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Classical Heisenberg ferromagnet in two dimensions
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Modified spin-wave theory is applied to the classical Heisenberg ferromagnet on a square lattice:
H, = —Jv g&,, &is; s, —1). The energy, the correlation function, and the magnetic susceptibility
are calculated at low temperatures. These agree excellently with the Monte Carlo results for a
64&64 system. For an infinite system, the reduced susceptibility behaves as T'exp(4~JO/T) and
the correlation length behaves as exp(2vrJO/T). The preexponential factors diA'er from those of
renormalization-group Monte Carlo calculations.

I. INTRODUCTION

In previous papers' a modified spin-wave theory was
proposed for calculating the low-temperature properties
of a quantum Heisenberg ferromagnet in one and two di-
mensions with the arbitrary spin quantum number S:

H, = —Jo g (s;.s, —1), s;=1.
(ij &

(1.2)

Here, (ij ) means that the i and j sites are nearest neigh-
bors. The free energy and susceptibility derived from
this theory coincide very well with the results of Bethe-
ansatz integral-equation calculations for an S=—,

' fer-

romagnetic Heisenberg chain at low temperature. In
the limit of infinite S the system is equivalent to the clas-
sical Heisenberg ferromagnet. In this case Hamiltonian
becomes

The modified spin-wave theory is also applicable to this
model. For the one-dimensional classical Heisenberg
model, Fisher's exact solution is known. Therefore it is
easy to validate the applicability of spin-wave theory.
The two-dimensional (2D) case is very interesting not
only for condensed-matter physics but also for field
theory, because it is related to the O(3) nonlinear &r mod-
el and to the confinement of quarks. Many authors have
investigated the 2D case using various methods such as
high-temperature expansion, renormalization-group ap-
proxirnations, the Monte Carlo method, ' instanton
theory, and so on. Nowadays it is believed that this
system has no phase transition and that its magnetic sus-
ceptibility diverges strongly as temperature approaches
zero.

By using spin-wave theory, the low-temperature ex-
pansions of the energy density e, the reduced susceptibil-
ity Po, and the correlation length g for the square lattice
are obtained as follows:

e =J,[t+t'/8+t'/16+0(t')],
t2

Xo= g (so s ) = exp [1+(—,
' —m. /4)t +O(t )]-1.075X 10 t exp(4'/t),

128~e t

(1.3)

(1.4)

1 2~
exp8+2 vr/2

1 — t+ 0(t') -0—.018 37 exp(2n-/t),
8

(1.5)

where

t=T/Jp . (1.6)

Equation (1.3) can be compared with the energy derived
from Monte Carlo calculations. The spin-wave theory
works well at t (0.5. At these temperatures g becomes
very long and exceeds the size of the model system used
for Monte Carlo calculations. The reduced susceptibility
Pp saturates at the value of the system size. Roughly
speaking, at t =0.5, g is about 6)&10 and at t =0.25, g
is about 1.6)&10 . To verify Eqs. (1.4) and (1.5) at such

temperatures, one needs Monte Carlo calculations for
very large systems such as (6&& 10 ) or (1.6&& 10 )2.

Thus it is almost impossible to verify Eqs. (1.4) and (1.5)
by applying Monte Carlo calculations to a finite system.
Spin-wave calculations of the susceptibility and the
correlation function of a finite system such as 64&64 are
possible. Those results agree excellently with Monte
Carlo calculations for the same system at t &0.5. There-
fore it can be concluded that (1.4) and (1.5) are valid for
a sufficiently large system. The high-temperature expan-
sions of e and 7p are available up to tenth orders. For
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the energy density e, the low-temperature expansion (1.3)
and the high-temperature expansion connect smoothly at
t -0.5 —0.75. For the susceptibility Xo, coincidence
occurs near t -0.5. But the connection is not as smooth
as that of the energy density.

Shenker and Tobochnik give the following formulas
for Xo and g:

excellent agreement with Monte Carlo results for the
same system. In Sec. IV the relations between the spin-
wave theory and the renormalization-group method will
be discussed. In the Appendix a direct derivation of
fundamental equations for classical systems will be
given.

go ——0.018 2'+ t

4

exp(4~/t)
II. MODIFIED SPIN-WAVE THEORY

FOR THE CLASSICAL SYSTEM

= l. 1)& 10 t exp(4' lt), (1.7)

The Holstein-Primakoff transformation is applied to
(1.1):

/=0. 010 exp(2~/t)
277+ t

S~+ =S +iSJ=&2Sf, (S)a, ,

S =Sf iS,~=—V2S a,*f j (S), (2.1)

-1.6&&10 't exp(2'/t) . (1.8)

Sz =S—az az

f~ (S)= [1—(2S) 'a~*a~ ]'~ = 1 —(4S) 'a *a +O(S )

(2.2)

Xo-0.004 36t exp(4~/t) . (1.9)

This functional form is different from that of Shenker
and Tobochnik, but the same as that of (1.4). I do not
know which one is correct according to
renormalization-group theory. But modified spin-wave
theory supports functional form (1.9). Fisher and Nel-
son determined the amplitude from a high-temperature
expansion. In contrast to (1.7), this is about 40 times
larger than (1.4).

In Sec. II the modified spin-wave theory will be re-
viewed. Fundamental equations for the classical Heisen-
berg model are derived by taking the limit of S~ co.
The spin-wave results for the linear chain are compared
with Fisher's exact solution. In Sec. III the energy, the
correlation function, and the susceptibility of an infinite
square lattice are derived. These quantities are calculat-
ed also for a 64&(64 system. The spin-wave results show

They used Monte Carlo data on a 50 X 50 lattice.
Several authors have confirmed these formulas using
bigger lattices. The exponential terms of these formulas
are the same as in Eqs. (1.4) and (1.5). Preexponential
factors, however, are different. Shenker and Tobochnik
derived the functional form of Xo using a
renormalization-group approximation and determined
the amplitude of Xo by Monte Carlo calculation. Equa-
tion (1.7) is about one-fortieth of (1.4) at t (0.5. Thus,
modified spin-wave theory gives qualitatively the same
but quantitatively different results from those of Shenker
and Tobochnik. Fisher and Nelson proposed that the
susceptibility behaves as follows:

Let us consider the following ideal spin-wave density
matrix:

p =C exp —g g (k)a ~a&
k

The expectation value of S; S~ becomes
2

Trp8; Sz /Trp = S ——g ( 1 —e 'J )n &

k

1

exp[g (k)]—1

(2.4)

(2.5)

The entropy 4 for this density matrix and magnetization
are

g= g g(k)
exp[g(k)] —1

—ln [ 1 —exp[ —g (k) ]], (2.6)

S, =SN —gnq .
k

(2.7)

Factors g(k) should be chosen so that E TS is mini--
mized under the condition S, =0:

Here, a~* and az are the creation and annihilation opera-
tors of bosons at the jth site. The pair product operator
S;.S~ can be expressed as follows:

S;.SJ =S —S(a;*—aj*)(a;—aj )

——,
' [a;*a*(a; —a ) + (a;*—a~* ) a, a~ ]+0 (S '

) .

(2.3)

—Tg g(k)
e"p[g (k) ]—1

—in[1 —exp[ —g(k)]] —p. g nq, (2.8)

BW exp[g(k)]
&g(k) [ exp[g(k)] —1]

S'=S—g [1—exp(ik-5)]nq .
k

—JS' g [1—cos(k 5)]+'rg(k) p—
(2.9)
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g(k) = T '[JS'e(k) p—],
E(k)—:g [1—cos(k 5)] .

(2.10)

S' and p are solutions of the following coupled equa-
tions:

1S=— (2.1 1)

Here, p is the Lagrange multiplier and the 5's are lattice
vectors to nearest neighbors. Then we have

function G(v):

G(v)—=N
1

Ek +V

Equations (2.16) and (2.17) are written as follows:

x/t =G(v),

x /t = ——+ 1+—G(v) .
z z

(2.22)

(2.23)

(2.24}

JS'e(k) —pexp
Thus t, x, and Xo can be represented as functions of v:

1S'=—
N

cos(k 5)
JS'e(k }—pexp —1

T

(2.12)

vt= 1+—
z

G(v)— 1

zG (v)

v 1x = 1+
z zG(v)

(2.25)

(2.26)

1—g exp(ik. r;, )nk
(s, s,.

for i&j

S(S+1) for i =j .

Then the energy and the susceptibility become

(2.13)

It is assumed that S' in (2.9) and (2.12) is independent of
the 5's. The correlation function (S;.S~ ) is as follows:

2

Xo———G'(v)/G (v) . (2.27)

G(v)=1/(v +4v)'i

Substituting this into (2.25) gives

(2.28)

Thermodynamic quantities are calculated through pa-
rameter v and function G (v).

For the linear chain we have z =2, E(k)=2 —2cosk,
and

e= (S —S' ),
2

yo —g &S,'S, ) =—g (n g+ng),
N

(2.14)

(2.15)

2 4t= 1+—(v +4v)'
2 2

From this one can eliminate parameter v:

(2.29)

where z is the number of nearest neighbors.
The above is the main formulation given in Ref. 1 for

the quantum Heisenberg model. By taking the limit of
infinite S, one can treat the classical case. Setting
JS =Jo and S;/S=s;, we have Hamiltonian (1.2). We
put that T»JS=JO/S. Then Eqs. (2.11) and (2.12) be-
corne:

2 —t
U = —2 )&I t—
x =&I t . —

Energy and susceptibility become

e=Jot,

(2.30)

(2.31)

(2.32)

X—=N 1

e(k)+v

, + cos(k 5),+ 1 —z 'E(k)
e(k)+v z e(k)+v

(2.16)

(2.17)

go ——2/t —1 . (2.33)

This may be compared with Fisher's exact solution,
which gives

e =J, [I—[coth(1/t) t ]I—
x=S /S v= —pS/(Jox) t=T/J 0 (2.18)

=Jo[t +O(e ')], (2.34)

Here, x and v should be determined self-consistently.
The correlation function, energy, and magnetic suscepti-
bility are as follows:

1+[coth(1/t) —t]
1 —[coth(1/t ) t]—
2= ——1+O(t e ~') . (2.35)

2
1 iv.r„

N q x[s(k)+v]

e= —Jo(1 —x ),=z 2

2

X =g(s s, )=N
x[E(k)+v]

2

(2.19)

(2.20)

(2.21)

Thus spin-wave theory gives a very accurate solution at
low temperatures. The discrepancy from the exact value
is of the order of exp( —2/t)! It is expected that the sit-
uation is the same also for the two-dimensional system.

III. CLASSICAL SQUARE LATTICE

A. Infinite system
Equations (2. 16)—(2.21) are the fundamental equations
of modified spin-wave theory for the classical Heisenberg
model defined by Eq. (1.2). Let us define the following

For the square lattice we have z =4 and
E(k)=4 —2cosk„—2cosk~. In the limit of infinite sys-
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tern the sum in Eq. (2.22) is replaced by the first-kind
complete elliptic integral K (k):

2n 2' 1G(u)= 8X 0y
o o 4+ U —2 cosx —2 cosy

e =Jo f2 —[1+(1—k t)'~ ]k +t/2I,

k4tE(k)
27r(1 —k )[1+(1—k t)' ]

(3.6)

(3.7)

=(2') 'kK(k), (3.1)
Near k =1, K(k) and E(k) are expanded by
I = (1—k'—)'"

k—= 1+—U
4

K(k) = ln
4
k'

k'
4

+O(k' Ink'), (3.8)

t=k 2'
K(k)

7T2

K (k)

x=k 1— VT

2K (k)

Then Eqs. (2.25)—(2.27) can be written as

(3.2)

(3.3)

1 4E (k) = 1+—ln
2 k'

1

2
k' +O(k' ink') .

Substituting (3.8) into (3.5) gives

1 —k = 16 exp — + sr ++0( t . )2= 4n. 7Tt 2

4

(3.9)

(3.10)

rrE (k)
2(1 —k )K (k)

(3.4)

where E (k) is the second-kind complete elliptic in-
tegral. From Eq. (3.2) one has

This means that k is very near 1 at low temperature.
Substituting this into (3.6) and (3.7) gives Eqs. (1.3) and
(1.4). Equations (3.1) and (3.10) yield

K (k)=m. 1+(1 —k 't )
'~'

k t
(3.5)

v =32e exp( 4'/t) —1+ +O(t )
4

(3.1 1)

Substituting this into (3.3), (3.4), and (2.20) gives
From Eq. (2. 19) we have a correlation function at
frf ))I:

exp(ik r)dk dk~ t
(so s )' =(277) —f f 2 2

= Ko(r/&v )=
X 27TX 2~x 2r v'v

1/2

exp( —r&v ) . (3.12)

Here, Eo is the modified Bessel function. Then the two-point correlation function becomes a Yukawa function:

2

(so s, ) =
z

— exp( —2&v r) .
8vrx'&ur

(3.13)

The correlation length g is I/(2&v ) and Eq. (1.5) is derived. In two dimensions the Ornstein-Zernike —type correla-
tion function should be exp( r/g)/&r. But c—orrelation function (3.13) is slightly diff'erent from the Ornstein-
Zernike type.

B. Comparison with Monte Carlo calculation and high-temperature expansion

Let us consider a finite 64)&64 square lattice. The modified spin-wave theory in Sec. II works also for finite systems
with the periodic boundary condition. But one cannot replace the momentum sum in (2.22) by an integral. Solving
(2.26) numerically we can determine u for a given temperature. We also carry out the Monte Carlo calculation of the
64X64 classical Heisenberg lattice using the heat-bath algorithm. The two-point correlation function is calculated by
the use of the fast Fourier transformation. Details of these numerical techniques are given in Ref. 10. As shown in
Fig. 1, at t =0.5 and 0.25 spin-wave results agree excellently with the Monte Carlo results for correlation functions.

The high-temperature expansions of e and Xo are known:

e/Jo =2—0.666666 666 7t ' —0. 103 703 7t '+0.005 643 79t

+0.003 595 226t +0.001 154 507t +O(t ''),
7o ——1+1.333 333 333t '+ 1.333 333 333 3t + 1.244 444 44t

+ 1.056 790 12t +0.851 263 96t +0.659 564 96t

+0.492 710 96t +0.358 061 79t +0.252 923 16t +0.174853 908t ' +O(t ") .

Then the logarithm of Xo becomes

(3.14)

(3.15)



36 CLASSICAL HEISENBERG FERROMAGNET IN TWO DIMENSIONS 3795

l~p= 1.333 333 33t & +0 444 444 444t 2+0.256 790 12t

+0.088 888 89t +0.047 971 782 9t +0.021 738 846t

+0.008 938 012 Ot +0.004 238 376t +0 00.0 635 384 17t +0.000 623 154 223t 'o+ 0(t ") . (3.16)

IV. SUMMARY AND DISCUSSION

In previous papers' the reduced susceptibility and
correlation length were obtained for the quantum system
described by Eq. (1.1):

(a)
1.Qadi

1Q
I

15

0
o

(=075

01-

0
0 0 0 0 0 0

"oo'io'

In Figs. 2 and 3 these high-temperature expansions, the
low-temperature expansions (1.3) and (1.4), and the re-
sults of Monte Carlo calculations are given as functions
of 1/t. With respect to the energy, the high-temperature
expansion (3.14) and the low-temperature expansion (1.3)
smoothly connect with each other near t =0.5 —0.75 ~ As
shown in Fig. 3, the connection is not so smooth for the
susceptibility. At t =0.75, spin-wave result (1.4) for sus-
ceptibility is several tens of times greater than the Monte
Carlo result. This is because the spin-wave approxima-
tion is not good in this temperature region. It is expect-
ed that the coincidence becomes better at t &0.5. To es-
timate the susceptibility of an infinite system at t =0.5,
we need to treat the 1000&& 1000 system. Unfortunately,
the Monte Carlo calculation for the susceptibility of
such a large system is not available. So it is very
difficult to verify Eq. (1.4) using the Monte Carlo calcu-
lation.

and

Xo- exp(4~JS /T)T 2

~JS
(4.1)

and (4.2)

exp(2vrJS /T) .
8 2e"

The prefactors for exponentials are slightly different in
Eqs. (4. 1) and (4.2). Equations (4.2) are valid at
JS »T»JS. However, the expansion formulas (4.1)
are valid at T « JS. Thus we can say that the
quantum-classical crossover occurs near T-JS for actu-
al systems with large spin quantum number S. Below
this temperature the system is quantum mechanical.
The specific heat is proportional to T and Eqs. (4.1) are
valid. But above this temperature the system is classical
and Eqs. (4.2) are valid and specific heat is nearly a con-
stant. It should be noted that the preexponential factor
changes between the classical case and the quantum case
in two dimensions. In one dimension gp behaves as
2JS /T both for classical and quantum cases.

Renormalization-group methods have succeeded in
describing qualitatively the critical behavior of magnetic
susceptibility of the two-dimensional Heisenberg model.
They have been able to show that Xp diverges as
exp(4m/t). However, they were not able to determine
the amplitude of the divergent term by themselves.
They estimated it with the aid of high-temperature ex-

g=(JS/T)'~ exp(27rJS /T) .

On the other hand, Eqs. (1.4) and (1.5) give the following
formulas for a sufficiently large spin quantum number S:

2

Xp~
1 T

exp(4~JS /T)2

12877-e " JS

(b)10:;

05—

"oo'Lo'
0.2—

t= 05

10

(c) 1.0 I

a
t= 02505—

~ oo io~-
02—

15
10—

1.0 2.0 3.0
I

4.Q

FIG. 1. Two-point correlation function ( soo s~o) along a
column of a 64&64 square lattice at various temperatures. (a)
t=0.75, (b) t=0.5, and (c) t=0.25. Crosses are the Monte
Carlo results and circles are the spin-wave results. At t &0.5
both results agree excellently.

FIG. 2. Energy per site as a function of 1/t. Dashed line is
the result of high-temperature expansion (3.14). Solid line is
the spin-wave result (1 ~ 3). Crosses are results of the Monte
Carlo calculation for the 64&& 64 system.
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:(2 x2 y2)1/2x
J J J J

sf =(2—x' —y')'"y

s = 1 —xJ —yJ
z= 2 2
J

(Al)

20—

Ln Xp

]0—

The region of (xj,y~) is in a circle with radius i/2:
x +y & 2. The advantage of this representation is that
the weight function of the phase-space integral is a con-
stant. The partition function of the classical system
defined by (1.2) can be written as follows:

Z= f gdx, dy/ exp 'T ' g (s;.s, —1)
&~J &

(A2)

FIG. 3. Logarithm of susceptibility as a function of 1/t.
Line 1 is the result of high-temperature expansion (3.16). Line
2 shows the spin-wave results for an infinite system (1.4). Line
3 is the result of the Shenker-Tobochnik formula (1.7). Line 4
shows the spin-wave results for the 64&64 lattice. Crosses are
the Monte Carlo results for the 64&(64 lattice.

The pair product s;.sJ- is expanded as follows:

s; sj ——1 —(z; —zi )(z; —zi )

——,'[z;zi(z; —z ) +(z; —zi) z;zi]+

ZJ =xJ +gy.
(A3)

pansion or Monte Carlo calculations as shown in Eqs.
(1.7) and (1.9). It seems that these attempts ' failed to
determine the correct preexponential factors of Xp and g
because the system size of the Monte Carlo calculation is
not su%ciently large. To get the numerical factors they
used lattices such as 50X50—200X200. Then, Xp and g
were estimated only at t &0.7. Spin-wave theory, how-
ever, can calculate the magnetic susceptibility quantita-
tively by itself. It is expected that formulas (1.4) and
(1.5) become better than (1.7) and (1.8) at sufficiently low
temperatures such as t & 0.5. Moreover, spin-wave
theory gives the correlation function (3.13), which is
different from the Ornstein-Zernike type.

Quantitative spin-wave calculations for the O(2) pla-
nar model have already been done by many authors. "
The correlation function at low temperature has been
calculated and it decays algebraically on a two-
dimensional lattice. I believe that this paper derives the
quantitative calculation for O(3) classical Heisenberg
model at low temperature. It is expected that the same
kind of quantitative calculation is possible for the O(n)
(n )4) Heisenberg model, although its calculation be-
comes complicated.
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1
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k k
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k
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5 k
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~

)h (k)], (A5)
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APPENDIX: DIRECT DERIVATION
OF FUNDAMENTAL EQUATIONS

FOR CLASSICAL SYSTEMS

—T g lnh(k) —p' g h(k) .
k k

Here, p' is the Lagrange multiplier. Then we have

h (k) = T/[Jpx E(k) —p'],

(A8)

(A9)

In Sec. II equations were derived for the classical sys-
tem by taking the limit of S~ ap in a quantum system.
Of course, we can also derive them in the regime of clas-
sical mechanics.

Let us consider the following transformation for clas-
sical spin sJ:

x =1—N ' g (1—e'" s)h(k),
k

1=N 'gh(k) .
k

(A10)

(Al 1)

Then, if we read v = —p, '/Jpx, we get Eqs. (2.16), (2.17),
and (2. 19)-(2.21).
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