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The unusual magnetic behavior of the heavier Ce monopnictides may be understood on the basis
of a model Hamiltonian for a system of moderately delocalized f states hybridizing with band
states. The parameters entering the theory have previously been taken as phenomenological input.
We present a first-principles calculation of the parameters in the model Hamiltonian based on
self-consistent, warped —muffin-tin, linear muffin-tin-orbital (LMTO) band structures calculated for
CeBi, CeSb, CeAs, and CeP. With the self-consistent potential, we calculate the bands and the
band-f hybridization matrix element entering the Anderson lattice Hamiltonian. The band-f hy-
bridization potential is derived from the 4f 5&2 resonance in the potential surrounding a Ce site;
the f-state energy with respect to the band Fermi energy and the f fcorre-lation energy U are es-
timated by averaging f-state eigenvalues off, f ', and f' Ce configurations. The result is used to
calculate the anomalous crystal-field splitting of the Ce 4f&qz manifold predicted by the model
Hamiltonian for the Ce monopnictides. Due to the structure of the cubic symmetry group, band-f
hybridization has a greater eff'ect on the I 8 quartet than on the I 7 doublet of the 4f, ~z manifold,
and the reduction of the splitting of the crystal-field levels from that expected on extrapolation
from the isostructural heavier rare-earth monopnictides may be understood quantitatively on this
basis. Our quantitative results are in good agreement with experimental values. We also calculate
the range functions describing the anisotropic magnetic behavior of CeBi and CeSb, in fair agree-
ment with phenomenological parameters fitted to data on those materials.

I. INTRODUCTION

The cerium monopnictides, which form in the rocksalt
structure, exhibit interesting magnetic behavior. The
heavier Ce monopnictides order in complex magnetic
structures characterized by strong anisotropy along a cube
edge and have complicated magnetic excitation spectra. '

The paramagnetic crystal-field splitting of the 4fs&2 mani-
fold in these compounds is much less than expected from
extrapolation from other rare-earth monopnictides.
These properties can be understood' as being charac-
teristic of the transition region between itinerant and lo-
calized f-electron behavior that occurs for light rare
earths (Ce,Pr, Nd) and light actinides (U,Np, P) in ap-
propriate chemical environments. The key aspect of the
electronic behavior giving the unusual magnetic properties
is the hybridization (mixing) of the f-electrons with band
electrons of non-f atomic parentage. The degree of f
electron localization, and hence the importance of
hybridization-mediated effects, is sensitive to chemical en-
vironment and varies widely depending on the specific
compound or alloy. The qualitative dominance of
hybridization-mediated effects on the magnetic behavior is
expected to diminish strongly on going to the heavier rare
earths or actinides in fixed chemical environment (along
the rare earth or actinide row for a given isostructural
compound such as a monoantimonide), and this expecta-
tion is supported by experimental evidence.

The Schrieffer-Wolff transformation on the Anderson
Hamiltonian provides a model Hamiltonian from which
the unusual magnetic properties arising from the band-f
hybridization may be understood. A characteristic pa-

rameter that arises in the theory is

8(k, m, n;k', m', n')

1 1+
cI, —E —n U ck —E —n'U

where Vk is the band-f hybridization matrix element in
the Anderson Hamiltonian, the ck are band energies, U
is the intra-atomic correlation energy, and E +nU is
the energy to add an f electron to a Ce f" configuration.
The diagonal elements (in k, k') of 8 describe a hybridi-
zation induced shift in the f-state energy levels, which
may be regarded as a renormalization of the bare
crystal-field levels. Hybridization between band states
and the I s quartet of the 4f &&2 manifold is stronger than
hybridization between band states and the I 7 doublet of
the manifold. This can be understood quantitatively by
considering the structure of the cubic symmetry group
as described in Sec. IVA, and our quantitative calcula-
tions show that the anomalous crystal-field splitting ob-
served in the Ce monopnictides may be understood on
this basis. The off-diagonal elements of 8 describe a
single-site band-f exchange interaction, and the unusual
magnetic ordering and magnetic excitation behavior of
the heavier Ce monopnictides has been explained in
great detail on the basis of a two-ion exchange interac-
tion derived through second-order perturbation theory
on the band-f exchange term. '

The parameters entering the theory have previously
been taken as phenomenological input. While the success
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of the theory in describing the diverse magnetic behavior
observed in these materials is evidence that the essential
physics of the band-f interaction is contained in the mod-
el Hamiltonian, the phenomenological parameters that
enter the theory do little to elucidate the origins, in the
electronic structure, of the observed behavior and lack
predictive power in extending the theory to new systems.
It is therefore desirable to obtain an absolute, first-
principles prediction of the parameters entering the
theory.

In this paper, we present a first-principles calculation of
the model parameters for CeBi, CeSb, CeAs, and CeP,
based on self-consistent, warped —muffin-tin, linear
muffin-tin-orbital (LMTO) band structures calculated for
these materials. The first step is the generation of a self-
consistent, one-electron potential for each compound, cal-
culated with f states treated as corelike states. With the
potential thus obtained, we calculate the (non-f) bands
and the band-f hybridization matrix element as a function
of band index and wave number with a single-site hybridi-
zation potential based on the 4f,&2 resonance in the po-
tential surrounding a Ce site. The f-state energy and the
f-f interaction energy U entering Eq. (1.1) are estimated
by averaging f-state eigenvalues obtained from Ce
muffin-tin potentials with f-state occupations of 0, 1, and
2 electrons.

In Sec. II we review the application of Schrieffer-Wolff
theory to the magnetic structure and paramagnetic
crystal-field splitting in the Ce monopnictides. Although
the phenomenological development is based on the
second-order terms in the transformed Hamiltonian, a de-
tailed calculation of the theoretical parameters requires a
consistent application of the theory through fourth order
in the band-f interaction to avoid singularities induced by
the Schrieffer-Wolff transformation. In the Appendix we
give a brief description of the fourth-order terms in the
transformed Hamiltonian contributing to the exchange in-
teraction describing the magnetic behavior of Ce systems.
In Sec. III, we describe the calculation of the bands, the
band-f hybridization matrix element, and the f-state en-

ergy and f -f interaction U. The calculated parameters

are used to obtain the shift in the crystal-field levels in
paramagnetic CeBi, CeSb, CeAs, and CeP predicted by
the model Hamiltonian, and to calculate the range func-
tions describing the magnetic structure of CeBi and CeSb.
In Sec. IV, the predicted crystal-field level shifts are com-
pared with observed values, and the calculated range pa-
rameters are compared with phenomenological parame-
ters fitted for those materials.

II. MODEL HAMILTONIAN

The model Hamiltonian is derived from the Anderson
Model for a lattice of Ce ions. The spin-orbit splitting of
the Ce f states is on the order 0.3 eV, much larger than
the band-f interaction and the f-band widths of the Ce
monopnictides, and the 4f7/2 manifold may be neglected.
We write the Anderson Model Hamiltonian for the lattice
as

~A ~0+~1
~o=g EI nu+ g E n (R)+ —,

' Ug N(R)[N(R) —1],
k m, R R

(2. 1)

[ ~&m(R)ckcm (R)+ ~km «)cm (R)cu ]
k, m, R

where the E~ and E are band and f-state energies, U is
the intra-atomic f fcorrelation -energy, V~ is the band-f
matrix element of a single-particle (hybridization) poten-
tial, and R labels the lattice sites. The total number
operator N in Eq. (2.1) is given by N(R)=g n (R).
Schrieffer and Wolff defined a canonical transformation
e designed to diagonalize &z through first order in &&.
With 5 defined so that [S,&0)= —A~, the Schrieffer-
Wolff transformation e &qe on the Anderson Hamil-
tonian results in a Hamiltonian of second and higher or-
der in &,. Within an f basis, neglecting terms creating
or destroying two f electrons at a single site, the second-
order term of the transformed Hamiltonian may be writ-
ten as

JVs —&Q +&eg +&f
pc (R)c (R)[(1 n~)8(k, —m', 0;k, m, O)+nl, P(k, m', 1;k,m, 1)]

R, m, m' k

n (R)nq g 8(k, m', 1;k,m', 1)
R, m, k m'

ci, cj, c (R)c (R)[8(k,m, O;k', m', 0)—8(k, m, 1;k', m', 1)]e
k, k' R, m, m'

g c (R)c (R')g d(km'1, km 1)e'"'
R, R' mm' k

(2.2)

with the exchange parameter d" given by Eq. (1.1). The
prime on the summations in Eqs. (2.2) denotes k&k' and
R&R'. The net effect of the Schrieffer-Wolff transforma-
tion, to second order in &&, is to replace the band-f in-

teraction term in the Anderson Hamiltonian by a direct
scattering term gfo, an exchange scattering term &,„, and
an f fbanding term &f. -

The phenomenological theory developed to describe the
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magnetic properties of the Ce monopnictides' has been
based on a superposition of terms obtained by applying
the Schrieffer-Wolff transformation to the Anderson mod-
el for an isolated Ce impurity, neglecting terms of higher
than second order in &]. The main difference, in second
order, between the phenomenological theory and
Schrieffer-Wolff theory applied to the Anderson lattice
Hamiltonian is the appearance of the term &f. In the
limit U~0, &f may be used to describe the formation of
bands from localized orbitals. ' In the limit U~ op ap-
propriate for Ce systems, Af couples states differing in

energy by U; i.e., the bandwidth is suppressed by a factor
of I/U. The matrix element of &f within an f' basis
vanishes, and for our purposes, &f will contribute, in
fourth order in A'&, to the high-energy channel
(f'~f ~f ') of the two-ion exchange coupling described
below (but not to the low-energy (f '~f ~f ') channel).

In this paper, we are concerned with two consequences
of Eq. (2.2) applied to the Ce monopnictides: the devia-
tion of the measured paramagnetic crystal field splittings
from values expected from extrapolation from other rare-
earth monopnictides and the unusual, anisotropic magnet-
ic ordering and excitation behavior exhibited by CeSb and
CeBi. The direct scattering piece in Eq. (2.2) is a shift in
the f-state energy levels due to hybridization with band
states. For the rocksalt structure Ce monopnictides, Ho
may be regarded as a perturbation on the bare crystal-
field levels. Transforming to cubic crystal-field coordi-
nates M diagonalizes Ao, resulting in a shift in the
crystal-field levels given by

bEM —— g 8(k, M, O;k, M, O)+ g 8(k, M, 1;k,M, 1)

g 8(k, M', I;k, M', I)
ck (EF M'

(2.3)

The first term in Eq. (2.3) is negative, and has the largest
magnitude if U is large; the second term is positive with
a magnitude reduced by a factor of —1/U. The last
term in Eq. (2.3) is a uniform lowering of the f levels.
In general, hybridization between band states and f
states will affect the I 8 quartet of the Ce 4f 5&& manifold
more strongly than the I 7 doublet of that manifold.
(This can be seen from the symmetry structure of the cu-
bic group as discussed in Sec. IV A. ) The difference in
band-f hybridization between the I 7 doublet and the I 8

quartet will change the splitting of the bare crystal-field
levels; the sign and magnitude of the effect depends on
the shape and character of the density of states near the
Fermi energy and the proximity of the f-state energies
Ef and Ef+ U to the Fermi energy. In Sec. IV the rela-
tive shift in the I 7

—I'8 splitting predicted by Eq. (2.3) is
evaluated for CeBi, CeSb, CeAs, and CeP. We find that
the magnitude of the shift in the crystal-field levels gives
a good account of the deviation of the measured split-
tings from expected values. The effect arises from hy-
bridization with bands throughout the Brillouin zone,
rather than being dominated by contributions from band
states in the vicinity of the zone center.

The exchange scattering Hamiltonian H,„ in Eq. (2.2),
treated in second-order perturbation theory on band

states, results in an indirect, two-ion exchange interaction
between Ce f states, mediated by band states. For Ce
ions at lattice sites R& and Rz, the two-ion exchange in-
teraction takes the form

H(1, 2) = —X,X,E(m i, mq', m ),m (', Rp —R))mlm I mPmP

Xc ~ (2)c,(2)c ~ (1)c,(1), (2.4)

where the range functions E (R) are given by

&(m2, m2, m'~', m ~,'R)= —&,, &~,&,„,&~,

[J ' '(k', k)]*J ' '(k', k)

—i (k —k') RQe ) (2.5)

with

J (k, k')=J(k, m, O;k', m', 0) —J(k, m, l;k', m', 1) .

(2.6)

The two-ion exchange interaction, Eq. (2.4), with range
functions E(R) treated as phenomenological input, has
been shown to give a good account' of the magnetic or-
dering and magnetic excitation behavior found in CeSb
and CeBi. When the f states in Eq. (2.4) are quantized
with respect to the interionic axis and the bands are
symmetric about this axis, magnetic quantum numbers
are preserved; i.e., m

&
——mz and m z ——m &. Furthermore,

with these constraints, it may be shown" that in the
limit of large

~

R ~, those range functions for which
m„mz ———,

' (equal by symmetry) dominate the two-ion
exchange interaction. The phenomenological description
of the magnetic behavior of CeBi and CeSb thus uses a
single-range parameter for each neighbor shell, corre-
sponding to transitions involving m, m'= —,

' states (quan-
tized along the interionic axis); the anisotropic magnetic
structures result from this directional coupling in the cu-
bic crystal environment.

The f-level shift, in Eq. (2.3), is well defined. Inserting
Eq. (1.1) into Eq. (2.3), it is evident that the energy
differences entering the denominators of J are either be-
tween unoccupied band states and Ef &Ez or between oc-
cupied band states and Ef+ U ~ Ez, and hence there are
no singularities. Evaluating the range functions, Eq. (2.5),
derived from the second-order Hamiltonian (Eq. (2.2), re-
quires summing over bands both above and below the Fer-
mi energy, and we would have to deal with the poles in the
exchange parameter, Eq. (1.1). Giving the f level Ef an
infinitesimal width is insufhcient; the result may be seen to
diverge as [d (e~ Ef )], and we ha—ve previously" evalu-
ated Eq. (2.5) using a finite width parameter derived from
the 4f5&i resonance width of the potential surrounding a
Ce site. This procedure is unnecessary, however. As we
indicate in the Appendix, keeping all terms consistently to
order (H~) both in the Schrieffer-Wolff transformation
and perturbation theory on Eq. (2.2), we find a well-
defined two-ion exchange interaction, given by Eq. (2.4)
with range parameters given by
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D(mmmm~ mI, m, ;R)= —g Vkm Vk, Vl ~Vk' e '" "' F(ekek ),
k, k'

with F(e,e') defined by

(2.7)

F(e, r.') =e(E~ —e)e(e' —EF) c' —Ef
1 1 2 1

, +
c. Ef ——U e —e' U (e Ef——U)(c' Ef—)

+-,'e(.—E,)e(' —E, )
1 2 1 1—+ +

(e Ef )(r—,' Ef ) —U c Ef —e' Ef—
1 2 1 1+ —,

' e(E —e)e(EF —e')
( c E—f —U)( e' E—f —U) U e Ef——U s' E—f —U

(2.8)

where e(e) is a step function. The result is somewhat
complicated, but with Ef &EF &Ef+ U, well defined and
relatively insensitive to the position of the f-levels Ef and

Ef+ U. In Sec. IV, range functions calculated through
use of Eqs. (2.7) and (2.8) are found to be in reasonable
agreement with phenomenological parameters fitted to the
observed magnetic structures of CeBi and CeSb.

III. THE MODEL PARAMETERS

In this section, a correspondence is established between
the model Hamiltonian parameters and our one-electron
band structures. The first step is the generation of a self-
consistent one-electron potential for the Ce monopnictide
being studied. We identify the Ce 4f 5&& states in the mod-
el Hamiltonian with the l =3, j = —,

' resonance in the local
potential surrounding a Ce site, and obtain a normalizable

f state by imposing a localization potential on the reso-
nant scattering state. This procedure for obtaining a lo-
calized f state is performed at each iteration of the self-
consistency process in the band calculation; thus the Ce
4f state is treated as a self-consistent core state, rather
than as an itinerant state. The crystal potential is calcu-
lated by iterating to self-consistency with a single valence
electron occupying this corelike f state; hybridization be-
tween band states and f states is neglected in this process.
After achieving self-consistency, we obtain the band-f hy-
bridization potential for input into the model Hamiltonian
as the matrix element of the local Hamiltonian at a Ce site
between the localized Ce f state and band states, project-
ing band-f overlap out of the matrix element to correct
for band-f nonorthogonality. The extreme localization of
the resonant f state about a Ce site and the form of the
tails of the LMTO eigenvectors provide a relatively simple
form for the band-f matrix element entering the model
Hamiltonian. The two remaining parameters we require
are the position of the f level Ef with respect to the Fermi
energy and the intra-atomic f -f correlation energy U.
We identify Ef as the energy required to place the Ce f
electron in a band state at the Fermi energy EF in the
unhybridized band-f system, and Ef + U as the energy to
remove a band electron from the Fermi level and create an
additional f electron, estimating these energies by averag-
ing f-state eigenvalues for Ce muon-tin potentials calcu-
lated with f-state occupations of 0, l, and 2 electrons.

A. Potential and band structure

TABLE I. Geometrical parameters of the self-consistent
LMTO band structure calculations for the Ce monopnictides. a
is the lattice parameter and sc, and s~ are the Ce and pnictogen
muffin-tin radii, respectively, in atomic units.

CeBi
CeSb
CeAs
CeP

a (a.u. )

12.284
12.118
11.490
11.210

3.133
3.110
3.052
3.010

s~ (a.u. )

3.009
2.949
2.693
2.595

The self-consistent one-electron potential describing the
band structure of each Ce monopnictide studied is ob-
tained from a warped —muffin-tin LMTO band structure
calculation, i.e., an LMTO calculation in which the poten-
tial is spherical (except for a small correction) in nonover-
lapping spheres and has unrestricted spatial dependence in
the interstitial between spheres. This calculation differs
from the more common LMTO-ASA (atomic-sphere ap-
proximation) method' in several features. The basis
functions are muffin-tin orbitals based on nonoverlapping
spheres. In the interstitial region, these bases have, in
general, a nonzero kinetic energy, which is treated as an
additional variation al parameter. The electron density
and potential in the interstitial region are calculated in re-
ciprocal space by expanding the spherical wave bases in
Fourier series. The only shape approximation to the po-
tential is a spherical averaging in nonoverlapping muffin-
tin spheres surrounding the Ce and pnictogen sites.

Exchange and correlation are treated in the Hedin-
Lundqvist' version of the local-density approximation.
Core states are included self-consistently. The potential is
evaluated at the experimental volume, and the radii of the
nonoverlapping muffin-tin spheres are chosen by trial and
error to make the potential continuous where spheres
touch. Geometrical parameters for the Ce monopnictides
are given in Table I.

Since crystal-field effects and the change in these effects
by hybridization are an important physical feature of the
systems being discussed, the point arises that one might
expect charge anisotropy with a corresponding cubic con-
tribution to the potential within the muffin-tin spheres.



36 SYNTHESIS OF BAND AND MODEL HAMILTONIAN THEORY. . . 3813

One can then ask whether it is desirable in principle and
significant in practice to include these cubic potential
corrections to the spherical potential we use in the present
calculations. In fact, the prototype materials of the type
we want to treat are CeSb and CeBi. For these materials,
both from experiment and from our calculations as de-
scribed below, the hybridization dressing of the crystal
field almost exactly cancels the bare crystal field, and the
net crystal-field splitting is small. Thus a spherical poten-
tial probably provides a better starting potential for the
self-consistency procedure than one using a cubic poten-
tial corresponding to the bare crystal field. On the other
hand, for materials where such close cancellation does not
exist, and probably more significantly for magnetically or-
dered material (as discussed briefiy in the final section, it
is probably desirable to have the potential within the
spheres reflect the lowered symmetry of the system.

The Ce f electrons are treated as localized states rather
than itinerant states in this process. The precise definition
of the wave functions of these states is given in Sec. III B
below; in essence the f electrons are treated (self-
consistently) as core states and are not allowed to hybri-
dize with band states.

The radial basis functions for the (non-P bands are ob-
tained within the muffin-tin spheres from a scalar relativ-
istic radial equation spin-orbit coupling is recovered
perturbatively and self-consistently. The band structure is
split into two energy windows: the semicore Ce 5p and
pnictogen s bands are calculated with an imaginary
LMTO tail parameter ~, with ~ = —0.6 Ry, and the Ce
valence 6s, 6p, and 5d states and pnictogen valence p and
d states are calculated with a tail parameter ~ -0.25 Ry.
To maintain a measure of orthogonality to the Ce 4f
states, the f components of the band tails in a Ce muffin
tin are represented by 5f orbitals. Core states are ob-
tained from the Dirac equation for the spherically aver-
aged potential at each site. The bands are evaluated at 60
"special" points' in the fcc Brillouin zone and iterated
until the potential is converged to within less than 0.1

mRy.
The band structure of CeSb, typical of the Ce mono-

CeSb

0.0 E 0.5

g(Ry )

/
1.0

pnictides, is plotted along symmetry lines in Fig. 1. The
energy of the resonant, corelike Ce 4f&&2 state lies about
15 mRy below the Fermi energy in this figure. In Sec.
IV, we treat the effects of band-f hybridization within the
context of the model Hamiltonian. The bands dominating
the hybridization-induced properties are largely derived
from pnictogen p states and Ce 5d states. For the discus-
sion of the hybridization effects given below, it is instruc-
tive to consider the composition and symmetry of the
bands at point I, shown in Fig. 1. Pnictogen p bands at
I have I 6

' and I 8
' symmetry. Ce d bands at I are

bases for three representations, one with I 7+' symmetry
and two with I 8+' symmetry.

Around I", the bands exhibit a fair amount of p-d hy-
bridization. At point I, both the I s+ (j=—', ) and I 7+'

(j=—,') d states are below the I ~~

'
p states; the bands

coming into I from above are d bands, however, and the
bands coming into point I from below are p states. Four
bands cross the Fermi energy between point I and point
X in Fig. 1. The two crossings closest to point I are

FIG. 2. The density of states of the LMTO band structure of
CeSb corresponding to the band structure shown in Fig. 1.

200

100-

CeSb
200

100-
+
8

tX EF 0
CC E

—100- —100-

-200
L X K, U

-200
L X K,

FIG. 1. The warped —muffin-tin LMTO band structure of
CeSb, calculated with Ce 4f states treated as localized states,
without band-f hybridization, along symmetry lines in the fcc
Brillouin zone. Energies (in mRy) are measured with respect to
the Fermi energy.

FIG. 3. The warped —muffin-tin LMTO band structure of
CeSb, calculated with the Ce 4f states treated as band states,
along symmetry lines in the fcc Brillouin zone. Energies (in

mRy) are with respect to the Fermi energy of the fully hybri-
dized band structure.



3814 JOHN M. WILLS AND BERNARD R. COOPER 36

CeSb
200-

GeAs

t 00-

E, 0
E

-100-

f r r t r

0.0 E 0.5
-200

L X K, U

(Ry )
FIG. 4. The density of states of the hybridized band structure

of CeSb shown in Fig. 3 (solid line).

FIG, 6. The band structure of CeAs, calculated with the Ce
4f states treated as localized states, along symmetry lines in the
Brillouin zone. Energies (in mRy) are with respect to the Fermi
energy.

mainly Sb p bands. The two crossings closest to point X
are mixed p -d bands; the upper of these two bands has
more d character close to point 1, and more p character
close to point X. The density of states corresponding to
the band structure in Fig. 1 is given in Fig. 2.

For comparison, Fig. 3 shows the fully hybridized
LMTO band structure of CeSb. Ce f states form two sets
of fiat bands below (4f5&2) and above (4f7/p) the Fermi
energy, hybridizing most strongly with (non-f) band states
close to I and between 1 and X. At I, the f,&2 states
form two representations (I'7 ' and 1 s

' and the f7/
states form three representations (1 6 ', 1 7

', and I s ).
The density of states corresponding to the band structure
of Fig. 3 is given in Fig. 4. The position of the f levels is
evident. The center of the f5&2 peak (the sharp peak just
below the Fermi energy) lies within —1 mRy of the ener-

gy of the localized orbital we use to treat the f states in

the self-consistency process.
While we wi11 take the energy of the localized orbital

as characterizing the wave function of the f state
entering into hybridization with band states, it is not ap-
propriate to take sf as describing the position of the f lev-

els Ef, in the model Hamiltonian. Ef enters the model
Hamiltonian as the energy to transfer an f electron to a
non-f band state i.e. , to change the Ce 4f-projected
charge from 1 to 0 on a single Ce site, and we do not
identify cf with Ef.

The band structures of CeBi, CeAs, and CeP (calculat-
ed with the Ce 4f states treated as localized states) are
shown in Figs. 5 through 7. The difference in the band
structures of the monopnictides (Figs. 1 and 5 —7) is ac-
counted for by the decreasing effect of spin-orbit coupling
on the pnictogen p bands on going up the pnictogen
column: the top of the p-bands (at I ) falls relative to the
bottom of the d bands on passing from the bismuthide to
the phosphide.

B. Resonant f state

The wave function representing the Ce 4fs&2 state is ob-
tained (self-consistently) from the resonance in the poten-
tial within a Ce muffin tin. The form we obtain for the
band-f hybridization matrix element in the model Hamil-
tonian fo11ows from this choice, and so we make the

200

100-

CeBl
200

100-

CeP

rs'

K Er 0 cc E 0

—100- —100-

-200 '

X K, U

-200
X K, U

FIG. 5. The band structure of CeBi, calculated with the Ce
4f states treated as localized states, along symmetry lines in the
Brillouin zone. Energies (in mRy) are with respect to the Fermi
energy.

FICx. 7. The band structure of CeP, calculated with the Ce 4f
states treated as localized states, along symmetry lines in the
Brillouin zone. Energies (in mRy) are with respect to the Fermi
energy.
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definition of this state explicit. The Hamiltonian for an
isolated Ce muffin tin, including the spin-orbit interaction
explicitly, is defined by

&Mr=[ —V' + VMT(r)+ V, , (r)cr.X]e(s r—),
V, , (r)=

~
— VMT(r),

1 l Kj

C 7 8p

(3.1) Ve~
Sg

where VMT(r) is the self-consistent, spherically averaged
potential in a Ce muffin-tin sphere of radius s. This
single-site potential has a narrow f&&2 resonance with a
width of about 3 mRy surrounding the center of gravity
of the 4f5&2 bands in a fully hybridized band structure.
The spectral 1 =3 projected density of states for the
muffin-tin Hamiltonian A'MT defined by Eq. (3.1) is shown
in Fig. 8. The resonant energy, and the resonant radial
eigenfunction, P&(r), of Jt'MT can be defined by'

~MTPf(")
l

I j,m/ ) =K PI(r)
l
i,j, m~)

2)[QI(s)]=ReI2)[h 3+ (Ks)] ]

f dr r Pj(r) =1 .
0

(3.2a)

(3.2b)

(3.2c)

(3.3a)

(3.3b)

2)[P/(si)]=Xl[h 3+(ipsi)], (3.3c)

In Eqs. (3.2), 2) is the logarithmic derivative functional
2)[fj=sf'/f evaluated at the sphere boundary, h&+ is the
I =3 spherical Hankel function of the first kind, and

~

1j,m ) is the eigenfunction of total angular momentum
with 1=3 and j = —,'. The boundary condition at r =s,
Eq. (3.2b), corresponds to maximum localization of a
spherical wave within the Ce muffin tin. With the nor-
malization given in Eq. (3.2c), Pj(r) is, apart from the in-
clusion of the spin-orbit interaction in the defining poten-
tial, identical to an LMTO Ce 4f spherical wave basis
with tail parameter K. To obtain a localized (normaliz-
able) function from (t/, we define

P/(r), r &s)

v'~ [P/(si)/hi+(icosi)]h3+(iver), r )s,

S)f dr 1 Pf(r) +[Pf(si )/hi+ (icosi )]
0

)& f dr r [h3+(iver)],
SI

(3.3d)

The localization radius si may be chosen within a limited
range. The lower limit is set by the condition
27[PI(si)] & —4(p~0), and the upper limit is set by the
condition P/(s&)) 0(proc ). All of the quantities we cal-
culate are insensitive to the choice of s&, and in practice
the localization radius is chosen by requiring that p=~.
The integral of g/ over the region r &s is approximately
0.02 for all choices of s&.

is a corelike orbital defined by the Hamiltonian
——&MT+ Voe(r —s) ), with Vo ——K +p . Schematic

plots of 1tI and the potential for &~„are given in Fig. 9.
The expectation value of &Mr for 1(tI is

FIG. 9. A schematic of the localized 4f&&2 radial function itI,
defined by Eq. (3.3). V(r) is the self-consistent potential in a Ce
muffin tin, referenced to the muffin-tin zero of energy. s is the
muffin-tin radius, and s& is the radius at which the resonant
eigenstate is replaced by exponential decay. Vo is the effective
potential barrier corresponding to the exponential tail of 1(I. For
purposes of display, the magnitude of Vo is scaled by a factor of
100 relative to V(r).

CeSb

(yf ~HMr
~ qf)

5K =(K +p, )f dr r &I(r)
(3.4)

The energy of the resonant state P/ is lowered an amount
5K by imposing the localization barrier to obtain itj&. For
all choices of s, we find that 5K /K &0.005, and pI is
essentially identical to g/.

C. The bands

0.0 ]
I I T 1 1

0.5

C(Ry )

1.0

FIG. 8. The spectral weight distribution of the I =3 reso-
nance in a Ce muffin-tin potential, defined by 2)~(c)
=11/n lg, (2j+ 1)85(l =3,j)IBe where 5 is the 4f phase shift.

In the self-consistency process, the band structures are
calculated with a tail parameter (for the higher energy
window) obtained from an average, over occupied states,
of the energy in the interstitial region. To calculate the
quantities entering the model Hamiltonian, we require a
good representation of the bands around the resonant f
state energy ~ . Hence the bands entering the model
Hamiltonian are obtained, after the self-consistency pro-
cess, from a final calculation with the energy of the tails
of the LMTO bases equal to ~ .
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The hybridization matrix element in the model Hamiltonian will be taken to be the matrix element of &MT (Eq. 3.1)
between band states and gf. For simplicity, to calculate the hybridization we represent the f&fq component of the nth
band at wave-vector k expanded in spherical waves about a Ce site at R=O in the unaugmented form

&3, —,', m~
~

P'" (k, r) )c,—j3(lrr )V ' (k),

V " (k):—g g &3, —', , mj
~

3, m~, m, )g(a., k;Ce 3m~, r, l', m~ )A',
~ ~, , ~ (k),

m/, m, r, 1', m/

(3.5)

where j3 is the 1 =3 spherical Bessel function, X is pro-
portional to the KKR structure function matrix, and A is
the LMTO eigenvector for the nth band at wave vector k.
The product gA is summed over sites r and orbital
quantum numbers (l', mt ). In the form of Eq. (3.5), the
part of the l =3 components of the spherical wave bases
expanded about a Ce site coming from other sites are
represented in their unaugmented form; i.e., without re-
placing the spherical Bessel function by a linear combina-
tion of a solution to the radial wave equation and its ener-

gy derivative to obtain orthogonality to core states. To be
consistent, we should calculate the non-f band structure
with the same expansion in the Ce sphere as is represent-
ed in Eq. (3.5). The non-f bands are well converged in
the Ce muffin tin for 1 & 2, however, and, without band-f
hybridization, the l = 3 component has a negligible effect
on these bands. For simplicity, we use the form given in
Eq. (3.5) to represent hybridization with the f state,
though we calculate the non-f bands as stated above.

D. Band-f hybridization

V„,, =&j, ~W~qf)[7'."'(k)]'. (3.6)

We consider the Hamiltonian entering the radial matrix
element in Eq. (3.6) to be the idealized, single-site muffin
tin Hamiltonian &MT defined by Eq. (3.1). The band
states as defined by Eq. (3.5) are not orthogonal to gf,
and we should project band-f overlap out of the matrix
element.

We thus define a hybridization potential v(v) through

The model Hamiltonian parameter V~ is a matrix ele-
ment of the Hamiltonian for a single-particle potential
surrounding a Ce site between band states and the Ce
4f&&2 state. With band states given by Eq. (3.5), it is evi-
dent that the matrix element of a spherically symmetric
mixing Hamiltonian between band states and gf will have
the form

v(K)= —&J3 ~

(1— Pf)&Pf )&MT
~ Qf)

1

&n

&n
—[&J3 l

V qf )+[&Z3 ~
~ Qf ~ (lr ~lr )&J3 ilff ~]I

f dr r j3(irr)[VMT(r) —4V, „(r)]ff(r) +5m f dr r j 3(vr)gf(r)
0

(3.7)

where the energy shift 5a. is given in Eq. (3.4). The factor of the square root of the unit cell volume, II, has been includ-
ed in Eq. (3.7) to give v(l~) the units of a potential. Projecting band-f overlap out of the matrix element cancels the ki-
netic energy contribution within the Ce sphere, leaving a residual contribution proportional to the localization induced
shift in the resonant energy l~ . The first term on the right hand side of Eq. (3.7) is related to 5(l =3,j= —'), the 1=3,
j= —,

' phase shift. With the normalization of Pf given in Eq. (3.2c),
—1/2

sin[6(l =3, j = —,
' )]= r

2&N f d«'j3(«)(VMT —4V, , )gf(r),
0

(3.8)

where I is the width of the Ce 4f~&z resonance. The
l =3 potential scattering' is negligible, and we may take
sin(6)=1. The first term on the right hand side of Eq.
(3.7) is thus equal to —(I /2I~)'~ . The second term on
the right hand side of Eq. (3.7) can be calculated analyti-
cally with the exception of the overlap integral for r &s,
which is readily obtained by numerical integration. The
result is insensitive to the choice of localization radius,
and we find for all the materials we consider that this
term is less than 1% of the magnitude of the first term.

We will thus consider the hybridization potential v(a)
to be given by

r
V(K)

2~NO

1/2

(3.9)

The only dependence on the localizing procedure used to
go from pf to gf left in Eq. (3.9) is the normalization con-
stant. In all cases, N 5 1.02, and thus the hybridization
potential v(ir) is virtually independent of the ad hoc pro-
cedure we have used to produce an integrable basis func-
tion; the hybridization potential is set by choosing the res-
onant f state to represent f state in the model Hamiltoni-
an. The resonance width is calculated from'
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TABLE II. Ce 4f5&2 resonance widths, I, and hybridization
potentials, v(~), in mRy, calculated with Eqs. (3.9) and (3.10),
respectively.

CeBi
CeSb
CeAs
CeP

I (mRy)

4.23
3.06
4.28
4.99

v(~} (mRy)

—2.77
—2.41
—2.97
—3.25

r I [4f(~)]'
~ ~h3+(~s) ~'

(3.10)

Resonance widths I and hybridization potentials v are
given in Table II. Finally, we arrive at the matrix ele-
ment V„k, between the nth band at wavevector k and a
Ce 4f&z& state with angular momentum quantum number
m, as

V„i, ——v(ir)&A[V" I(k)]*, (3.1 1)

where 7 "' is given by Eq. (3.5).
In summary, we have used a self-consistent one-

electron warped —muffin-tin potential to define the param-
eters entering the model Hamiltonian. The f state and
the hybridizing Hamiltonian are obtained from the local
potential surrounding a Ce site, defined within the
confines of the Ce muffin-tin sphere. The bands are ob-
tained from the full crystal potential.

The arbitrariness introduced in the choice of a localiza-
tion potential for the f state has little effect on the result
for V„q . In the form of Eq. (3.8), the hybridization po-
tential and hence V„z is largely independent of this
choice and of the behavior in the region outside the Ce
sphere which we have neglected. The other quantities
entering the calculation (e.g. , the resonance energy ~ ) are
exactly determined by the self-consistent potential and are
not arbitrary parameters.

E. The f-state energy levels

In the model Hamiltonian, the energy difference
EF Ef is the tota—l energy necessary to place the Ce f
electron in a band state at the Fermi energy. Similarly,
Ef + U EF is the energ—y required to change from an f '

to an f configuration. These energies may be obtained
from supercell calculations with an f electron removed
from or added to a central Ce site. ' Within the accuracy
with which we can expect to calculate the shift in the
crystal-field splitting [Eq. (2.3)] and the range functions
[Eq. (2.6)], the results are insensitive to shifts in Ef and U
of —1 eV, and for our purposes, a more approximate pro-
cedure will suffice.

We estimate the character of the screening charge by
analyzing the charge density of band structures calculated
with 0 or 2 valence electrons placed in the localized orbit-
als Pf. The result is the addition or subtraction of —I
unit of charge of Ce d character.

To estimate Ef and U, we start with the charge density
in a Ce muffin-tin sphere calculated with the self-

consistent band structure described in Sec. III A. For Ef,
using the Ce 1 = 2 and l = 3 radial basis functions, we re-
place a unit off charge density by a unit of d charge densi-
ty, and recalculate the Ce muffin-tin potential and find the
I =3 resonant energy cf. Averaging this energy with cf,
the I = 3 resonant energy of the self-consistent Ce poten-
tial, yields a transition state estimate of Ez —Ef =2 eV.
Repeating the calculation with the d projected Ce muffin-
tin charge replaced by a unit of f charge, yields a transi-
tion state estimate of Ef+ U —EF =4 eV, which gives a
value for U of 6 eV. Calculating Ef and U in this manner
gives similar results for all the Ce monopnictides we con-
sider, and in our calculations we use values of Ef —EF 2
eV and U=6 eV for all of the Ce monopnictides. This
procedure is rather crude, but yields values in reasonable
agreement to those reported elsewhere. ' '

IV. THE ANOMALOUS CRYSTAL-FIELD SPLITTING
AND TWO-ION EXCHANGE COUPLING

In this section, the formalism described in Sec. III is ap-
plied to the calculation of the f-level shift, hEM [Eq.
(2.3)], in CeBi, CeSb, CeAs, and CeP, which we use to in-
terpret the observed crystal-field splitting of the f-state
energy levels, and to the calculation of the range parame-
ters, 6(R) [Eq. (2.5)], for CeBi and CeSb, which are com-
pared with phenomenological parameters describing the
magnetic ordering in these materials. The principal pa-
rameter in the model Hamiltonian is the exchange
coefficient 8 [Eq. (1.1)], but it is computationally more
efficient to obtain the quantities we desire by first evaluat-
ing a second order (in &,), energy dependent matrix
V(s, R) connecting Ce f states through hybridization
with band states. This is defined by

V (sR)= 1

N a (2~)3

Xg I d'k V„*k V„i, 5(c,—s'"'(k))e

(4.1)

from which we may calculate AEM and 6'(R). In Eq.
(4.1), c,'"'(k) is the eigenvalue of the nth band at wave vec-
tor k, N(s) is the density of states, and the matrix ele-
ments V„i, are defined by Eq. (3.11). II is the unit cell
volume. The bands are evaluated on an 89 point mesh in
the irreducible wedge of the fcc Brillouin zone, and in-
tegrals over the Brillouin zone are obtained by projecting
into and integrating over the irreducible wedge using the
tetrahedral scheme of Gilat and Bharatiya. '

A. Hybridization-induced anomalous crystal-field splitting

With the exception of Ce, the crystal-field splitting of
the ground state multiplet of the rare-earth mono-
pnictides is well described by the crystal field arising
from a charge distribution exterior to the region occu-
pied by the f electrons and equivalent to that for a point
charge of —1.2e on each nearest-neighbor anion site.
Table III compares the measured crystal-field splitting in
the Ce rnonopnictides with values extrapolated from the
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TABLE III. The crystal-field splitting in the Ce monopnictides. AcF is the difference in energy be-
tween the I s quartet and the I 7 doublet (the ground state) of the Ce 4f5qq manifold; extrapolated values
are values expected on the basis of the point-charge model applied to the other rare-earth monopnictides
(Ref. 2), as explained in the text. 6EcF, defined by Eqs. (4.2) and (2.3) is the suppression of the crystal-
field splitting resulting from band-f hybridization; "measured" values are the diff'erence between extrapo-
lated point-charge values and measured crystal-field splittings. The contributions from Ce d states and
pnictogen p states are obtained using densities of state projected onto orthogonalized basis states as ex-
plained in the text. All energies are in K.

ACF (K)
Measured'
Extrapolated

CeBi

8

247

CeSb

37
264

CeAs

137
345

CeP

150
390

6EcF (K)
Measured
Calculated

Total
Ce d

Pnictogen p

'Reference 19.
Reference 2.

239

217
172
30

227

194
175

5

208

195
209

—26

240

222
243

—36

other rare-earth monopnictides. In CeBi and CeSb, the
crystal field levels are approximately degenerate, while in
CeP and CeAs the measured splitting is about half that
expected; the suppression of the point-charge crystal-field
splitting is approximately constant throughout the pnic-
togen column, ranging from -210 K for CeAs to -240
K for CeP and CeBi.

This behavior may be understood as the result of a shift
in the bare crystal-field levels due to the coupling AEM
[Eq. (2.3)] between Ce 4fs&2 states and unoccupied band
states. We assume that the unhybridized f levels EM are
those that would be obtained by extrapolation from the
heavier rare-earth monopnictides and identify the ob-
served crystal-field levels with EM-+AEM where AEM is
given by Eq. (2.3). The crystal-field splitting E ( I s)—E(r, ) will be changed from the extrapolated values by
an amount —6ECF where

oEcF=AE(I 7) AE(1 s) .— — (4.2)

t e(c—E, ) e(E~ —c)
+

E —Eg —U
(4.3)

where D M gives the transformation between angular
momentum (m) and crystal-field (M) states. The Fermi
energy EF entering Eq. (4.3) is calculated from the band
structure without band-f hybridization (shown in Fig. 5).
The f-level E& is placed below EF as discussed in Sec. III.

The suppression of the bare crystal-field splitting 6ECF
calculated through the use of Eqs. (4.2) and (4.3), is given
in Table III. Agreement with the suppression deduced by
comparing observed crystal-field splitting values with ex-
trapolated values is excellent. In general, Eq. (4.3) un-

Coinparing Eqs. (1.1), (2.3), and (4.1), we evaluate AEM
by use of the formula

JdcN(c)D*M V ~ (c,0)D ~
m, m'

derestirnates the magnitude of the shift by —20 K
(-8%).

The bands which dominate the energy level shift are de-
rived from Ce d states and pnictogen p states. The bands
giving rise to AEM may be analyzed by replacing the full
density of states N(c) in Eq. (4.3) by a projected density
of states. A site and angular momentum projection giving
the charge decomposition of the bands is indicative of the
parentage of the bands, but is misleading except at high-
symmetry points. Within our nonorthogonal basis set,
there is no unique way to define the decomposition by
basis of the bands giving rise to AEM, but we can obtain a
reasonable estimate of the parentage of the bands by using
a technique of symmetric orthogonalization ' to project
the density of states onto orthogonalized basis states. The
relative contributions from Ce 5d and pnictogen p project-
ed functional densities are given in Table III. To display
the relative contributions to the anomalous crystal-field
splitting from Ce d and pnictogen p bands, in Fig. 10 we
plot t)6Ec„'It)c, where 5ECF' is obtained from Eqs. (4.2)
and (4.3) using the density of states projected on the nth
basis state, for CeSb. We are hesitant to attach too much
significance to this labeling of contributions as p or d. A
more meaningful result is evident from a comparison of
Fig. 10 and the band structures of the Ce monopnictides
(Figs. 1 and 5 —7). In our analysis, a rather insignificant
part of the shift in the crystal-field splitting arises from
the hole surface around I, or, in general from behavior in
the immediate vicinity of any high symmetry point.

Takahashi et al. have explained the anomalous
crystal-field splitting in CeBi and CeSb as arising from
coupling between f states and pnictogen p holes at I .
Their formula, based on second-order perturbation
theory, is similar to Eq. (4.3). They note that pnictogen
p fmatrix elements are larg-er than Ce d-f matrix ele-
rnents, since the pnictogen-Ce distance is smaller than the
Ce-Ce separation, and they point out that, at the I point,
the pnictogen p states mix exclusively with the I 8 quartet,
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FIG. 10. The contribution to the reduction, oEcF [Eq. (4.2)],
in the crystal-field splitting, as a function of energy (in Ry), aris-

ing from Sb p states (dashed line) and Ce d states (solid line) in

CeSb.

while Ce d states do not hybridize with f states at I .
Our quantitative analysis indicates that hybridization

between f states and band states throughout the Brillouin
zone, rather than just in the vicinity of high-symmetry
points, is important to understanding the magnitude of
the relative shift in the crystal-field levels. The set of de-
generate bands belonging to the star of a general point in
the irreducible wedge of the Brillouin zone form a basis
for a representation of the cubic group that, like the "reg-
ular" representation, contains the I 7 representation twice
and the I 8 representation four times. Hence, with twice
the number of states hybridizing with the Ce 4f I 8 quar-
tet, we expect the effect on the I 8 quartet to be larger
than the effect on the I 7 doublet by approximately a fac-
tor of two. Our results confirm this expectation. Both I 7

and I s f states are lowered, with the effect on 1, greater
than the effect on I 7 by a factor of 2.45 for CeBi, 2.56 for
CeSb, 2.16 for CeAs, and 2.09 for CeP. While the cou-
pling between f states and bands at points of high symme-
try is strongest and predominantly p f like, these po-ints,
in our analysis, play a limited role in causing the anoma-
lous crystal-field effect. The determining factors are the
density of states near the Fermi energy (i.e., arising from
band states throughout the Brillouin zone) and the prox-
imity of f-state energy levels to the Fermi energy. g(m, m';R)—= 6(m', m;m, m';R), (4.4a)

lattice vectors. As a consequence of the azimuthal sym-
metry of free-electron bands about any interionic axis R,
the angular momentum component along R (J R/R) is
conserved by the two-ion interaction [Eq. (2.4)]; hence, in
Eq. (2.5), with f-states

~

m) quantized with respect to
R, m2 ——m

&
and m2 ——m&. Thus the range function ma-

trix 6'(R) may be obtained, through rotations, from a sin-

gle six-by-six matrix for each neighbor shell. Further-
more, it may be shown' that the longitudinal symmetry of
free-electron bands about R implies that, in the limit
kFR~ oo, the only nonzero components of (kFR)'B(R)
are those for which m, m'=+ —,

' with respect to R. These
components are equal by symmetry; hence a single pa-
rameter 6„determines the range function matrix for each
symmetry shell n. The phenomenological two-ion interac-
tion, Eq. (2.4), is thus a directional coupling tending to
accumulate charge along the interionic axes ' when
summed over the cubic lattice of Ce ions, the interaction
strongly favors a moment aligned along a cube edge, "
reproducing the anisotropic magnetic ordering observed in
CeBi and CeSb.

In the phenomenological treatment, " the range pa-
rameters are evaluated by fitting various features of the
experimental behavior; e.g. , the nearest-neighbor param-
eter @& is fit to the Neel temperature, the ratio 62/6& is

fit to give the observed moment, and D3 is adjusted to
stabilize the magnetic structures at the observed temper-
atures. ' Characteristic of the phenomenological param-
eters for CeBi is that 6, and 62 are ferromagnetic with

8z/6 &

& 1, and 0& is antiferromagnetic with 6'3/6
——0.3.' Three neighbor shells are generally found to
be sufficient to describe the experimental behavior.

The simplicity of the phenomenological range parame-
ters will not be present in range functions calculated with
the formalism of Sec. III. With the lower crystal symme-
try of the rocksalt structure bands, J-R/R is not con-
served; furthermore, the symmetries of the matrix 6(R)
depend on the particular neighbor shell to which R be-
longs. We shall simply compare the appropriate com-
ponents of 6'(R) with the smaller phenomenological ma-
trix. Hence, in what follows, we shall consider only the
six-by-six range function matrix given, for a lattice vector
R, by

B. Two-ion exchange coupling

CeSb and CeBi order magnetically in a series of com-
plex magnetic structures, characterized by ferromagnet-
ic (001) planes with moments aligned or antialigned
along the (001) direction in various stacking arrange-
ments; CeSb also orders in similar structures containing
nonmagnetic planes. The magnetic excitation behavior of
these materials is anisotropic, showing little dispersion for
wavevector parallel to the (001 ) direction.

This behavior has been explained" ' ' on the basis of
a phenomenological treatment of the two-ion exchange
Hamiltonian Eq. (2.4). In this analysis, based on bands of
free-electron symmetry, ' a single parameter suffices to de-
scribe the two-ion interaction for each symmetry shell of

where the axis of quantization is taken along R; e.g. ,

iRi
/m)=m /m) . (4.4b)

To calculate 6(R), defined by Eq. (4.4), we first trans-
form V(c., R) [Eq. (4.1)] according to

V (E,R) = g 2)"„'(R)V„„(e,R)[2) '„"(R)]*, (4.5)

where X) is an angular momentum rotation matrix using
the convention of Edmonds, and Greek indices refer to
f states quantized with respect to the crystal coordinate
system. The transformation is unique up to an @-
dependent phase factor, which has no effect on our re-
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TABLE IV. Range parameters e„, defined in Sec. IVB, cal-
culated by use of Eqs. (4.1) and (4.5), compared with phenome-

nological range parameters fitted to the magnetic structure of
CeBi (Ref. 23) as explained in the text.

Fitted'
CeBi

Calculated
CeSb

Calculated

'Reference 23.

14.5 K
1.0

—0.3

0.84 K
3.33

-+ 0.08

0.84 K
3.08

—0.02

suits. Comparing Eqs. (2.7), (2.8), and (4.1), we obtain
6(R) [Eq. (4.4)] as

8(m, m', R)= —f ds f" de'N(s)N(s')V (s, R)

X V* (s', R)F(&,&'), (4.6)

We have used a self-consistent, local-density functional,
warped —muffin-tin potential to define and calculate the
quantities entering the Schrieffer-Wolff version of the An-
derson Hamiltonian. The non-f band states are obtained
with an LMTO band structure method with Ce f states
placed in corelike orbitals obtained from the resonant

where F(s, e') is given by Eq. (2.8).
To compare the matrix D(R) calculated through Eq.

(4.6) with the phenomenological parameters, one final step
is required. 8(R) is not a Hermitian matrix. The phe-
nomenological calculation treats the interaction Hamil-
tonian [Eq. (2.4)] with mean-field theory; since we are ap-
proaching the magnetic ordering from the paramagnetic
limit, we should symmetrize e(R) calculated with Eq.
(4.6), and compare [8(m', m;R)+6*(m, m';R)]/2 with
the phenomenological parameters.

The matrices 6'(R) calculated using Eq. (4.5) for CeBi
and CeSb reproduce the relative values of the phenome-
nological parameters, although the magnitudes are
sma11er, probably indicating a Neel temperature of a few
degrees rather than the experimental 16 K for CeSb.
We find that those components for which m, m'=+ —,

'

dominate the matrix for nearest and next nearest neigh-
bors, by about a factor of two. These components,
which we have called 6„, reproduce some of the charac-
teristics of the phenomenological parameters. 6& and Dz
are ferromagnetic. 6'& is antiferromagnetic for CeSb but
ferromagnetic for CeBi; the calculated ratio 83/8, is
much smaller than the phenomenological ratio. The
magnitude of 6& is considerably smaller than the phe-
nomenological Di while the ratio Dz/6] is somewhat
larger than the phenomenological ratio. The magnitude
of 63 in our calculation is much smaller than the phe-
nomenological value. 6z/6& is fixed fairly loosely in the
phenomenological theory. Range parameters 6„, calcu-
lated for CeBi and CeSb, are compared in Table IV with
phenomenological parameters fitted to the magnetic
properties of CeBi. (The fitting of the phenomenologi-
cal parameters is as described in Sec. II above. )

V. SUMMARY AND DISCUSSION

scattering state of a single-site Ce muffin-tin potential.
The hybridization potential is taken to be the pseudopo-
tential obtained by projecting band-f overlap out of the
matrix element of a single-site Ce muffin-tin Hamiltonian
between band states and the localized f state. The ener-
gies Ef and U are estimated from the eigenvalues of Ce
muffin potentials derived from charge densities with 0, 1,
and 2 electrons in f states.

A major approximation in the formalism we use is the
identification of the difference in density functional eigen-
values with the total energy transfers appearing in the
denominators of the model Hamiltonian parameters. By
taking the f level to be the total energy to place an f elec-
tron at the Fermi energy, the energy difference c& —Ef
should be a good approximation to the total energy
transfer for the bands that contribute most heavily to the
quantities we calculate.

The formalism has been applied to the calculation of
two quantities arising in the model Hamiltonian theory
applied to the Ce monopnictides: the suppression in the
crystal-field splitting and the range functions determining
the strength of the two-ion exchange interaction. The re-
sult for the crystal-field splitting is in excellent agreement
with observed values; agreement between calculated and
phenomenological range parameters is fair. In assessing
the significance of the relatively poorer agreement for the
range parameters, it should be remembered that the result
for the crystal-field dressing is exactly a calculation of a
particular term arising in the Schrieffer-Wolff perturbation
expansion of the Anderson Hamiltonian, and the results
of our calculation may be compared directly to experi-
ment. The calculated range parameters, however, are be-
ing compared with fitted range parameters arising from a
formalism which is itself an approximation to the model
Hamiltonian (this has been discussed in Sec. IVB above),
and so the connection is less clear. We are pleased that
the trends in the calculated range functions agree with
those found in the phenomenological theory. The relation
between the magnetic properties of these materials and the
range parameters is rather complex, and the accuracy of
the calculated range parameters can ultimately only be
judged by expanding the phenomenological calculation to
include all the transition channels of the range function
matrix. This task is in progress. We should note, howev-
er, that as discussed below, an improved calculation will
include eff'ects of the band-f hybridization on the way in
which the band structure evolves in its self-consistent
determination, i.e. , it will include nonlinear effects, and
we expect these nonlinear effects to be more important in
treating magnetic ordering than in treating crystal-field
dressing for a paramagnetic system. Also the departure of
the hybridization potential from spherical symmetry is apt
to be more important for the magnetically ordered state.

Three factors determine the sensitivity of the present
calculations: the accuracy of the self-consistent potential,
the size of the mesh providing the eigenvalues and vectors
for the analysis, and the energies Ef and Ef+U with
respect to the Fermi energy. The potential is taken to
self-consistency on a mesh of 60 special points in the irre-
ducible wedge of the Brillouin zone. Comparison with a
240-point tetrahedral mesh suggests that the potential and
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total energy are converged to within -0.3 mRy. The
bands used to evaluate the crystal-field suppression and
the range functions are calculated on an 89-point
tetrahedral mesh. Comparison with a 240-point mesh cal-
culation for CeSb suggests that the calculation of the
crystal-field suppression is converged to within about 5%.
The calculation of the range functions, fourth order in the
band-f interaction, is inherently more sensitive, and the
convergence of the calculation is poorer. Proper conver-
gence of a second-order perturbation calculation may re-
quire in excess of 1000 points.

The calculations are somewhat sensitive to the energies
Ef and U. We have used a value of Ef —Ef ——2 eV in our
calculations. Varying this value between 1.5 and 2.5 eV
produces changes in the calculated results on the order of
5%%uo. Taking EF—Ef to be -0.5 eV produces changes in
the results of —30% in the calculated shift in the crystal-
field levels.

The calculations presented in this paper provide the ini-
tial step in the prediction of model Hamiltonian parame-
ters from first principles. Improved calculations will in-
clude both the effects of the full anisotropy of the poten-
tial within the muffin-tin spheres and the nonlinear hy-
bridization effects associated with the self-consistent deter-
mination of both the band states and the f states in the
presence of the band-f interaction. The latter effects will
occur when the bands and the f states are no longer ob-
tained from a calculation which neglects band-f hybridi-
zation, i.e., from a calculation which is linear in hybridi-
zation, as is done presently. Including such hybridization
effects will change the occupation of the band states and f
states near the Fermi energy, and this will in turn alter
the hybridization itself, thereby introducing nonlinear hy-
bridization effects. The first extension of the present cal-
culations including these improvements will be to deter-
mine the crystal-field levels of Ce compounds as a func-
tion of temperature, i.e., as a function of thermal occupa-
tion of the levels. Subsequently, we plan to introduce the
nonlinear hybridization effects and the lowered symmetry
of the mixing potential within the spheres into our calcu-
lations for the magnetically-ordered state.

Our purpose in this paper has not been to exhibit calcu-
lations of particular physical quantities with ultimate ac-
curacy, but rather to investigate the utility and accuracy
of the formalism as a means of predicting the parameters
of the model Hamiltonian for application to understand-
ing and predicting effects in different systems. The results
presented in this paper for the Ce monopnictides would
seem to suggest that this approach has the potential of
providing a useful analysis for weakly hybridizing f-
electron systems. A question of broader interest than the

application to the weakly hybridizing cerium monopnic-
tide systems discussed here is the possible application to
more strongly hybridizing systems, in which category, for
example, heavy fermion systems probably fall. It may be
that including the nonlinear hybridization effects and the
lowered symmetry of the mixing potential will provide
su%cient improvement to treat magnetically-ordered
heavy fermion systems. We have begun calculations for
CeTe, and the predicted change in behavior from CeSb by
adding an additional pnictogen p electron may provide a
test of our ability to deal with more strongly hybridizing
systems. However, it should be recognized that what is
described in this paper is really a technique for calculating
the various pieces needed to put a model Hamiltonian
treatment of observed experimental phenomena on an ab-
solute basis. Our present comparison to the experimental
phenomenology is based on the use of the Schrieffer-Wolff
(Coqblin-Schrieffer) treatment of the Anderson Hamiltoni-
an. This limits us in principle to treating weak hybridiza-
tion. However, the same technique for calculating the
"pieces" (hybridization potential matrix elements, band
energies, f-state energies including correlation) can be
used to put any more general treatment of the Anderson
Hamiltonian on an absolute basis.
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APPENDIX: FOURTH-ORDER TERMS
IN THE LATTICE SCHRIEFFER-WOLFF

TRANSFORMATION

In this appendix we give a brief derivation of Eq. (2.7),
exhibiting the cancellation of the singular terms in the ex-
change coupling derived with second order perturbation
theory [Eq. (2.5)]. The treatment of the Schrieffer-Wolff
transformation given here parallels that given in Ref. 4,
but our notation is somewhat different.

The generator of the Schrieffer-%'olff transformation
may be written as

S=i J dt&, (t), (A I)

where &i(t) is the band-f hybridization term in the An-
derson Hamiltonian in the interaction picture. If P„(m)
is the projection operator for n f-electron states in the
space spanned by [m': m'&m ] and P„(m, m') projects
out n f-electron states in the space spanned by
[m": m "+m, m'], etc. , &&(t) is given by

'C

A, (t) =~ '&,e ' = g [ Vk (R)ckc (R)P„( mR)exp[i (ek Ef —nU)t]+H. c. ] . —
R, m, n, k

The fourth-order term in the transformed Hamiltonian is

(A2)

(A3)

We are concerned with the subset of terms in A' ' having the form of Eq. (2.4). Carrying out the commutators in Eq.
(A2), we find two terms with this form. After taking the expectation value of &' ' in the band ground state, the first
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term is
I

~1 =8 y y y y y y V/, Vk m 'V/, , Vkm, ~ c (R2)c (R2)cm (Ri)c (Rl)
R1,R2 m&, m i m2, m' n&, n2 k k') k

x [P„(m2,m 2', R2) —P„ 1(m2, m 2', R2)][P„(mi, m 1',R 1 ) P„ —i(m i, m '1,'R
1 )]

2 1

I I +
E —c c —E

n&
c—E„

1 1

c—E„c'—E„+

8

(E —E')(E' —E„,)(c' —E„) (A4)

where E is a band energy and E„=E~+nU. When k & kF in Eq. (A4), the first term in braces on the right side is the
negative of the contribution resulting from treating the second-order exchange Hamiltonian [&,„ in Eq. (2.2)] with
second-order perturbation theory. When k )kz, this term, antisymmetric in c and E, vanishes. Hence the residual con-
tribution to the exchange interaction from the sum of Eq. (A4) and (&,„) is the second term in braces in Eq. (A4). This
term is finite, and the only fourth-order term to contribute, when n] ——nz ——0; thus, in the limit U~ao, the total ex-
change interaction is given by this term. Within an f basis (initial and final states with one f-electron per Ce site), n,
and n2 may be zero or one, and a complete description of the two-ion exchange interaction through fourth order in &,
requires keeping terms through first order in 1/U.

The second term arising in the fourth-order term of the Schrieffer-Wolff transformation is

V, , Vk* V„, Vk*

R&, R2 ml, m
&

m2, m' n&, n2 k k'

—i (k —k') ~ (R2 —R) )
c (R2)c, (R2)c (R, )c, (R, )

&&[P„(m2,m2;R2) P„,(m2, m—2,'R2)]P„, 1(mi, m 1,Ri)

1 3 1
X (E' —E„,)(e—E„,) E E„—E' E„—+

c—E„
1 3+

(E E„)(—E' —E„) E' E„, ——+ (A5)

With initial and final states confined to an f basis set, P„(m, m')=6„1Combining Eqs. (A4) and (A5) with the
second-order perturbation term on .&,„ from Eq. (2.2), and summing over allowed values of n, and n2, the result is

&141+g & @,
~
&,„~ &0; ) & 4&;

~
W,„~ &0, ) I(E0 E;)—

i&0

—i (k —k') (R2 —Rl jy y V/, Vk-'m V/, Vk~m ~ cm (R2)c (R2)cm (Ri)c (Ri)
Rl, R2 ml, m

l m2, m 1' 2 k k'

x e(EF E)e( c' EF—)—1 1

c—c E —Ey c—Eg —U
2/U+

(e Eg —U)(E' —Eg)—
2 1 1+ — +
U c —Eg c' —Eg

+ —,
' e(e —E,)e(E —E, )

Eg) r' Eg ).— —

+ ,
' e(EF —E)B(EF—s')—

'2
U

k

c' —EI—U

1 1 1 1+
4 U E' —EI—U c' —Eg

1 1+
E —Eg —U c.—Eg

(A6)
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The last term in curly brackets in Eq. (A6), the only term in which singular energy denominators remain, is recognizable
as the negative of the contribution to the two-ion exchange interaction from the second-order f-banding Hamiltonian
(&b in Eq. (2.2)) treated in second-order perturbation theory on f states through first order in 1/U:

g8(k', m z, Rz, nz;k', m, ,R, ,n, )tzt(k, m', ,R, , n, ;k, mz, Rz, n, )

Rl, R2 ml, m l m2, m' nl, n2 k, k'

Xc,(Rz)c, (Rz)c (R, )c ~ (R i )6„,i6„o
I

g g V&, , Vt*, Vz, V&* e ' ' c (Rz)c, (Rz)c (R&)c (R~)
Rl R2 ml m

l
m2m' nl n2 k k'

1 1 1 1 1 1
X —— + +

4 U p' —Ef —U c.
' —Ef E —Ef —U c.—Ef

(A7)

Hence the total two-ion exchange interaction, including all terms consistently through fourth order in &&, is free of the
divergences occurring in second-order perturbation theory. A comparison of Eqs. (A6), (A7), (2.4), and (2.6) gives Eq.
(2.7) as the proper function of energy to be used in calculating the range functions 8(R).
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