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Ferromagnetic random-bond Ising model: Metastable states and complexity of the energy surface
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Metastable states of the ferromagnetic random-bond Ising model are produced by simulated
quenches from infinite to zero temperature. Two-dimensional systems (square lattice) show many
domains: the many-valley picture of the energy surface of spin glasses applies to these unfrustrated
systems as well. The number of the domains, which serves as a rough measure of the complexity of
the energy surface in two dimensions (but not in three), is only 30% greater for a broad bond distri-
bution (uniform from 0 to 1) than for a narrow one (uniform from 0,499 to 0.501). We conclude that
the uniform-bond model also has a complex energy surface; for a square lattice the surface has many
terraces (or steps) rather than many valleys, but for the honeycomb lattice it has a many-valley struc-
ture. The large domains in our two-dimensional systems have holes on many length scales and are
highly ramified, with total perimeter proportional to the number of sites; their dimensions from the

capacity, information, and radius-of-gyration definitions are 1.82+0.06, 1.84+0.04, and 1.83+0.07,
respectively. In three dimensions (simple cubic lattice), the initial concentrations of both up and
down spins exceed the percolation threshold and the metastable states are dominated by two large
spanning domains; only a few, small, embedded domains are found.

I. INTRODUCTION

Although important advances in the theory of the spin
glass (in both the short-range' and infinite-range versions
of the Edwards-Anderson model ) have recently been
made, many questions remain open; in particular, the
free-energy surface of the short-range model is incom-
pletely understood. The work reported in the present ar-
ticle (which deals only with the short-range Edwards-
Anderson model) was undertaken in part to determine
whether the complexity of this surface is unique to the
spin glass; we conclude that it is not.

Most of the theoretical literature (reviews are given in

Refs. 4 and 5; see also Ref. 6) on the energy surface of the
spin glass concerns the infinite-range model where the
barriers have infinite energy in the thermodynamic limit.
The states in this model are ultrametric: for any three
pure states, at least two of the three overlaps are equal,
and, as a consequence, the space of pure states has a
hierarchical structure.

In the short-range spin glass (with nearest-neighbor in-

teractions), the metastable states are domain states. '

Consequently, (i) energy barriers are finite in the thermo-
dynamic limit, (ii) the overlaps violate the ultrametricity
condition of the infinite-range model, and (iii) the metasta-
ble states have a hierarchical or tree structure, at least in
naive mean-field theory. These results obviously carry
over to unfrustrated nearest-neighbor models.

The many-valley picture of the energy surface figures
prominently in spin-glass articles and talks, and one can
easily gain the impression that the many-valley picture is

unique to the spin glass. This article shows that such is
not the case; although both randomness and frustration
are essential to the spin glass, neither is required for an
energy surface with many valleys.

We show that the frustration is unnecessary by show-
ing that a random but unfrustrated model has an energy
surface with many valleys; the frustration, however
much it increases the density of states in the important
low-energy region, however difficult it makes the deter-
mination of the ground state, is not required for the
many-valley structure.

To show that the randomness is unnecessary is even
easier; the many-valley picture applies to some uniform-
bond models (such as Ising spins on a honeycomb lattice)
as well.

Since a many-valley surface is then not unique to the
spin glass, what property is qualitatively different? Cer-
tainly not the ultrametricity. If ultrametricity means
equality of the overlaps, then the infinite-range spin glass
is ultrametric, but the short-range spin glass and the fer-
romagnetic random-bond model are not; if ultrametricity
means that the states have a tree structure, then all three
of these models are ultrametric. The obvious answer to
the above question is the degeneracy of the ground state
and the high density of states at low energy, but is this
all?

If there is no other qualitative feature distinct to the
spin glass, is the spin glass at least quantitatively different
with respect to the number (as distinct from the density)
of metastable states in short-range models? We have no
direct numerical evidence, but extrapolation of our results
on ferromagnetic random-bond Ising models suggests the
contrary: the number of metastable states appears not to
be significantly larger in the spin glass than for nearly uni-
form bonds. In support we offer the following argument.
By definition, whether turning over a specified clump of
spins yields a local energy minimum is determined by lo-
cal energy considerations in short-range models; the num-
ber of metastable states is therefore relatively insensitive
to the bond distribution. Support is provided also by ex-
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act calculations on one-dimensional models; the number
of metastable states is independent of the bond distribu-
tion (as long as the distribution is continuous).

Naturally enough, others have come to conclusions
similar to ours. Some aspects of our results were antici-
pated by Bak; in fact, our work was motivated in part by
his. Independently, Cieplak and Gawron' have reached
some of the same conclusions; in their words, "the ground
state of a disordered ferromagnet is but one of many local
energy minima" and the differences between a disordered
ferromagnet and a spin glass are "more of quantity than
of quality. "

We turn now to a description of our methods and re-
sults.

We have studied the metastable states of a random but
unfrustrated model, Ising spins interacting via random,
ferromagnetic bonds; the model can be viewed as an
Edwards-Anderson model of a randomly diluted fer-
romagnet (for which, however, more realistic models have
already been studied" ). This model has a twofold-
degenerate ground state in zero magnetic field. We
simulate quenches from infinite to zero temperature by
assigning random (+1) starting values to the spins and
then updating the spins (in random order) using single-
spin-flip dynamics (nonconserved order parameter) until
the system freezes. We then analyze the resulting
domain structure.

Our major result (that the many-valley picture describes
the energy surface of an unfrustrated model) is discussed
above. The bulk of the article deals with a less important
topic, the morphology of the domains; a brief summary of
results follows.

The two-dimensional systems (square lattice) show a
rich domain structure, with many embedded domains of
many sizes. The number of domains is only 30% larger
for a broad bond distribution (uniformly distributed from
0 to 1) than for a narrow one (uniform from 0.499 to
0.501). The smaller domains are necessarily compact, the
larger diffuse, with a continuous transition between the
two. The large domains are ramified, with total perimeter
proportional to the number of sites.

The three-dimensional systems (simple-cubic lattice)
show very different domain structures, with two large
spanning domains (each consisting of roughly half the
sites) and a few, very small, embedded domains.

The difference in structure between the two- and three-
dimensional systems arises because the initial concentra-
tions of both up and down spins are below the site-
percolation threshold in two dimensions and above it in
three; these thresholds are p, =0.593 for square lattices
and 0.312 for simple cubic; see, for example, Refs. 12 and
13.

II. PROCEDURES

The systems consisted of Ising spins on square and
simple-cubic lattices with periodic boundary conditions
and nearest-neighbor interactions; the external magnetic
field was zero.

The bonds were generated from a uniform distribution;
to reduce correlations, we generated a list of random
numbers and then assigned these numbers randomly to

the bonds. Broad bond distributions (0 to 1) were used in

the simulation of ten two-dimensional systems (512 sites),
a few smaller two-dimensional systems (128 sites), and
five three-dimensional systems (64 sites); narrow distribu-
tions (0.499 to 0.501) were used for two square lattices of
5 12 sites.

Initial values of the spins were assigned randomly (+1
with equal probability).

The updating method can be viewed either as a zero-
temperature Monte Carlo calculation (all favorable
changes accepted, all unfavorable changes rejected) or as
a mean-field calculation (the spin is set equal to the sign
of the total field); the two are identical at zero tempera-
ture. A site was chosen at random and the field from its
nearest neighbors calculated; the spin was flipped if
necessary to align it with the internal field and otherwise
left alone. Another site was chosen at random and the
procedure repeated. The system eventually reached a lo-
cal minimum in the energy surface, with each spin
aligned with the field from its neighbors; at this stage no
further flips are possible and the simulation was ter-
minated. Since we were concerned only with the static
properties of the spin configurations, and not with the
relaxation processes, in the later systems we accelerated
the convergence by avoiding the updating of spins
known to be correctly oriented. A site in a list of sites
to be checked was chosen at random, the spin updated,
and the site removed from the list, its nearest neighbors
being added to the list if the spin was incorrectly orient-
ed; no check was made whether the spins at the nearest-
neighbor sites were correctly oriented or whether these
latter sites duplicated sites already in the list. The list
initially contained all sites with incorrectly oriented
spins as determined by a global check made after several
passes through the lattice.

Different bond configurations, different initial values for
the spins, and different updating sequences were used for
each system.

III. RESULTS: SQUARK LATTICE,
BROAD DISTRIBUTION

Table I gives our results for the broad distributions;
listed are the mean and standard deviation (representing
system to system fluctuations) for the internal energy (per
site and per bond), the average broken bond (bonds JJ
with s;s~ &0 are "broken"), the fraction of broken bonds,
the fraction of majority spins (like those of Ref. 10, our
systems are unmagnetized), the average chord length
(measured along the axes of the lattice), the ratio of the
perimeter to the number of members in the domain (for
large domains), and the number of domains found in a
given simulation. Multiplying the fraction of broken
bonds by the number of sites gives the total perimeter of
the domains.

It is clear from the last entry in Table I (the number of
domains) that the energy surface of the two-dimensional
systems is highly complex, with many local minima, even
in this model with a unique (twofold-degenerate) ground
state; as we show later (but which is already obvious), the
domains found in a single simulation are only a tiny frac-
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TABLE I. Properties of metastable states of two- and three-dimensional Ising models (square and
simple-cubic lattices of 512 and 64' sites, respectively) with random, ferromagnetic bonds uniformly
distributed from 0 to 1.

Internal energy per site
Internal energy per bond
Average broken bond
Fraction broken bonds
Fraction majority spins
Average chord length
Perimeter per number of members
Number of domains

Square

—0.7471+0.0010
—0.3736+0.0005

0.3451+0.0007
0.1829+0.0005
0.503 +0.003
5.468 +0.015
0.681 +0.008

1490+24

S&mple cubic

—1.063 1+0.0024
—0.3544+0.0008

0.3877+0.0007
0.1878+0.0007
0.507 +0.005
5.325 +0.021
1.127 +0.021

7+2

tion of those possible for a given realization of the bonds.
The energy surface is highly complex in three dimensions
also, although this is not clear from the table. Obviously
frustration is not necessary for a many-valley structure.

The two-dimensional systems contained either one or
two infinite clusters with the following forms (in the ten
512 systems with broad distributions):

(i) One domain spanning site to site in both directions
(eight cases).

(ii) Two domains spanning site to site in one direction
(one case).

(iii) One domain spanning site to site in one direction,
with no other domain spanning in either direction (one
case); this is possible, as is obvious from percolation
clusters —an explicit example is a 3 system with up spins
at sites (1,2), (2,3), (3,2), and (3,3) and down spins at the
remainder. Another configuration, two domains with the
topology of the stripes of a barber pole joined end to end,
was found in a 128 system. Somewhat surprisingly (our
site concentrations were well below the site percolation
threshold), a fifth possibility, no infinite cluster, was not
found in any system (presumably because of the strong
short-range correlations in our systems); by definition, this
latter case is the only configuration in percolation systems
below threshold.

Embedded in these large domains were many domains,
with sizes ranging from two members to almost half the
number of sites, including large domains which spanned
side to side but not site to site.

Figure 1 shows domains in a 128 system, sites with up
and down spins being shown with white and black
squares. A white domain spans site to site in both direc-
tions; embedded in it is a large black domain which
stretches from the lower left to the upper right. Domains
exist within other domains, to four levels. Individual
domains are only tenuously connected; many can be cut
into two parts by flipping a spin or two. Even the span-
ning paths have narrow necks —recall that the starting
concentration of both up and down spins was below the
percolation threshold.

The domains do not have simple geometric shapes.
The large ones have many arms which wind about,
inflate, narrow, reinflate, split into other arms, etc. ;
penetrating into the domains are large fjords. The
domain surfaces (both internal and external) are rough;
the interiors of the domains contain many holes, with a

broad distribution of length scales. Only the smallest
domains are compact and the average chord length is con-
sequently not a measure of the average linear extent of the
domains.

The domains superficially resemble percolation clusters,
but have considerably more short-range order at the same
site concentration; the probability that two nearest neigh-
bors have the same sign (and thus belong to the same
domain) is -0.82. Figure 2 shows how the correlation
functions depend on distance; the anisotropy is small (no
more than 4&&10 in the probabilities). We have not in-
vestigated whether a correlated site percolation model
(with preferential occupation of sites which are nearest
neighbors of sites already occupied) would yield similar
clusters; there is certainly a minor difference —domains of
a single site cannot occur in our systems.

That the domains are ramified is shown by Fig. 3, a
log-log plot of the total perimeter of each domain versus
the number of sites in the domain; both spanning and em-
bedded domains are included. The origin of the linear re-
lation between perimeter and number of members (for

~ I

FIG. 1. Domains in a 128&128 Ising system, with periodic
boundary conditions, after a simulated quench from infinite to
zero temperature, followed by Monte Carlo updating; sites with

up (down) spins are shown with white (black) squares.
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large domains) is clear from Fig. 1, which shows few
homogeneous regions of significant extent; a large region
surrounded by spins of one orientation is likely (because
of the random starting configuration) to contain a domain
of the other. Despite the linear relation, it seems rnislead-
ing to call the domains stringy, and we have chosen
diffuse instead.

Figure 4 shows, for the five largest embedded
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FIG. 3. Log-log plot of the perimeter of each domain vs the
number of sites belonging to the domain; the perimeter is propor-
tional to the number of sites for large domains. The knee in the
data arises because the smaller domains cannot have holes.

FIG. 4. Log-log plots of the number of sites belonging to a
domain and included within a circle of radius R as a function of
R for the five largest embedded domains; successive plots are
shifted upward by half a decade. The vertical bars mark the ra-
dii of gyration; the numbers to the right are the numbers of sites.

domains, log-log plots of the number of sites within a
circle of radius R (centered at the center of mass) versus
R. The plots are too irregular to allow precise deter-
mination of an exponent; our systems have strong short-
range order, and therefore have strong local inhomo-
geneities, and the numerical determination of the ex-
ponent is more difficult than, for example, for percola-
tion clusters. An exponent of 2 is consistent with the
data; that is, the domains appear to be homogeneous on
an intermediate length scale. Note the extreme extent of
the domains relative to the linear dimension (512 units)
of the lattice; a circle of radius 256 units spans the sys-
tem, but the second largest domain has a site between
527 and 528 units from the center of mass.

Figure 5 plots the radius of gyration of each embedded
domain versus the number of sites belonging to the
domain. The slope of the best line through the points is
0.54+0.02; that is, the size (number of members) of the
domains varies as the radius of gyration to the power
1.83+0.07, definitely less than the Euclidean dimension.
This value is consistent with values for the exponent (d~
in Ref. 14) for percolation clusters (both bond and site) at
threshold in two dimensions, but the errors are large; our
definition of the dimension is the same as in Ref. 14, but
we determined the dimension directly whereas Ref. 14
used scaling relations. Our value for the exponent is con-
sistent also with values determined directly' (from simu-
lations of site and bond percolation on square lattices at
threshold). Note, however, that our site concentration is
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FIG. 5. Log-log plot of the radius of gyration of embedded
domains vs the number of members.

S(L)= —g P;(L)ln[P;(L)],

we defined d„„and d;„i. to be the slopes of plots of

14

considerably below threshold.
Figure 6 shows some examples of the determination of

the capacity and information dimensions d„~ and d,„t-.

Defining X(L) as the number of squares of side L which
contain at least one site belonging to the domain, P, (L) as
the fraction of occupied sites in the ith square, and S(L)
as

ln[%(L)] and S(L) versus ln(1/L); in the calculation of
these quantities, it is necessary to use an extended lattice
to treat properly domains which wrap around the boun-
daries. For obvious reasons the regions of small and large
I must be discarded, leaving for the calculation of the di-
mensions only a small intermediate region (L =7—80 was
used), a region so small as to strain, perhaps beyond a
reasonable limit, the interpretation of these quantities as
fractal dimensions; the plots had noticeable curvature,
even over this small interval. Averaging over 15 domains
(both spanning and embedded) with more than 4 X 10
members, we find d„~=1.82+0.06 and d;„i.——1.84+0.04,
consistent both with the dimension from the radius of
gyration and with the inequality d;„~(d „~. The informa-
tion dimension (which arose in another context' ) and
other dimensions are discussed in Refs. 17—19.

Figure 7 shows the distribution of bonds (as a check
on the random-number generator) and the distribution of
broken bonds; obviously small bonds are more easily
broken than large ones, but many large bonds are broken
in these quenched systems (which are far from equilibri-
um).

Figure 8 shows the distribution of internal fields; con-
siderable relaxation will occur at even very small tem-
peratures due to the large weight at small fields; again,
the systems are far from equilibrium. Shown for com-
parison (and as another check on the random-number
generator) is the distribution of internal fields in the fer-
romagnetic state; it approximates a Gaussian, as expect-
ed for the sum of four random numbers.

Our systems are likely too small (Ref. 20 studies per-
colation clusters in lattices of 2. 56)&10' sites), and cer-
tainly too few, to apply a scaling analysis and so we do
not present our results on the distribution of domain
sizes. There is, in fact, no obvious definition of thresh-
old for our systems, and so it is not all obvious whether
a scaling relation should hold.
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FIG. 6. Sample plots used to determine dimensions from the
capacity and information definitions. In[N(L)] (squares) and
S(L) (triangles) are plotted against ln(1/L) for the five largest
domains, the largest at the top; data are shifted successively up-
ward by 0.5.
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FIG. 7. Distribution of bonds (upper points) and broken
bonds (lower points); the bin width is 0.01.
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where X is the number of sites, we found q&2
——0.406,

qz3 ———0.002, and q» ——0.001; that is, 70%%uo of the spins
had the same orientation in systems 1 and 2, but only
50% of the spins in system 3 were parallel to those in
the other two systems —a random choice for the spins
would also yield 50%%uo parallel. The final spin
configuration depends strongly on the updating sequence
and even more strongly on the initial spin configuration,
demonstrating further the complexity of the energy sur-
face: For a given bond configuration, many domains are
found with a single initial spin configuration and updat-
ing sequence, and many others are found with different
initial configurations and updating sequences.

The numerical results presented in Table I are particu-
lar to our choice for the bond distribution; the amount
of randomness (in the bonds) is important. For example,
in square lattices with ferromagnetic bonds, when the
largest and smallest bonds satisfy J „&3J;„stubs of
unit thickness (many can be seen in Fig. 1) cannot occur,
although bridges of unit thickness are still possible, and
the smallest domain has dimensions 2&&2, rather than
2X 1 for the broad (0 to 1) distribution discussed above.
A decrease in randomness will therefore decrease both
the number of domains and the roughness of the sur-
faces; decreasing the randomness to zero (by going to the

We investigated the effects of different initial condi-
tions and updating sequences on the final configuration.
Three simulations were performed with the same bond
configuration, two (numbers 1 and 2) with the same ini-
tial spin configuration but different updating sequences,
and a third (number 3) with a different initial
configuration and a third updating sequence. Defining
the overlap of two configurations a and P by

(2)

uniform-bond model) will, however, not get rid of the
domains, as discussed in the next paragraph.

The domain states are not a consequence of the ran-
domness, for they occur also in the uniform-bond Ising
model. In discussing the stability of the domains, how-
ever, one must distinguish between lattices according to
whether the coordination number z is even or odd. In
the honeycomb lattice (z odd), there are no ambiguous
spins; domains are stable with respect to a nonzero mag-
netic field. In the square and simple-cubic lattices (z
even), spins at the corners of domains are ambiguous;
domains are unstable with respect to an infinitesimal
magnetic field, apart from some unusual cases (in an up
field, a rectangular spanning domain of down spins is
metastable, and an up domain in a down matrix is
stable). The instability can be seen by starting with a
rectangular domain of down spins in a matrix of up
spins, in zero magnetic field, so that the four spins at the
corners are ambiguous. On the application of any posi-
tive (up) field each corner spin will align with the field
(the perimeter and the interaction energy are unchanged)
to produce two more corner spins, also ambiguous, until
the entire down domain is consumed. Domains in the
uniform-bond model differ also in that they can be
translated without change in energy or loss of self-
consistency.

IV. RESULTS: SQUARE LATTICE,
NARROW DISTRIBUTION

We investigated the effect of decreased randomness by
simulating two 512 systems with bonds uniformly distri-
buted in the interval [0.499, 0.501). The results (most of
which follow qualitatively from the above) were (average
values) as follows: internal energy (per site)= —0.686,
fraction of broken bonds =0.157, average chord length
=6.37, a linear relation between the perimeter and size
of large domains with the ratio of perimeter to number
=0.583+0.008, and number of domains =1130. About
half the decrease in the number of domains upon going
from the broad distribution to the narrow can be ac-
counted for by deleting domains with two and three
members from the number (1490) for the former, but the
justification for the deletion, that these small domains
cannot occur with the narrow distribution, fails under
scrutiny. The fractions of sites with two, one, and zero
neighbors oppositely oriented were 0.147, 0.332, and
0.520, respectively. The capacity and information di-
mensions were d„~=1.84+0.06 and d;„z——1.86+0.04,
consistent with the values found for the broad distribu-
tion.

We have not simulated quenches of uniform-bond
models, but the results of the preceding paragraph
should apply, apart from difficulties (which can be
resolved, but only arbitrarily) caused by ambiguous
spins.

V. RESULTS: SIMPLE-CUBIC LATTICE

Only the broad bond distribution (0 to 1) was used for
the three-dimensional systems. As Table I shows, these
systems are quantitatively similar to the two-dimensional
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ones in many respects (the fraction of broken bonds, the
average chord length, etc. , and also the distributions of
chord lengths), but the numbers in Table I (apart from
those on the last line) conceal a radical difference in

structure. The number of domains is smaller by a factor
of roughly 200 in d =3 (even though the number of sites
is the same) and the domains have entirely different
character; in three dimensions, there are two large span-
ning domains (taking up fractions 0.487 to 0.513 of the
sites) plus a few (two to seven), small (three to twelve
members) embedded domains. As discussed in the Intro-
duction, in two dimensions neither the up nor the down
spins percolate in the starting (random) configuration,
whereas in three dimensions there are already in the
starting configuration large spanning domains of both
species. The absence of large embedded domains in

three dimensions is clearly due to the unlikelihood of
creating a large three-dimensional hole, starting from
random values.

Although only a few embedded domains are found in
three dimensions, the energy surface is nevertheless com-
plex; obviously the walls separating the spanning
domains can be relocated in many ways.

The dependence of the character of the domains on di-
mension has consequences for numerical studies of relax-
ation at nonzero temperatures following simulated
quenches from high temperatures; the article by Fish-
er, ' and references therein, deal with predictions for the

behavior. The spanning domains have enhanced (topo-
logical) stability; after a quench to low teinperature,
there will be an initial stage during which most spins
align with their local fields, followed by slow relaxation
dominated by the decay (and growth) of embedded
domains in two dimensions, and by wall wandering in
three. Boundary conditions will be very important in
three dimensions.

Note added in proof. The recent work of Bak, Tang,
and Wiesenfeld on the self-organized criticality of sys-
tems far from equilibrium seems to explain the sealing
behavior which we find above. Our results (including
the distribution of domain sizes in two dimensions) are
consistent with the lack of a natural length larger than
the plus-minus correlation length of roughly two units
seen in Fig. 2. Qualitative support for this interpretation
(due to Bak ) is provided by Fig. 8 which shows a near-
ly uniform distribution of internal fields in the low-field
region.
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