
PHYSICAL REVIEW B VOLUME 36, NUMBER 7 1 SEPTEMBER 1987

Mapping between random central-force networks and random resistor networks
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We show that the random-resistor-network problem can be mapped on to a related network of
Hooke springs of natural length zero stretched on a frame. The conductance of the network is

equivalent to the pressure on the frame. The new viewpoint leads to a useful visualization of con-
ductivity on random networks. The mapping can also be used on tight-binding Hamiltonians. We
use this method to study the conductivity and superconductivity of random networks in two di-

mensions.

I. INTRODUCTION

The properties of random resistor networks have been
well studied and are now understood. ' Excellent numer-
ical simulations can be performed in which Kirchoff's
laws are solved. These provide as accurate numerical
solutions as are desired. If the resistors on a network
are progressively removed, the conductance vanishes at
the percolation concentration p, . The description of this
phase transition in terms of critical exponents, scaling
behavior, etc. are all well understood. This problem is
equivalent to a tight-binding Hamiltonian. It is also
equivalent to the problem of spin waves in a Heisenberg
ferromagnet at low temperatures.

In this paper we explore yet another mapping. This
one is slightly more subtle and leads to some new geome-
trical insights. Of course, no new results are found as
the original (equivalent) problem is well understood.
Our purpose in this paper is primarily to develop and ex-
plore the mapping.

In Sec. II we develop the mapping and formula. We
also show the relationship to the low-energy density of
states of a tight-binding Hamiltonian. In Sec. III we ap-
ply the mapping to dilute resistor networks on the
square lattice as an illustration. In Sec. IV we give a
similar discussion for random networks in two dimen-
sions. A dual random network is constructed and it is
shown how the superconducting-normal network on the
dual lattice maps on to the dilute resistor network on the
original lattice and vice versa. Finally, we mention the
relationship of this work to rigidity percolation in the
conclusion.

i,j, etc. so that a current I;J flows in the ij bond which
has a conductance 0.;J. The range of the 0.

;J is arbitrary;
and can be nearest neighbor, next nearest neighbor, etc.
Sites that are not connected have o.; =0. Current con-
servation at each site leads to

which using I;~ =o;i( V; —V~ ), where V; is the voltage at
site i, leads to

go;, (V; —V, )=0
J

(2a)

or

g cr,, Vi

V;= (3a)

The total energy stored in the network is

E = g o.;, (V; —V, ) =G„„VO,
(l,j)

(4a)

where the angular brackets denote that each bond is
only counted once in the sum. The conductivity is given
by

II. GENERAL FORMULATION

A. The mapping

L

To illustrate the mapping, let us consider a resistor
network in which a voltage di6'erence Vo is applied
across the two opposite sides as shown in Fig. I (see un-
relaxed network). If the current flows in the x direction
across the voltage difT'erence Vo, the conductivity 6„„ is
defined by E =6 „Vo, where E is the electrical energy
stored in the resistor network. Let us label the sites by

(a) (b)

FIG. 1. A square net with 70% of the bonds present
(p =0.70) is shown (a) before and (b) after relaxation with the
centroid condition. See also Fig. 2.
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g K;)(R;, —R,- ) =0,
j

(2b)

where R; is the position of the ith atom and K;j is the
spring constant. From this we see that

R ~

1X

g K;~Rq„
j

K;j
(3b)

There are similar equations to (2b) and (3b) in the y
direction. The total energy stored in the spring system
1S

F. —,
' g K , [(R' R'/ ) +(R yR/y ) ]'

&i j )

G „= g cr,)(V; —VJ ) /Vo .
&i j )

Now let us imagine a central-force (Hooke) spring net-
work in which each spring has natural length zero. The
whole system is held on a frame to prevent it collapsing
to a point. For a large system, the shape of the frame is
irrelevant, but it is convenient to imagine it to be a
square. The equilibrium condition for each site i is that
the total force acting on it vanishes. We have in the x
direction

work via (7) and the equilibrium condition (2b) that may
be written in vector form

QKJ(R; —R, )=0 .
j

(8)

In two dimensions, the conductance and conductivity
of a square sample are the same. For a sample of hyper-
cubic shape in d dimensions (volume L ), the current
Aows between parallel hyperplanes (area L ') so that
the conductance cr is given by

0.=6/L" (9)

where G comes from (7). Note that (9) holds for electri-
cally isotropic networks. Of course (7) must be modified
so that the trace is over all d dimensions and L in (4b),
(Sb), and (7) must be replaced by L so that

TrG~ g K~(R; —RJ ) /L" (7')
&ij &

and Eq. (4b) can be extended to read

E = —,
' TrKL

~—'TrGL =—GL = —o.L-2 d 2 d d (4c)
2 2 2

The tension T (i.e., inward pressure) can be obtained
from

=—(K„+Kyy )L (4b) c}E 6 =g (10)

where L is the length of the sample and

K, = g K;~(R; —Rj ) /L
&, )" (5b)

and a similar expression for K».
We see that the (a) and (b) equations can be made to

coincide through the mapping,

o.;j ~K;j
V;~R;
G ~K„.

(6)

Try=6 +Gy ~K„+Ky

There is an important subtlety in this mapping associ-
ated with the boundary conditions. In the resistor prob-
lem, the net current flow is in a particular direction; x in
the case considered here. This leads to the conductivity
6 . In the spring problem, the frame acts equally in
the x and y directions so that K and K» cannot be ob-
tained separately. This is not a concern for high symme-
try networks, where the tensors 6 & and K & are pro-
portional to the unit tensor. We shall refer to such net-
works as electrically isotropic. We shall only discuss
such networks in this paper. These include square nets,
random square nets, triangular nets, random triangular
nets and the random networks considered in Sec. IV.
We are thus led to

Thus the conductiuity is obtained from (7') while the con-
ductance is equivalent to the outward tension needed to
prevent the system collapsing to a point. For 2d sys-
tems, this pressure is independent of the size of the sys-
tem L. For 1d systems, the tension increases with size
linearly, whereas for d & 2, the tension decreases as the
size gets larger. The total force required to prevent the
system collapsing, always increases with size. It may be
convenient in some cases to have the spring network
stretched on a circular frame or tennis racket, so that
the boundary condition is isotropic.

B. Tight-binding Hamiltonian

A useful alternative viewpoint is given by the tight-
binding Hamiltonian"

H = —,
' g E;, (

~

i ) (i
~

—
~

i ) (j
~
),

where the ~i ) is a localized s state on the ith site. The
overlap integral K;j is the same as the spring constant in
Eq. (2b). It is convenient to take a (large) unit supercell
containing n atoms. This cell is repeated periodically.
Each atom is designated by a labeling (l, n), where l
designates the cell and n is the atom within the cell.
This label pair is conveniently denoted by i~(l, n). We
can use Bloch's theorem on the supercell translations RI
to transform to a new basis

g K;j(R; —RJ ) /L' .
&(j )

(7) ~q, n)=, ge '+" ~l+n) . (12)

The conductance can be calculated from the spring net- The total number of atoms N =nN, where N, is the
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number of supercells. The Hamiltonian (10) is block di-
agonal in this basis and within a q block the matrix ele-
ments are given by

p(E)=
2

(20)

(q, n
~

H
~
q, n') = gK;; (I —e ' ' ), (13)

where L is the area of the sample. This can be written
as

where atoms i and i ' are connected by the hopping ma-
trix element I(;;. These two atoms may either be in the
same unit cell or in adjacent unit cells.

The Hamiltonian (11) deliberately has related diagonal
and o6' diagonal terms so that the band edge is at E =0.
The eigenvector corresponding to zero energy is denoted
to io)

p(E)= L
277 (DetD)'

(21)

D (s
—— g K;~(R; —Rq )(R;p R(p) —.1

2X, .
(22)

where D is the diffusion matrix which from (18) and (19)
has matrix elements

~0)=, g ~q=O, n) .
n

(14) Note that

L2
TrD = TrG

N
(23)

where TrG is defined by Eq. (7). For electrically isotro-
pic 2d systems we also have

1
(q, n

~

H
~
q, n') = gK;; [

—iq. (R; —R; )
c I, I'

L Lo.2 2

(DetD ) = —' TrD = TrG =
2N

(24)

Labeling the other n —1 eigenvalues at q=O by E„we
use the matrix analogue of k-p perturbation theory.
From expanding Eq. (13),

+ —,'[q (R; —R; )] I (15) where o. is the conductance. Hence

then to second order, p(E) = N
4mo.

(25)

gK;; [q.(R; —R; )]
I, I'

q. (R; —R; )
gK;; — (q=O, n

~
E, )

((, N&n E, (16).
There is no term linear in q in (16) as this vanishes when
the sum over all sites is done. If we are interested only
in the density of states p(E), then distances are ir-
relevant. We imagine forming an auxiliary lattice in
which the second term in (16) vanishes. This can be
achieved if

gK;J(R; —R, )=0
J

(17)

this is the same condition as (8) and defines the same set
of new atomic positions R;. Thus the sites in the auxili-
ary lattice are coincident with the positions of the sites
in the central-force network discussed in Sec. IIA. In
the auxiliary lattice

Eq —— g K;, [q.(R; —R) )]
t) J

(18)

when i,j go over all sites. The unit supercell is not ex-
plicitly appearing in the summations in Eqs. (17) and
(18). Note that (17) can be obtained by minimizing the
energy in Eq. (18) with respect to the R; if the R; are in-
itially regarded as arbitrary.

From (17) we may define principal axes where

2 2
E&

——D„q +D q (19)

The area of the ellipse containing states up to an energy
E is ttE(D D~~)'~ so that the low-energy density of
states is

This density of states is normalized over all energies to
the number of sites N, and the low-energy part depends
only on the conductance o. . Note that this result is very
general and applies to any network that behaves as a
continuum in the long-wavelength limit. This excludes
fractals. The geometry of the network enters only
through o. .

These equations are easily generalized to higher di-
mensions. For Eqs. (11)—(18) there are no changes. We
have to modify Eq. (19) to

Eq ——gD q~, (19')

where a goes over the d principal directions. The densi-
ty of states given in Eqs. (20) and (21) becomes

d/2 —]
L 2

p(E) =
4rtI (d /2)(DetD)'~

L E
4~

(21')

where I (d /2) is the gamma function. Equations
(22) —(23) are unchanged but (24) and (25) become

o2 d

(DetD) = —TrD = TrG =
d dN N

and, hence,
d/2 —]

( )
N 1 E

4tto I (d /2) 4~

(24')

(25')

Thus as in two dimensions, the low-energy density of
states is determined by the conductance o. and the total
number of atoms 1V in the network and p(E) is an exten-
sive quantity. An atom is counted as being in the net-
work if it is coupled to the backbone or conducting path.
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This includes regions that are connected to the backbone
but carry no current. They nevertheless contribute to
the inertia and so must be counted. Isolated regions that
are not coupled to the backbone are ignored.

This method of using the tight-binding Hamiltonian
(11) to derive the centroid condition (17) is less satisfac-
tory than mapping onto central springs of natural length
zero. This is because we had to introduce a "supercell"
in order to have a q vector to work with. The final
answer did not explicitly contain reference to this super-
cell and so we regard the result (25') as being quite gen-
eral and true for any conducting network that is homo-
geneous on distances greater than some correlation
length g. The derivation that lead to (25')' is only valid
for q &&g

' and hence for vanishingly small energies as
g'~ ao. We believe the result is actually much more gen-
eral as the relevant length g is probably not the supercell
size but rather the distance that characterizes the
structural correlations in the random network. A simi-
lar quantity g is commonly used in percolation theory. '

There is no easy way around this problem in a dynamic
approach as given here.

In the static approach in Sec. II A, everything is
rigorous. In order to get the dynamic result (25') one
has to assume an Einstein relation between the conduc-
tance and the diffusivity. ' It is here that the problem is
glossed over. This area needs further study.

III. ILLUSTRATION OF THE MAPPING

G —g 6;, /L
(i,j )

(26)

where 5;~ =R; —Rj is a nearest-neighbor distance in the
relaxed network. Bonds that are absent are counted as
zero in performing the average in (26). In Fig. 2 we
show some typical results for various values of p. Isolat-
ed islands do not contribute to the conductivity and so
relax to points. Side groups on the backbone that do not

In order to illustrate the mapping we consider the
square net shown in Fig. 1. All the nearest-neighbor
bonds have resistance o.o

' and a fraction 1 —p have been
randomly removed. The solution to this problem is well
known and so it will serve as an illustration. ' The con-
dition (8) becomes just the condition that every site is at
the centroid of its nearest neighbors that are present.

In these kinds of percolation problems one really
wants to study the system in the thermodynamic limit
(N ~ oo ). Periodic boundary conditions are better than
any other kind as every atom is properly coordinated.
We therefore periodically repeat the "supercell" in Fig.
1. Bonds are removed randomly in the reference super-
cell and also in all others. Rather than put the network
on a frame when we go to the central spring model, we
hold the supercell repeat vectors constant. This is
equivalent to an external tension and more convenient in
practice. The spring constants become K =1/R. The
network is relaxed iteratively, site by site, until the ener-
gy stored in the springs is minimized. We see from (7)
that the conductivity 6 is proportional to the mean-
square nearest-neighbor distance

p=1.00 p= 0.95 p= 0.70

p=0.65 p= 0.60 p=0.55

FIG, 2. Square nets with a fraction p of bands present have
been relaxed with the centroid condition. The supercell shown
is periodically repeated. Note that p, =0.5 for bond percola-
tion on the square net,

carry current also relax to points. Thus the conducting
backbone is clearly and simply exposed by this algo-
rithm. Those bonds that carry most current are
stretched the most and so make the largest contribution
to G. Note that many of the long straight connections
in Fig. 2 are actually made up of many bonds and col-
lapsed side groups. The networks for p =0.70 in Fig. 2
and Fig. 1(a) are examples of diff'erent random
configurations.

In Fig. 3 we show results for the eonduetanee for site
percolation on the square net. ' ' As our method is

1.0

0.8

CP

0.6
lg

0.4

O

0.2

0
0

I

0.2 0.4 0.6 0.8 1.0

FIG. 3. The conductance of the square net with a fraction p
of the sites present. The solid line is the efFective-medium re-
sult of Watson and Leath (Ref. 7) which agrees closely with
their direct numerical solution of KirchofF's laws except very
close to p, . Percolation occurs at p, =0.59 and the conduc-
tance of the undepleted system is set equal to 1 for conveni-
ence. The tail just below p, is due to the finite superce11 size.
Results are obtained by averaging over 15 samples of 1600 sites
each.
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(27)

From this the density of states is

p(E) =NL &ro. p g 5;, (28)

and hence from (25), the conductance cr is given by

2
5;J

quite general, it works equally well for bond or site dep-
leted networks. It can be seen that our results lie close
to the effective-medium theory which agrees well with a
direct solution of Kirchoff s laws except very close to p, .
The tail that extends slightly below p, =0.59 in our
simulations is due to finite-size effects.

Before ending this section, we consider a general two-
dimensional network with nearest-neighbor conductors
of magnitude O.o. The relaxed network and tight-biding
model [using Eqs. (17) and (18)] with the nearest-
neighbor E;J ~o.o, leads to

Eq —— op+ 5,'j .g

4N

2tropic network, independent of the shape, if L is re-
placed by the area 3:

g fi2

l&J

4A
(29')

We use the relaxed network of Fig. 5(a), to compute
o-=0.555o-o. This should be compared to o. =0.577cro
for the honeycomb lattice Eq. (32).

The dual lattice of Fig. 4(b) is relaxed using the cen-
troid condition to obtain the relaxed lattice of Fig. 5(b).
Using Eq. (29') we find that o. =1.81o.p. This should be
compared to o. =1.73o.o for the triangular net in Eq.
(31). An elementary application of Euler's theorem
shows that the mean size of a polygon in the network of
Fig. 4(a) is 6. Therefore in the dual lattice, the mean
coordination is 6, although it is not constant but varies
from site to site; the minimum coordination is 5 and the
maximum is 9.

j& JO'=Oo
4L

(29)

This is a convenient form. For the square net with N
atoms and nearest-neighbor distance a, we have
L =Na so that

0 =C7O

Similarly, for the triangular net

cr =+3o p,

and for the honeycomb lattice

(T =0'p/+3

(30)

(31)

(32)

IV. RANDOM NETWORKS

We consider a random network where every site is
threefold coordinated as shown in Fig. 4(a). This 800-
site network was constructed by successively disordering
a honeycomb lattice while maintaining the coordination.
The lattice was then relaxed to make lengths as equal as
possible. There is a small ( —5%) variation in the bond
lengths. We make all the bonds conductors of equal
magnitudes of o.o. We could have made the resistance
proportional to the bond length but this seems unneces-
sarily complicated.

In order to calculate the conductivity, every atom is
moved to the centroid of its three neighbors. The re-
laxed network is shown in Fig. 5(a). The changes are
surprisingly large. The large polygons have grown and
the small polygons have shrunk. There is also much
more variability in the bond lengths than in Fig. 4(a).

Because the supercell of the sample shown in Figs.
4(a) and 5(a) is not a square some additional care must
be taken. The supercell shown has repeat distances L
and L~, where L /L~ =2/&3=1. 16. These are held
fixed during the relaxation. Minor changes in the previ-
ous formalism can easily be made for such a network. It
can be shown that Eq. (29) holds for any electrically iso-

(a}

FIG. 4. (a) Showing a threefold coordinated random net-
work (Ref. 11). A single supercell is shown that repeated
periodically. (b) The dual lattice of (a) in which a site is placed
at the centroid of each polygon and then these sits are connect-
ed.
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Finally we examine the effect of randomly diluting
these networks. Quantities referring to the lattice of Fig.
5(a) are denoted with subscripts l and quantities refer-
ring to the dual network in Fig. 5(b) are denoted by sub-
scripts 2. A fraction p of the bonds are present in each
case. The depleted networks are relaxed again and the
conductance computed by the methods that we have dis-
cussed in this paper. The results for o.

&, against p &, and
o.

2 against p2 are shown in Figs. 6 and 7. These results
have been obtained be averaging over 15 random de-
pletions and o.

&
and o.

2 are set equal to 1 for the undep-
leted systems for convenience. As expected for such
dual lattices, the critical points are related by
pic = —p2c., =1—p . Note that for the honeycomb lattice (also

8coordination 3), the bond percolation concentration
p, =0.65. From our simulations this p, =p&, as might
be expected. ' In Figs. 6 and 7, the solid lines are the

1effective-medium theory results

1.0

0.8

0.6

0.2

0
0

I

0.2
I

0.4 0.6 O. B 1.0

FIG. 6. Showing the conductance cr& of the threefold coor-
dinated lattice of Fig. 4(a) as a function of the fraction of
bonds present p&. Also shown is the resistance R~ of the dual
lattice of Fig. 4(b) as a function of p2, the fraction of normal
bonds present where 1 —pq is the fraction of superconducting
bonds. Results are obtained by averaging over 15 samples.
The crosses are for random resistor networks and the triangles
are for the superconducting-normal networks. The solid line is
the effective-medium theory result [Eq. (33)]. The conductance
and resistance of the undepleted systems are set equal to 1 for
convenience.

(33)

(34)

&a)

which are there as useful guides to the eye.
We have also computed the resistance R of these net-

works where a fraction 1 —p of bonds are superconduct-
ing and a fraction p are normal. The resistance of the
normal systems is normalized to 1. The results for these
networks, averaged over 15 samples, are also shown in

0.8

0.6
lX

Ol

O. 4—

0.2

(b)
FIG. 5. (a) Showing the same threefold coordinated random

network as in Fig. 4(a) except every atom has been moved to
the centroid of its three neighbors. The topology is the same
as Fig. 4(a). (b) Also shown is the dual lattice [Fig. 4(b)] which
has been relaxed so that every atom is at the centroid of its
neighbors. The topology is the same as Fig. 4(b).

0
0 0.2 0.4 0.6 0.8 i.o

FIG. 7. Same as Fig. 6 except o.
2 and R] are substituted for

o.
~

and R2. The solid line is the effective-medium result [Eq.
(34)].
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Figs. 6 and 7 and are seen to have the behavior expected
of dual networks. The correspondence between the
data is maximized by using the same random-number
generator to tag bonds in both the original lattice and
their dual equivalents. It can be seen that the dilute
resistor problem on a network maps onto the
superconducting-normal network on the dual network as
expected.

In order to facilitate numerical simulations we have
used a ratio of conductivities of 1000:1 between super-
conducting and normal bonds. The error introduced by
this is mainly near p, when there is a small incremental
enhancement in the finite-size tail. It would not be hard
to take a larger conductivity ratio. Note that in the re-
laxed network, the superconducting bonds are fused to
gether to a point so that, consequently, the normal bonds
are elongated as the sample must remain fully connected
and is not allowed to collapse.

V. CONCLUSIONS

but are uncontrolled elsewhere. In the unstretched
central-force network problem, effective-medium theories
are even better than here. '

We have applied these results to a few well-studied
problems. We have also studied depleted random net-
works. The results for the depleted three-coordinated
random network are very close to those for the depleted
honeycomb lattice. This is to be expected since the
coordination is the single most important parameter
characterizing a percolating network.

The depletion of central-force networks has recently
been studied by many authors. These networks are such
that every spring has its natural length in the absence of
external stresses. This is often referred to as rigidity per-
colation. The elasticity vanishes at p' &p, because con-
nected paths are inelastically ineffective. This is not the
case in the work here as all springs in the conducting
backbone are stretched by the frame. Hence the con-
ductivity and elasticity are intimately tied together as we
have shown.

We have introduced a new mapping for the random
resistor problem. Its utility is that it reduces the electri-
cal problem to a geometry problem and hence provides a
useful visualization of the conduction process. It can be
seen that effective-medium theories do a better job than
might have been expected (see Figs. 3, 6, and 7). They
are designed to get the initial slope correct near p =1,
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