rate T~D' becomes

TtD =2(1 p)coj+2Ti (7)

Because we are only interested in the temperature depen-
dence of co~ to determine activation energies, we take
2(1 —p) as unity. Defining rj =coj ', Eq. (7) becomes

TiD~ 2T (8)

Measurements of T~D and T~ allow determination of ~~.
We note that i~ =T ~D in the limit of TiD && Ti.

The sample was in the form of a pure aluminum foil
25-tttm-thick (Alfa Chemicals, 99.999% pure). It was
folded once about a thin mica insulator and placed in a
glass test tube inside the rf coil. The rf magnetic field H~
was nominally parallel to the surface of the foil every-
where, so the foil did not disturb the Hi field lines. The
HI homogeneity was determined to be + 10% across the
length of the sample. The sample temperature was deter-
mined directly by measuring its resistance with a four-
wire method in real time. A typical temperature-time plot
is shown in Fig. 1. The sample resistance thermometer
was calibrated against a thermocouple under equilibrium
conditions. The background temperature TF was estab-
lished by blowing thermostated hot air past the glass test

Ailion slow-motion theory, '
T&D is determined by

diffusion,

TtD =2(1 p)COJ

The factor p expresses the site-to-site correlation of local
fields from the nuclear spins. There is an additional and
undesired contribution from the conduction electrons:
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remains essentially unchanged. The temperature depen-
dence of the atomic jump rate co~. yields the vacancy mi-
gration energy E~. The results reported here for pure
aluminum foil agree well with previously reported values
of E~. This indicates that the vacancy concentration was
in fact out of equilibrium during the diA'usion measure-
ment.

The method reported here demonstrates that NMR can
be used to separately determine EM and EF ( =En Esr )—.
It is applicable to all kinds of materials, not just metals,
provided that rapid heating andjor cooling of the sample
can be arranged. Furthermore, because the NMR
diAusion measurement involves microscopic distances, the
measurement is not susceptable to eAects from "pipes" as
are macroscopic diffusion techniques. The technique re-

ported here, coupled with laser heating pulses, would be
an elegant solution to measuring EF and EM in nearly all
crystalline solids.
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