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Elastic behavior of magnetic systems with a narrow twofold-degenerate band
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The modification of the effect of electron-lattice interaction on the shear modulus C'= —'(C~
~
—Cj2)

in itinerant magnetic systems with the Fermi energy lying on a narrow twofold-degenerate band is in-

vestigated on the basis of the Hartree-Fock approximation of the degenerate Hubbard Hamiltonian.
The softening of the elastic constant due to the electron-lattice interaction at T =0 is more for weak-

ly magnetic {ferro- or antiferromagnetic) systems compared to the case of saturated moment systems.
As T approaches T, (or Tz) the elastic constant C' decreases sharply and the amount of decrease is
larger for the saturated ferromagnetic (or antiferromagnetic) system than that for the weakly magnet-
ic system. These results are found to be sensitive functions of the interorbital exchange. In the
paramagnetic phase, the electronic contribution to C' depends on the density of states at the Fermi
energy and is weakly temperature dependent. These results are discussed in light of the elastic
anomalies of C' in bcc iron.

I. INTRODUCTION

Et has been established that the electron-lattice interac-
tion in degenerate electronic states plays the dominant
role in causing structural transitions in various types of
systems, e.g. , the high-temperature superconductors like
315 compounds, ' lanthanum chalcogenides, and com-
pounds showing cooperative Jahn- Teller transitions. The
softening of elastic constants with temperature is seen as
the manifestation of this interaction. Even in the absence
of any structural transition, the magnetic interactions be-
tween the electrons in the degenerate bands would modify
the amount of softening of the elastic constants. There
exists a considerable amount of experimental evidence of
this effect —partiuclarly of the shear modulus near mag-
netic transition temperatures —in three-dimensional sys-
tems. Recent neutron scattering results on bcc iron
showing a 75% drop in the value of the shear modulus C'
between room and Curie temperatures and considerable
softening of some phonon branches have raised the neces-
sity of undertaking self-consistent calculations of
electron-phonon and the magnetic interactions present in
such systems. The renormalization of longitudinal sound
velocity as a function of magnetic moment has been stud-
ied earlier in an itinerant ferromagnet by Kim. Subse-
quently, a similar study has been made by Yamda for
itinerant antiferromagnetic system. But no model calcu-
lation of the temperature dependence of the elastic con-
stant has been made by them. Also these calculations
have been done for nondegenerate band systems. Recent-
ly Hasegawa et al. have done an ab initio calculation of
elastic constants in bcc iron and have included the spin-
fluctuation effect which is important near the transition

temperature T, and also the coupling of electrons with the
lattice through the hopping integrals. It has been argued
that the spin fluctuation affects the shear modulus strong-
ly around T, . The effect of the electron-lattice interaction
(the band Jahn-Teller mechanism in which there is a split-
ting of the degenerate subbands proportional to the
strain~' '') on the shear modulus in degenerate band sys-
tems have not yet been studied systematically in the mag-
netic phases. Theoretical understanding remains incom-
plete without such an analysis.

The interplay between the elastic and magnetic interac-
tions in a twofold-degenerate Hubbard band model has re-
cently been studied on the basis of the Hartree-Fock ap-
proximation of intrasite Coulomb and interorbital ex-
change interactions by making Landau expansion of the
free energy in terms of two order parameters, namely,
tetragonal strain and magnetic moment. ' It is, therefore,
limited to weak ferromagnetic cases. In this paper we re-
port a model calculation on the thermal variation of shear
modulus C in itinerant magnetic systems with twofold-
degenerate bands both for ferromagnetic and antiferro-
magnetic cases without making any Landau-type analysis
so that the results are applicable to both strong and weak
moment systems. It is shown that the coupling of the lat-
tice with local density of orbitals causes the shear
modulus to decrease as T tends to the transition tempera-
ture and the interorbital exchange J plays a very crucial
role in determining the magnitude of softening. In fact a
small increase in the value of J, the exchange parameter,
can completely destroy the effect of magnetic ordering on
C'—particularly for an antiferromagnetic system with
half-filled band. We also consider the effect of different
fillings of the band on C' using a simple model density of
state (DOS).
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The analysis for the ferromagnetic and antiferromagnet-
ic cases are presented in Secs. II and III, respectively.
Since for bcc iron the DOS near the Fermi energy Ef
arises principally from e~-type electrons, favorable com-
parison of our result with that of Hasegawa et al. is pos-
sible. These and the discussions on our results are given
in Sec. IV.

II. FERROMAGNETIC CASE

5n =nz —n i
——g [f(Ekz~) —f(Eki )],

k, o

with f (E) as the Fermi function. In order to derive the
second term in the right-hand side of Eq. (4), it is neces-
sary to expand 6n. Assuming e, 6n, and 6m to be small
and keeping m arbitrary, we obtain the following expres-
sion for ny,

nr =g f(Ei, )
k

The model Hamiltonian for eg electrons in the presence
of magnetic interactions and tetragonal-type elastic mode
e can be written as

~D+g f'(Ei, ) y Ge+ 5n +o.A.—5m
k

(6)0= g r;, (C;, C, , +C;z C)z )
I)J)o

where f'(Ei, ) is the first derivative of f(Ek ) with respect
to Ei, =ei, rrBm—l4 Equ.ation (6) then gives us

+ Ug(R ;i,n, i', +R;z, &;z, )

+ U g niii)n. z i —Jg nii+«za
i, o, o. 1 and

6n =F+ —2Ge — 5n +FA

2
D——6m
2

(7)

+Ge g (n;i —R';z )+ —Ncpe
i, a 5m =F+ ——6m +FD —2Ge ——6n

2
where X is the number of atoms, 1 and 2 denote the two
e~ orbitals, U and U' are the intra-atomic iqtraorbital and
interorbital Coulomb terms, J is the interorbital exchange
interaction, G is the magnitude of coupling between ec-
type electrons and strain modes, and Cp ———,'(C» —Ciz) is

the shear elastic constant arising from electrons other
than the e~ ones. Under the Hartree-Fock approximation
and for the ferromagnetic case, this Hamiltonian reduces
to the following form,

Eir Ri,r + ', NCiie NU—(n ign „—+nzgnz, )
k, y, o.

—NU' g n, nz +NJ+n, nz
cT, o'

where (n, ~ ) =n;r =n~ for the ferromagnetic case, y
being the band index, the energies Eky are given by

Bm D
Ek ~=ek+y Ge+ 5n —o —+oy —5m, (3)yo 4 4 4

where

p c dc E) +af + af

In deriving Eqs. (7) and (8) we have neglected the varia-
tion of hopping due to strain. In the calculation done by
Hasegawa et al. the strain dependence of the free energy
comes from the variation of hopping. From Eqs. (7) and
(8), we now get

D F2
2Ge F+ ——

2 D1+—F
2

D1+—F
2 2 D1+—F+

Equation (4), therefore, gives

where o.=+ 1 for the up and down spins respectively,
y =+1 for the orbitals 1 and 2, 3 =2U' —U —J,
B= U+ J. The population excess 6n = n 2

—n ~ arises from
the lifting of the degeneracies due to the tetragonal strain.
This produces diA'erent magnetization for two bands, and
this difference of magnetization 5m =(nz, —nzi )

—(n i, —n i, ) will contribute to elastic constant due to its
nonzero variation with strain in the limit of e~O. The
magnetic moment is given by m =n, —n, in units of p~.
Also, n =g& n z, the total number of electrons per
atom. The free energy calculated from the Hartree-Fock
Hamiltonian given by Eq. (2) leads to the following ex-
pression for the total shear elastic constant C's,

C'(T)=cp —— (4)
3 Be

where

C'(T)=cp+ —', G
3 F

with

F2
F) ——F+ ——

2 D1+—F+

F2 ——1+—F) .
2

Hence

AC= —', G
2

(13)

where AC = C' —Co. The temperature dependence of the
contribution of eg electrons to the shear constant then
arises from that of F~ and F2 through the integrals involv-
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where

E„.,=a&+ y[Ek+5a')]'" (22)

5c
Q2

10

Here +=+1 for orbital 1 and —1 for orbital 2, y =+ for
higher and lower Slater spin subbands, respectively,
5 =(B/2)b a(D—/2)5b and X =Ge+(2 /4)5n . We
have neglected a constant term in Ek ~.

For the calculation of the shear elastic constant it is
necessary to get an expression for 6n in terms of e, b, and
6b. From the definition of 6n we obtain

5n=n2 —n1 ——g[f(Ek2r) —f(Ek]y)] .
k, y

(23)

1

0.5
T/T(-

I

1.5
Expanding the Fermi function about f(Ek) and f( Ek)—
where Ek=[ek+(Bb/2) ]' and keeping terms linear in
e and 6b we obtain finally

FICx. 3. Same as Fig. 2 with U+ J=1.5, band Ailing n=2. 8
and moment is 0.71.

due to electron-lattice coupling. At high T, the thermal
decrease of Cp becomes important so as to cause slower
variation of C'. For T && T„ the elastic constant is nearly
Cp and hence decreases again.

5n = —2XGp+ b5bG(,BD
2

where

8f(E„) Bf( E„)—
aE„ + aE„

(24)

(25)

III. ANTIFERROMAGNETIC CASE

Since the antiferromagnetic case is the particular case of
spin-density wave (SDW) with wave vector Q =~/a, a be-
ing the lattice constant, we can define an order parame-
ter"

In order to get expression 6b in terms of e, we derive
b by calculating ( Ck~Q Ck ) through the Green's
function formalism" and finally obtain

baa =g (Ck+Q, aaCk, aa )
k, Q

In order to get maximum amplitude of this order parame-
ter we take

Bb D5b
(Ek 1,2+ Ek 1,2 —)

&&[f(Ek12+)—f(E» 2 )] . (26)

and

ba~ = —ba —~ =ba (17)
Expansion of Fermi function in terms of X, b and 6b gives
5b in lowest orders of b and Ge as

na~ =na g

This gives the moment per site in each band as

The total moment

5b =—XbG) /G2,
B
2

(1 g)
where

D B
Gp ——1+—G3 — Db G4,

2 8

(27)

5, =+5,=be'Q (19)
[f(Ek)—f(Ek)]1

„Ek
(28)

where b =b~+b2. As the strain lifts the orbital degenera-
cy the orbital parameter b would not be the same for the
two orbitals and we therefore introduce

164=+ [f(Ek f( Ek)]——

5b =b) —b2 . (2O)

H "=g Ek ~nk ~+ b+ —(5b) ——(—5n)
kay

(21)

Solving the Hartree-Fock Hamiltonian for the antiferro-
magnetic (AF) case we get the following Hamiltonian in
the diagonal form (assuming complete nesting condition
for the bare band energies),

[f (Ek f ( —Ek)]-
E„

Substituting this expression of 5b in Eq. (24) we obtain

Gg
5n = —2Ge

G6

where

(29)
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This expression of 6n for the antiferromagnetic case is to
be compared with that of the ferromagnetic case given by
Eq. (7) where we get in the lowest order of m, F ~ m
The electronic contribution to C' in the antiferromagnetic
case is then obtained as

h, c
Q2

AC==', G
~G)

G6
(31)

20-

1
X P(E —p) —P(E —p)

(32)

n =2 (E)dE
W 1 1

P(E —P, ) 1 + —P(E —P)
(33)

where E=[E +(Bb!2) ]' and W is half of the band-
width density of states. We have used the model density
p(E)= —,'(1 —E )(2W'=1) as in the ferromagnetic case.
Using these values of b and p, the integrals involved in

Gz and G6 are numerically evaluated. The temperature
variation of AC in units of G are given in Fig. 4 for the
half-filled band case. The value of b is 1.82 at T=0 and
is, therefore, close to the saturated moment case. It is
seen that though the results are qualitatively similar to
those for the ferromagnetic case, there are some features
worth mentioning for this case of antiferromagnets.
First, J has more effect in reducing the value of C' be-
tween T =0 and T = T, and a small value of J is
sufficient to reduce AC drastically. So in real antiferro-
magnetic systems with finite and nonnegligible J, AC, as
the result of magnetic ordering, is expected to be small
for the e~ electrons. Secondly, the electron-lattice con-
tribution to AC is negligible around T=O but it is large
around T=T&, particularly for small values of J. This
is also very sensitive to the value of 3 = U —5J even in
the paramagnetic case. For more (or less) than half-
filled cases and for weak antiferromagnets the results are
similar to the ferromagnetic case. The elastic constant is
reduced, although the variation between T=0 and
T= T& is not large.

IV. DISCUSSION

The results presented in the preceding two sections
point out the importance of the band Jahn-Teller in-
teraction in determining the shear modulus C'. It de-
pends on the magnetic state of the system. The amount

In the paramagnetic limit we obtain the same expression
as for the ferromagnetic case. Following the same pro-
cedure as earlier, we first solve the two self-consistent
equations —one for b which is obtained from Eq. (26) in
the limit of e ~0 and 6b ~0 and the other for the chemi-
cal potential p for each value of temperature. These are
given below:

2 w p(e)dc
U+J —w E

)

0.5
I

1.5

FIG. 4. Antiferromagnetic case with U+ J=1, n=2, and the
antiferromagnetic order parameter is 1.82 (28'= 1 for all cases).

of softening around T, (or Tz& is more for systems with
large saturation moment. On the other hand, the elastic
constant is much reduced at T =0 for systems with weak
saturation moment. The softening of the shear modulus
can be understood from band Jahn-Teller mechanism.
When the Fermi energy lies on a degenerate band the
system wants to remove the degeneracy which involves
the transfer of electrons from one orbital to another with
consequent decrease in the band energy. This interorbi-
tal charge fluctuation causes a softening of shear
modulus. For systems with large moments, such interor-
bital charge fluctuation is difficult due to large magnetic
energy involved at T=0 but becomes important at
T~T, or Tz where ordering energy is less. This, there-
fore, causes a larger softening from T =0 to T= T, or
T&. Due to smaller magnetic energy involved for sys-
tems with weak saturated moments, interorbital charge
transfer is easier and hence a larger reduction of C' at
T =0 results. Apart from the electron-lattice interaction
such reduction of C' depends on parameters U, U', and
J. For a given value of U, the interorbital exchange J
affects AC most through the parameter 3 = U —5J
which determines the amount of interorbital fluctuation.
The present mean-field treatment gives the variation of
C with temperature in qualitative agreement with ex-
perimental results on bcc iron and y-Mn (Ref. 12) doped
with few percentage of Ni. But for a better comparison
it is necessary to use a more realistic DOS and more ap-
propriate values of U and J as well as spin-fluctuation
effect around T, or T&. Since the purpose of this model
calculation is to point out the role of the degeneracy of
the band in which the Fermi energy lies, we refrain from
pursuing further comparison with experimental results.
Our results have similar qualitative features below the
transition temperature as those given by Hasegawa
et al. Our results show a rather large increase of C' for
T larger than T„' this may be due to the Hartree-Fock
approximation used in our calculation and neglect of lo-
cal moments. But the present self-consistent calculation
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of the modifications of the effect of the electron-lattice
interaction of C' due to magnetic moment formation
treated within the Hartree-Fock approximation of the
degenerate Hubbard Hamiltonian will serve as a starting
point of further model calculations.

In conclusion, the present analysis of shear elastic con-
stant based on the Hartree-Fock approximation indicates
the importance of electron-lattice coupling in a degenerate
band on the softening of shear modulus in the presence of
magnetic interactions. The phenomenon is

influenced

strongly by interorbital exchange J. In order to get more
quantitative results it is necessary to develop the present
model further —particularly the effects of dynamics of
spins through the generalized susceptibility approach.
Also, large softening of C at T= T, in iron indicates that

phonons excited at T, might modify the value of T, . All
these are under consideration now and will be reported in
due course.
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