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Scaling hypothesis and corrections to bulk behavior

Surjit Singh and R. K. Pathria
Guelph Wa-ter!oo Program for Graduate Work in Physics, Waterloo Campus, Uniuersity of Waterloo,

W'aterloo, Ontario, Canada N2L 361
(Received 27 March 1987)

A scaling hypothesis is set up for the correlation function G(R, T;L) of a finite-sized system,
with O(n) symmetry (n &2), confined to geometry L" "&& oo (2&d&4, d'&2) and subjected to
periodic boundary conditions. Finite-size effects in the correlation length g(T;L) are predicted in

the region of first-order phase transition (T & T, ) as well as the region of second-order phase tran-

sition (T= T, ); for the correlation function, the predictions relate mostly to the regime T & T, .
To test these predictions, a detailed analytical study is carried out in the case of the spherical
model and all predictions are seen to be fully borne out. In the process we find that, though a sin-

gle correlation length g governs the scaling of the variable R in all directions, the functional

dependence of the correlation function on the scaled parameter R/g is highly anisotropic, in that
it depends very differently on the components, Rj and R~~, of R pertaining to the finite and the
infinite dimensions, respectively. Most importantly, while long-range order at temperatures below

T, prevails all the way in the direction of Rj it is severely limited in the direction of R~~. In fact,
for R~~ &&L, the qualitative features of the correlation function become characteristic of a d'-

dimensional bulk system, though g still pertains to the actual, finite-sized system; the net result is

that long-range order in the direction of Rt persists only to distances small in comparison with g
which, for d'&2, is found to be O(L(L/a)'" ' ' " '), a being the lattice constant.

I. INTRODUCTION

In a recent paper, ' hereafter referred to as I, we car-
ried out a detailed analysis of the thermodynamic prop-
erties of the spherical model of ferromagnetism confined
to geometry L X co" (2&d 4&, d'&2) and subjected
to periodic boundary conditions. We showed that, in
the region of the second-order phase transition ( T = T, ),
our analytical results for the "singular" part of the free
energy density f", the specific heat per unit volume c"
and the magnetic susceptibility 7 of the system were in
full conformity with the Privman-Fisher hypothesis on
the hyperuniversality of finite systems. In a subsequent
investigation, we extended our analysis to the region of
the first-order phase transition ( T & T, ) and found a
similar conformity with a generalized version of the
aforementioned hypothesis in which the scaling parame-
ters of the system were not only model dependent but
temperature dependent as well and covered the tempera-
ture range from T = T, down to T =0. A little
reAection showed ' that, although the motivation for
this generalization had come originally from our study
of the spherical model (n = ac ), the predictions of the
generalized hypothesis were, in fact, applicable to all
O(n) models with n )2. At that stage we decided to
turn our attention to the problem of spin-spin correla-
tions in these systems, with a view to studying finite-size
effects in the correlation function G(R, T;L) as well as
the correlation length g(T;L). This study has been car-
ried out in detail, in the region of both first- and
second-order phase transitions, and some of the relevant
results were reported in an earlier communication.

According to the generalized version of the Privman-
Fisher hypothesis, the "singular" part of the free-energy
density of a system confined to geometry L " & ~" and
subjected to periodic boundary conditions may be written
as

f"(T,H;L) = TL Y(xi,x2),
where x& and xz are the scaled variables of the system,

xi ——CIL' t, x2 ——CqL H/T .

C) and C2 are certain nanuniversal, model-dependent
(and, in general, temperature-dependent) scale factors
while t is a generalization of the conventional tempera-
ture variable t[=(T—T, )/T, ]; here, T, denotes the
bulk critical temperature of the system while other sym-
bols have their usual meanings. The function Y(xt, x2)
is then a universal function —common to all systems in
the same universality class. Encouraged by the success
of hypothesis (I), we introduce, in Sec. II, a correspond-
ing hypothesis for the correlation function G(R, T,H;L)
of the finite-sized system which embodies a subsidiary
hypothesis for the correlation length g(T, H;L) as well.
A comparison of the proposed form of the Pnite system-
correlation function with known expression for the bulk
correlation function at temperatures below T, enables us
to determine the scaling parameters C&t and C2 for all
temperatures from T = T, down to T =0. Using our
knowledge of the mathematical nature of the singularity
encountered by the system as T~0, we then make
specific predictions about the size dependence as well as
the temperature dependence of the correlation length g
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in the region of both first- and second-order phase tran-
sitions; this is done in Sec. III, which also includes a
comparative discussion of the magnetic susceptibility of
the system.

In Sec. IV we carry out an exact analysis of the zero-
field correlation function G(R, T;L) and the zero-field
correlation length g(T;L) of a finite-sized spherical mod-
el under periodic boundary conditions; in Secs. V and VI
we compare our analytical results with the scaling pre-
dictions made in Sec. III. We find that all our predic-
tions are fully borne out and comparison with earlier re-
sults, wherever possible, is perfect. In the process we
isolate the finite-size effect, G*(R,T;L), in the correla-
tion function of the system and analyze it in detail for
various values of R ( =

~

R
~

) in relation to the parame-
ters L and g. Not surprisingly, the effect associated with
the component R~~~

of R (which pertains to directions in
which the system is infinite) turns .out to be very
different in nature from the one associated with the com-
ponent Ri (which pertains to directions in which the sys-
tem is finite). While for short distances the two eff'ects

are comparable in magnitude but opposite in sign, for
long distances they are radically different. In fact, the
contrast between the two becomes dramatic when one
considers the propagation of long-range order in the sys-
tem at temperatures below T, over distances much
greater than L in the direction of R~~. One is thereby led
to a "splitting theorem, " for the correlation function
G(R, T;L), which constitutes Sec. VII of the paper and
highlights the fact that, for R~~ ~~L, the mathematical
form of the correlation function bears no resemblance to
the one for a d-dimensional bulk system; it becomes
characteristic of a d'-dimensional bulk system instead.
Clearly, no such problem arises in the case of a fully
finite system (d'=0).

II. SCALING HYPOTHESIS
FOR THE CORRELATION FUNCTION

X(T,H;L) —=—g G (R; —R, , T,H;L)
R, , R

iVD( " L
1

g
rx2

TQ

where N is the total number of spins in the system, a is a
microscopic length (such as the lattice constant) while Z~
is some universal function of the variables L/g and xz.
Using (4), and remembering that the volume of the system
is =Na, we may write per unit volume of the systemd

DL
X(T,H;L) =

zd Zz(xi, x&),
Ta " (6)

where Z2 is another universal function —this time of the
variables x& and x2. Starting from (1), on the other hand,
we obtain (again per unit volume of the system)

X(T,H;L)=— g2f (sj

BH

C 2L y/v
2

Z(x&,x2),

A comparison of the present formulation for the finite-
system correlation function G(R, T,H;L) with that of
Privman and Fisher for the bulk correlation function
G (R, T,H; ao ) shows that, up to universal factors, our pa-
rameters D and C2 are equivalent to their parameters D&

and D2c 0 ", respectively. Accordingly, our Eq. (8)
amounts, in their notation, to the statement

2dD2 —2A/v 2dg 'Pg 2a 2cp Q

where Z is also a universal function of the variables x&

and x2. Comparing (6) and (7), we conclude that the ratio
D/a "C

2 must be a universal number. Since this number
can be adsorbed into the function X(r, l, x2) of Eq. (3), we

may write

D=a2dC22 .

We propose that the correlation function G(R, T,H;L)
of a finite-sized system subject to periodic boundary con-
ditions may be written as

D R
G(R, T,H;L)= X —,—,x2d —2+g

(R=R; —R, , R = iRi ), (3)

where g is the Pnite system correl-ation length which obeys
the subsidiary hypothesis

((T,H;L)=LS(xi, x~) . (4)

It seems important to note that, as in the case of expres-
sion (1), no nonuniversal scale factor appears in front of
the scaling function S (x i,x z ) in expression (4); the same
is not true of expression (3) where a nonuniversal factor
D does indeed appear in front of the scaling function
X(r, l, x2). To determine D, we observe that the magnet-
ic susceptibility X(T,H;L) of the system may be derived
from Eq. (3) as well as from Eq. (1) and require that the
two expressions thus derived be identical. In the former
case,

which, however, differs from the last result stated in Eq.
(AS) of Privman and Fisher, in that a factor such as a " is
not there. The reason for this (minor) discrepancy lies in
the fact that Eq. (A2) of Privman and Fisher lacks a fac-
tor of v, where v denotes the "volume of the unit cell"
in the lattice. While this factor is necessary for mutual
consistency of their Eqs. (A2) and (A7), it does indeed
arise if the passage from Eq. (Al) to Eq. (A2) is made
with caution. With this modification introduced into Eqs.
(A2) and (A8) of Privman and Fisher, the result obtained
here would be in complete agreement with theirs.

To determine C, r and Cz appearing in Eqs. (2), we ob-
serve that, under appropriate limiting conditions, hy-
pothesis (3) must reproduce known expression for the
field-free, bulk correlation function, namely

G(R, T 0; oo)=MO(T)+ „(T& T, )
3 (T)
g d —2

where Mo(T) is the spontaneous magnetization and 2 (T)
a system-dependent coe%cient. Assuming that, for
T & T, and L ~ co, the scaling function S in (4) takes the
limiting form
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S(x),0)=S
~

x)
~

(x) ~—oo ),
whence

become constant, so that

T —& /~(d —2) C TP/v(d —2)
2 7 (21)

g(T;L)=S (C, ~t ~) L + ' " (T&T„L~oo),

we conclude that the function X in (3) must possess the
asymptotic behavior

[X(r, l, O)](r, i)-p

in perfect agreement with the recent proposal of Shapiro;
see also Ref. 5. Equations (21) are a clear signal of the
singularity lurking at T =0 K.

The results stated so far are supposed to be general, in
the sense that they may hold for all 0(n) models with
n )2. In the special case of the spherical model
(n = oo ), the relevant bulk results are known to be

r=X
I (~+~)/o

d —2+g

(~+~)/0+X +X*(r,l),
1/2

Mp(T)= 1—T
T.

W(T)=r
a" T
8'""J

(22)

with uniUersal amplitudes

X =M (T)/a C (S' C,
~

t
~

)
+"'

(12) Y(T}= 1—
a C

so that

and 0 —2
a =r

2
4 d/2

)) (23)

X2 = 3 ( T) la "C (S ' C,
~

t
~

)') (14)

while X*(r,l} represents the finite-size effect in X. It fol-
lows that

and

C,
~

t
~

=S ' [X M (T)/X) A (T)]' "'" (15)

C a —d[g (T)/X ])/2[X g (T)/X M2(T)]gl2(d —2)

3 ( T)Y( T) /TM p( T) =ap, (17)

relations (15) and (16) may be written in the alternative
form

C
~

t
~

=S ' [X Y(T)la X T]'~'

(16)

Now, in view of the fact that the quantity
A ( T}Y(T) /TM p ( T), where Y( T) is the "helicity
modulus" of the (bulk) system, is universal,

here, J denotes the interaction parameter of the model
while a stands for the lattice constant. It follows that for
the spherical model [for which r)=0 and v= I/(d —2)],
the desired scale factors may be written as

1/2

C2 ——
1

T (24)
T

d+2J
J 1

d 2a C

X) ——S ', X2 ———,'ao . (25)

It may also be noted that, in the limit T~T„our scale
factors (24) reduce precisely to the ones adopted in I, i.e.,

1/2
T.
d+2J

JC]t~ d 2
t =C[t C2~ (26)=C2

see Eqs. (20) of I. On the other hand, as T~O,

Referring to Eqs. (13) and (14), we observe that, with this
choice of C&t and C2, the universal numbers X& and X2
would be given by

and c, /t/-T C2~T (27)

C2 ——a "[ap TM p ( T) /X2 Y( T)] ' '

X [apX) T /X2Y( T)]" (19)

in perfect agreement with (21). We shall now make pre-
dictions on the basis of the formulation of this section.

The nonuniversal parameters C&t and C2 are thus deter-
mined in terms of the bulk properties of the system.

We note that, as T~ T, , Mp( T) —
~

t
~

~, while
A (T)—

~

t
~

'", t being the conventional temperature vari-
able (T —T, )/T„' it follows that Y(T) in that case would
vary as

~

t
~

" ), with the result that

c, It I-c, lt I, c,-c, , (20)

where C& and C2 are the temperature-independent scale
factors pertaining to the original hypothesis of Privman
and Fisher for T=T„our generalized hypothesis, there-
fore, reduces to the Privman-Fisher form as the region of
second-order phase transition is approached. On the oth-
er hand, as T~O, the quantities Mp(T) and Y(T) tend to

III. PREDICTIONS BASED ON SCALING
HYPOTHESIS

For this we go back to the general O(n) model with
n )2 and examine various regimes of T and I one by
one. Regarding the correlation length, we note that, for
T & T, and L~ oo (which makes x) ~—oo ), the desired
result is given by Eqs. (11) and (18), so that

g( T;L ) = [X2Y( T) la pX) T) '" 2'L '"+

( T & T„L~ oo ) . (28)

As T~O, Y(T) tends to be a constant, with the result
that g- T ~ ' '. However, as argued earlier, the
mathematical nature of the singularity encountered by the
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system in geometry L " & ~ at T =0 should be
characteristic of the d'-dimensional bulk system. We,
therefore, conclude that o =vv(d —2), where v is the crit-
ical exponent governing the behavior of the correlation
length g( T) of a d'-dimensional bulk system as
T~T, (d')=0. Making use of the actual value of v, see
Eq. (10) of the appendix, we find that, for d' & 2,

us complete dependence of g on both T and L throughout
the region of the first-order phase transition. In passing,
we note that Fisher and Privman' have also derived an
asymptotic expression for g which holds for all n & 2 but
pertains to the "cylindrical" geometry (d'=1). A com-

parison of their result with ours suggests that the univer-

sal quantity

o.=v(d —2)/(2 —d') (29) (X2/aoX, )d i 2n /——(n —1) . (32)

and hence for the system under study

g( T .L ) [X Y( T) / X T]1/(2 d')L (d——d')/(2 —d')

L[L Y(T)/TJ " (T &T, I ~~) .

(31)
It will be noted that the approach exponent,
(d —d')/(2 —d'), appearing in (30), though dependent on
d, is totally independent of the critical exponents pertain-
ing to the d-dimensional bulk system. Equation (30) gives

6)= (y —1)v(d —2)+ 2f3= v[y(d —2)+ il] (34)

where y is the corresponding d'-dimensional critical ex-

ponent. It follows that

Likewise, the zero-field susceptibility of the system in
the regime T & T, would take the form, see Eq. (7),

X(T;L)=Z (C /T)(C,
~

t
~

) L'r+ ' ", (33)
with Z universal and 0 as yet unknown. Arguing as be-
fore, we conclude, with the help of Eqs. (21), that

X(T;L)=
Z —ao M()(T) X2Y(T)

L 2+y(d —2)

X g[Y(d —2)+7)]/v(d —2) a 2dY( T) aoX) T
(35)

Making use of the actual values of v and y, see again Eq. (A10) of the Appendix, we find that, for d &2,

Z a() M() ( T) X2Y( T)
X(T;L)=

X g(4p —d'vg)/v(d —2) 2dY( T) a X T
L 2(d —d') /'(2 —d') (36)

Equation (36) gives us complete dependence of X on both

T and L throughout the region of the first-order phase
transition. Once again, we note that the approach ex-

ponent, 2(d —d')/(2 —d'), appearing in (36), though

dependent on d, is total1y independent of the critical ex-

ponents pertaining to the d-dimensional bulk system.
At this point it seems worthwhile to note that, in the

regime under study, the quantity X/g is independent of L
and depends only on T:

Z ao Mo'(T)

g2 X g(4P —d'vq)/v(d —2) 2dY( T)2

(3g)

—TL [L M (T)/T] [L" Y(T)/T] /' ' (T & T„L ) . (37)

to enter the region of the second-order phase transition
where X/g —

~

t
~

"".
At this stage we would like to point out that the forego-

ing results were obtained for d'&2. If d'=2, then power
laws such as (30), (31), (36), (37), (39), and (40) would get
replaced by exponential ones; see Eqs. (A13) of the Ap-
pendix.

In the "core" region, where ~x(
~

=O(1) and hence

~

t
~

=O(L '/ ), the functions g and X, for a fixed value
of x&, are proportional to L and L, respectively; see
Eqs. (4) and (7). Accordingly, the quantities

in the case of the spherical model, even T dependence is

absent and we obtain an especially simple result, viz.

$2

Z

S Ja + (38a)

In passing, we observe that, as T~T, , Eqs. (31) and

(37) assume the form

g(T„L)L ' and X(T, ;L)(T, /C22)L (41)

evaluated at the erstwhile critical point T =T„would be
universal.

Finally, for T~ T, and L~oo, we expect to recover
standard bulk results, with corrections arising from the
finiteness of the system. Under periodic boundary condi-
tions, these corrections are expected to be exponentially
small. %'e shall now verify these predictions in the case
of the spherical model of ferromagnetism.

gati '(Lit()'" '" ' (T&T L ) (39)
IV. ANALYTICAL RESULTS

FOR THE SPHERICAL MODEL

~

2t)+ v(d —2)d'/(2 —d')L 2(d —d')/(2 —d')

~t
~

~(L ~t
~

)'('-""'-" (T T„ I. ), (40)

a clear indication of the fact that the system is preparing

For analytical study we consider a field-free spherical
model, of size L&)& - - &Ld, for which the spin-spin
correlation function under periodic boundary conditions is

given by
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= T cos(k. R)
2l))) )~) A. —2J icos(k, a)

d'

K(d 2)/2( A(qi ) )

[A( )](d —2)/2

(43)

O $ +j $ Pfj Lj / a kj 2an j / Lj
(j = 1, . . . , d) while A, denotes the "sph«ical fieid" per-
taining to the model. Following the procedure developed
in I, we obtain (for R/, LJ »a)

(d —2)/2

G(R, T;I., ) = T
4~J 2n

where K„(z) are modified Bessel functions,

v'
A(q, ) = g (q, L, +R, )'

——2d « 1;
(44)

the parameter P(T;L/) is determined by the constraint
equation of the system, see Eq. (65) of I,

8' 1

T.

' (d —2)/2
1

T 4' I 2 —d
2

2d /2 K(d —2) /2 ( AO(q, »

[A ( )](d —2)/2

g( T;L/) =a/[P(T;L, )]'

and write A(q ) in the scaled form

A(q/)= g (q/l~+r/) (47)

where A() denotes (A)it
The structure of the quantity A(qj ) suggests that we

define a finite system-correlation length g(T;L, ), through
the relationship

S(x),0)= 1

2y (x) )

d —2

8 d/2 I 2 —d
2

—2
K(d —2) /2 (2yq )

( )(d —2)/2
q(d )

the parameter y (xi ), in turn, is determined by the con-
straint equation (45) which may now be written in the
scaled form, see Eq. (24) for the nonuniversal parameter
C1t,

where
[q =(q i+ +q,'* )'"& o] . (55)

(48)

where

d*
/=L/g, r(( r r), ri= g —r, ——2 —2 2 2 — 2

j=1
(50)

It is now straightforward to see that, with nonuniversal
parameter

D=a "C2——ad T/J, (51)

ij LJ/g, rj ——Rl/——g .

For geometry L" )& oo, where d'+d'=d, only those
A(ql ) contribute to the sum in (43) which are of the form

1/2

A(q, )= g (qjl+rj) +r(( (49)
j=1

We shall now examine our results for g(T;L) and
G(R, T;L) in different regimes of T and L, and for vari-
ous values of R (in relation to the parameters L and g).

V. FINITE-SIZE EFFECTS
IN THE CORRELATION LENGTH

A. Case (a): T & T„L~ oo

In this case, x,~—co and Eq (55) gi.ves

l 2 —d'r
y 8~/2

constXexp( 4vr
~
x(

~

)—

1/(2 —d')

(d'&2),

(d'=2) . (56)

The scaling function S(x),0) then assumes the asymptotic
form (10), with

see Eqs. (8) and (24), our analytical result for G(R, T;L)
is in full conformity with the scaling hypothesis (3), with
scaling function

I 2 —d
2

1/(2 —d')

(d' & 2) . (57)

X(r, l, O) = r K(d —2)/2(«q»
)d/2 [A( )](d —2)/2

q(d

(52)

j L
y =——V'y=

2 a 2g
(53)

which shows quite readily that g indeed satisfies the subsi-
diary hypothesis (4), with scaling function

As for the correlation length, we invoke the thermo-
geometric parameter y through the standard relationship'

The value of o. obtained here is in perfect agreement
with the scaling prediction (29), with v= 1/(d —2). It
may also be noted that, in the case of the "cylindrical"
geometry (d'=1), S turns out to be 4 which, by Eq.
(25), gives X i ——4', it then follows that the ratio
(X2/aoX) ) in this case equals 2—in perfect agreement
with Eq. (32), with n ~ m.

The correlation length itself is given by Eqs. (53) and
(56), with the result that, for d' & 2,
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2 —d'
g= —8~ ' r

2 2

=—4~' I1 d 2 2 —d'
2 2

1/(2 —d') J 1

a d —2 T
1/( 2 —d') L" Y( T)L

T

1/(2 —d')

L (d —d')/(2 —d')

' 1/(2 —d')

(58)

(59)

here, use has also been made of Eqs. (22) and (24). We find that Eqs. (58) and (59) do indeed agree with predictions (30)
and (31), with

1 2 —d'
2(4~)'" X2 2aO

1 (60)

see Eqs. (22)—(25). For d' =2, we obtain instead
d —2

L 1/=const XL exp 4'
Q T

(d'=2); (61)

for d =3, the constant in front of this expression turns out to be unity (see also Ref. 11).
For the model under study, the foregoing results may as well be expressed in terms of the spontaneous magnetization,

Mo( T), of the bulk system; thus,

8 d'/

2

1/(2 —d') d —2

Mo(T)
J L
T a

1/(2 —d')

(d'&2),

d —2

const&&exp 4~ — —M&, (T)
L

T a
(d'=2) .

(62)

It is gratifying to note that, in the special case d =1, this
result is in complete agreement with the one derived re-
cently by Fisher and Privman. '

At this point it seems instructive to recall that the mag-
netic susceptibility per unit volume of the system is given
by the expression'"

1 Lx=
2J& "P 8Ja" +~y~

(63)

Z(x„O)= = —S (x„O);1 1
1 (64)

cf. (54). Equations (46) and (63) show that for the spheri-
cal model of ferromagnetism the ratio 7/g is, by
definition, a constant —independent of both T and L:

7/g = I/2Ja"+ (65)

It is readily seen that expression (63) conforms to the scal-
ing relation (7), with scaling function

in perfect agreement with the scaling prediction (38a),
with

Z =—S (66)

B. Case (b): The "Core" Region

In the "core" region, where ~x&
~

=0(1) and hence

~

t
~

=0(L ' '), the thermogeometric parameter y in
general is also 0 (1); accordingly, g(L) =0 (L) and its pre-
cise value can be determined only numerically. In the ex-
ceptional cases d ~2 and d ~4, however, y does turn out
to be much less than unity and we obtain the following
analytical results:

which follows from Eq. (64). It should be emphasized,
however, that, for general n )2, the ratio X/g is indepen-
dent of L only for T & T„but is still a function of T; the
case of the spherical model (n = oo ) is special, in that this
ratio is independent of both T and I in all regimes of T.

g(L) 1 [ I ((2 d )/2)e] [e
2m-'~' [—,'I ((2 —d')/2)e] ' ' ' [e=(4—d) « I], (67)

valid for d' & 2. Equations (67) generalize some recent results of Luck' (valid for d'= 1) and some of Brezin' (valid for
d'=0 and 1). Of course, for any value of d', the ratio

g(L) 1

2y (x& ——0)
(68)
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clearly, a universal number.

C. Case (c): T ~ T„L~ a&

SH/2X)

~

I ((2—d)/2)~

1/2
1+ I [(4—d)/2I

accordingly,

In this case, x) ~+ oo and Eq. (55) gives
1/(d —2) ' (d —1)/2

2g( oo )

L
(69)

1/2

I [(4—d)/2I

(d —1)/2

, —I. /g(-)
L

(70)

r
—)/(d —2) (() r 1)

where g( oo ) is the corresponding bulk correlation length, viz.

i
I [(2—d)/2I

i
T,g(oo)=— (71)

As expected under periodic boundary conditions, finite-size correction in this regime is indeed exponentially small. In
passing, we note that Eq. (70) generalizes another result of Luck' which pertained to the special case d'=1, i.e. ,
d* =d —1.

VI. FINITE-SIZE EFFECTS IN THE CORREI ATION FUNCTION
I

The correlation function of the system under study is given by Eq. (43) which, for geometry L X oo" (d'+d'=d),
may be written in the form

' (d —2)/2
T a T ' QG(R, T;L)= +(d —2)/2(R /P +

2(2m) J 2(2~) J

'd —2
K(d 2)/2 ( A(q) )

[A( )](d —2)/2
q(d )

(72)

where the q=0 term has been taken out of the summation and the parameter P has been replaced by g through the
defining relationship (46); of course, it will be remembered that the quantity A(q) appearing here is given by Eqs. (49)
and (50). Now, combining Eq. (72) with (45), we obtain a more useful form of the function G(R, T;L), namely

G(R, T;L)= 1—
2(4~)'"J

2d/2
R

(d —2)/2
2 —d

SC(d 2)/2(R/g)+ r
2

T Q+
2(2~) J

d —2
+(d —2)/2(A(q)) +(d —2)/2(AO('q))

[A( )](d —2)/2 [A ( )](d —2)/2
q(d )

(73)

where A0, as before, denotes (A)tt 0. For R «g, we make use of the limiting form'
V

IC.(z) = . [I .(z) —I,(z)]=—r(v) —z
1 I

2 sin(vn. )
' 2 2

1 1r(1 —v) —z +O(z ') (0&v&1, z «1),2 —v

2v 2
(74)

with the result that

G(R, T L)= 1 — + IT d —2

T. 2
T Q

8 d/2J

d —2
d —2R 4—d

+0 +G'(R, T;L), (75)

where

td '
T aG*(R,T;L)=

2(2~)"/ J
q(d )

+(d —2)/2(A(q)) +(d —2)/2(AO(

[A( q ) ](d 2 )/2 [A ( q ) ](d 2 )/2
(76)

It is now readily seen that, for T & T, and L ~ oo (which
makes gazoo ), Eq. (75) correctly reproduces the bulk
correlation function (9), with M0(T) and A (T) given by
Eqs. (22). Thus, our result for the finite-system correla-
tion function is consistent with the expectation that

lim [ lim G(R, T;L)]=M0(T) .
A ~ oo L~ oo

(77)

The above demonstration entails the fact that, in the
limit (r, l)~0, the scaling function X(r, l, 0) of Eq. (52)
would also reduce to the form anticipated in Eq. (12),
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with appropriate values of the universal numbers X& and
X2, with 21=0 and with v/o =(2—d')/(d —2). To see
this explicitly, we observe that the first term in (12) would
essentially arise from an integration (instead of summa-
tion) over q(d*) in (52) which, in the desired approxima-
tion, would give'

r +(d —2)/2 ('ql ) 27r
*

2(2vr)" 0 (ql)' ' I (d*/2)

l 2 —0 +0* r"r
2(4~)(d —d )/2 2

(78a)

in perfect agreement with the expected result
X)r /1, with X) given by (60). The second term,
on the other hand, would arise exclusively from the
(q=O)-term of the sum in (52) which, in turn, would give

(d —2) /2 d —2
2(27r) 2d/2 +(d —2)/2(r) = I 1

8 d/2 (78b)

A. Case 1: E «&L

Equation (76) may, in this case, be approximated as

in perfect agreement with the expected result X2, as given
by Eqs. (23) and (25). The diff'erence between the actual
expression in (52) on one hand and the sum of the ap-
proximants (78a) and (78b) on the other would constitute
the remainder function, X*(r,l), of Eq. (12).

We shall now examine finite-size eA'ects in the correla-
tion function G (R, T;L), as given by Eqs. (75) and (76).
Remembering that the expression in question is valid for
a «R «g, we shall focus our attention on the region of
the first-order phase transition ( T & T, ) and examine
diff'erent regimes of the variable R in relation to the pa-
rameter L.

G*(R,T;L)=
4(2n ) J

'd —2

q(d )

+d/2(ql) E(d 2)/2(ql)
1)d/2 ~

II d e( 1)(d —2)/2 (79)

(80)

it will be remembered that the parameters 1 and r here stand for the scaled uariables L/g and R/g, respectively. For
the "block" geometry (d* =d), r(I does not exist, so r) represents the full vector r; Eq. (79) then simplifies to

4(2 )d/2J g d ( 1)(d —2)/2

Now, for T & T, and L~ oo (which makes x,~—oa ), the parameter 1(—:2y)~0; see Eq. (56). The sums appearing in
expressions (79) and (80) may then be replaced by their asymptotic forms, as given by Eqs. (79) of I; we thus obtain

I (d/2)
2~d/2d

g' q
" (d'R',—d*RI, ) (0&d'&2),

q(dT d-2
G*(R,T;L)= 4JL" —R (d'=0),

(81)

where d', as usual, is the number of dimensions in which the system is infinite, i.e., d'=d —d". Quite expectedly, the
finite-size eA'ect for R «L is isotropic in the case of the "block" geometry but not so in general; in fact, as will be seen
repeatedly, the eA'ect is positive for the component Rz and negative for R~~. For the most practical cases, viz. d=3 and
d* = 1, 2, or 3, Eqs. (81) simplify to

G*(R,T;L)=
g(3)(2R) —R

II
)

, X g( —,')P( —,')(R) —2R
II

) (d* =2),
(2m/3)R (d ' =3);

(82a)

(82b)

(82c)

here, use has been made of the Hardy sum'

(q) +q2) '=4((s)13(s) (s ) 1),

where

(83)

out that the error term displayed in Eq. (75), which had
its origin in the (q=O)-term of the original sum in (72), is
in the present regime negligible in comparison with the
eAect calculated here. For this, we note that the ratio of
the term in question to the eff'ect shown in Eqs. (81) is
0 (L /R g2) j.e.,

g(s)= g (1+1) ', P(s)= g ( —1)'(21+1) (84)

d —2 d'(d —2)/(2 —d')

(85a)
1=0 1=0

Before proceeding further, it seems important to point for d' & 2, and
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2
L
Q

d —2
1 1

exp —8+J
T T.

d —2.
L

(85b)

for d'=2; see Eqs. (58) and (61). We thus find that, for
all d'&2, the ratio (85) is negligibly small. Equations
(81), therefore, determine the most dominant finite-size
effect for the case under study.

B. Case 2: R& ——O(L), Rll ——0

For obvious reasons this case is not so readily tractable
as the one with R «L. For simplicity, therefore, we
confine our discussion to a system in three dimensions, for
which Eqs. (75) and (76) reduce to the form

A (e)g(e)=
C3

(0&e, &-,') .
7T

(93)

For comparison, we recall that the R-dependent part of
the bulk correlation function is given by

t

while C3 is a universal number of value —8.913 633. . . ; it
will be noted that, for reasons of symmetry, it is sufficient
to consider 0 & e, & —,'. Now, combining (90) and (91), and
remembering that in the temperature regime under study
y =O(a/L)' «1, we obtain

G(R, T;L)= 1 — + +G*(R,T;L),
8mJR

(86) G()(R, T) =G(R, T; co ) —M()(T)= (94)

where

with
—2y [(q+E'y) +E'll]

g(e)= g'
[(q+e )2+ 2]1/2

e
—2yq

q

Ri Rll

L ' L

G'(R, T;L)= g(e) (e=R/L),
8~JL

(87)

(88)

whereby the ratio

G"(R, T;L)/G()(R, T) =eg (e) =O(1) .

Some special values of this ratio may be noted:

g ( —,', —,', —,
'

) =0.762 68,

—g (0, —,', —,
'

) =0.594 37,1

2

—,'g(0, 0, —,')=0.37068 .

(95)

(96)

The function g (e) can be simplified considerably by mak-
ing use of certain identities established in a paper by Cha-
ba and Pathria, ' hereafter referred to as II. For a de-
tailed study we consider the geometries of the cube, the
cylinder and the film and, for clarity of understanding, set
R~~

——0 (which, in the case of the cube, is true anyway); ac-
cordingly, all

——0 and ez may be designated as e. The
function g (e) then assumes the form

As e~0, this ratio tends to the limiting value (2m. /3)e;
see Eq. (82c).

(ii) The cylindrical geometry (d =2). For this case we
recall identities (42) and (44) of II, viz.

q(2) ~q+e~ (2) (n ir +y )

—2y Iq+~l
g(e)= g'

q+
e

—2yq

(89)

2yq = —+D+2y

(i) The cubic geometry (d* =3). For this case we recall
identities (62) and (63) of II, viz.

+g'
(

2 2+ 2)1/2 n
(98)

2y
I
q+e, e

I
q+e

I

vr /I (e) y, cos[27r(n e)]+
y ~ ir „(3)n(nm. +y)

and

e
—2y E'

(90)
g(e)=P(e) —— D(0&e, & —,'),—1

(99)

where

where D is a universal number of value —3.900265. . . ;
note that the sums appearing in (97) are full, in the sense
that the terms with q=O and n=0 are included. With
y «1, the function g(e) now turns out to be

, e 2yq m C3 y2
, + +2y — g'. . . , , (91)

q(3) Q y )r )r (3) n (n )r +y )

p( ) y cos[2m.(n.e)]
n(2)

(100)

where

+, cos[2m(n e)]
2

n(3) n
(92)

The ratio of the finite-size effect, G*(R,T;L), to the R-
dependent part of the bulk correlation function, Go(R, T),
is again eg(e) which, as expected, is of order unity; some
special values of this ratio are
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g ( —,', —,
'

) =0.615 54, —,'g (0, —,
'

) =0.378 95 . (101)

Finally, as e~O, the ratio eg(e) tends to the limiting
value g(3/2)P(3/2)e; see Eq. (82b).

(iii) Tite ftlm geometry (d'=1). In this case the liinit
y~0 may be taken right away, with the result that

Some special values of this ratio may be noted:

—,
' g ( —,

'
) =2 ln2 —1 =0.386 29,

—,
' g ( —,

'
) = ln3 —1 =0.098 61,

—'g ( —') = —,
' ln2 —1 =0.039 72,

—,'g ( —,') = —,
' ln2+ —,

' ln3 —1=0.01140,

(104)

g(e)=
q= —oo

1

I
V+e

I

tending to the limiting value 2$(3)e3 as e~O; see Eqs.
(82a) and (103).

=2/(1) —it((1+e)—1((1—e) (0 & e & —,
' ), (102)

eg(e)=2 g g(2s+1)e '+'
s = I

(103)

where P(z) [=d lnI (z)/dz] is the digamma function. '

The ratio eg (e) in this case admits of an exact expansion
in ascending powers of e, viz.

C. Case 3: R& ——O(L), Rll&0

For a study of this case we go back to Eq. (88) and ex-
amine the inhuence of the component R

l

on the function
g(e). In this connection we note that, since R( is ir-
relevant in the case of a cube, we have to consider the
geometries of the cylinder and the film only.

(i) The cylindrical geometry (d* =2). To analyze this
case we need a generalization of identity (97), which turns
out to be

e
2y [(q+ eJ ) + ell ]

2 2 j/2
q(2) [('q+ el) + e(~ l n(2)

—2e jn n+y ]cos[27r(n eI )]e

(
2 2+ 2) I/2 (e)0), (105)

where ei Ri/L and e(( ————R~(/L. Substituting (98) and (105) into (88) and remembering that y && 1, we now obtain

—27M
6ll—2elly cos[2tr(n eI )]e

g(e)= ——(1—e ")+
n(2)

———D
1

(0&e, & —,') . (106)

G(R, T;L)= 1—T
C

(1 e 'll~)
8JLy

(107)

It will be noted that the finite-size efI'ect due to R is,
quite generally, negative —as also seen in case 1. Now,
making use of the fact that y =L/2g while g is given by
Eq. (58) with d=3 and d'= 1, i.e., by

4J 1

a T (108)

we find a remarkable cancellation of the R-independent
terms in (107) and are left with the result

G(R, T;L)= e " [L «R(( ——0(g)] . (109)
4JL

For all
——0, the first part of this expression vanishes while

the second part reduces to (99), as it indeed should. As e~~

increases to values of order unity but is still much less
than 1/y, i.e., R(( ——0 (L) «g, the first part approximates
—2~all, which is comparable in value to the second part.
As e(( becomes much greater than unity and 0 (1/y), i.e.,
L «R(( ——0(g), the first part completely dominates and
we obtain, for the full correlation function (86),

Using (62), we may as well write

G(R, T;L)=M()(T)e " [L «R~~ ——0(g)] .

(110)
The foregoing results are highly instructive for the fol-

lowing reasons. First of a11, they demonstrate
mathematically what is indeed expected on physical
grounds, ' namely that in a system which is partially
finite and partially infinite the propagation of long-range
order at T (T, is severely limited; while in the finite
directions it pervades all the way [for RI is at most
0(L) and L «g], in the infinite directions it is restrict-
ed to distances governed by the length scale g. As R~~

becomes much greater than I and assumes values of or-
der g, long-range order in the conventional sense is not
seen; cf. Eqs. (9) and (110). At the same time, the finite-
size eft'ect in the correlation function is no longer a
"correction" to the standard bulk result; it becomes, in
fact, the most dominant feature of the correlation func-
tion. Furthermore, the manner in which the correlation
function under these circumstances varies with R has lit-
tle to do with the three-dimensional bulk system; it be-
comes instead characteristic of a one-dimensional bulk
system; cf. Eq. (109) with Eq. (A18) of the Appendix.
This comparison suggests that Eq. (109) may as well be
written as
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2

G(R, T;L x ~')= — G(R~(, T;~')
L

[L (&R(( ——0(g)] . (111)

Thus, under specified conditions, the correlation function

of the finite-sized system "splits" into two factors —a con-
stant one pertaining to the finite dimensions of the system
and a variable one pertaining to the infinite dimensions; of
course, the correlation length entering into the latter still
pertains to the actual system.

(ii) The film geometry (d* = l). For the analysis of this
case we employ the one-dimensional identity'

—2~I(t+E].) +&~~l

z
——2 g cos(2vrnei)KO[2e~l " ir +y ] y[(0+ei) +e~~]

(112)

along with the standard sum

e = —21n(1 —e ~) (y &0),

to obtain (for y « 1)

g (e) =2[in(2y)+Ko(2ep)]
r

QO
14 g cos(2irnei)KO(2irne(() ——

n =1

(113)

(114)

G(R, T;L)= Ko(R(( ~) [L &&Rll 0(g)] .
4~JL

(116)

Not surprisingly, the R dependence of the correlation
function is now characteristic of a two-dimensional bulk
system, see Eq. (A19) of the Appendix, such that

G(R, T;L'& ~ )= — G(R ~, (T~ )L

I

is unity], we again find an exact cancellation of the R-
independent terms, leaving us with the result

Once again, we find that, as e~~ becomes much greater than
unity and assumes values of order (1/y), the first part of
the above expression for g (e) completely dominates—
with the result that the full correlation function of the
system is now given by

G(R, T;L)= 1 — + [1 (Ln/g)+K (R /g)]
T Ta
T, 4~JL iI

[L «R() ——0(g)] . (115)

Recalling the relevant expression for g [see Eq. (61) and
remember that the unknown constant in the present case

[L &(R
ll

0 (g)] . (117)

Equations (111) and (117) call for an obvious generaliza-
tion.

VII. "SPLITTING THEOREM"
IN GENERAL GEOMETRY

For a generalization of the foregoing results, we go
back to Eq. (43) for the full correlation function and,
recognizing the fact that the geometry under consider-

I

ation is L )& oo with d'+d'=d, render it into the
form

G(R, T;L)= T a
d'/2

d —2 (2 —d') /2

L
cos[2ir(n. Ri)/L]K(z —d')/z[2(n 7r +y )'

R(~ /L]
2 Z 2 (2 —d')/4

n(d )
(n ir+y )

(118)
Now, separating the n(d') =0 term from the rest, we may write (for y « 1)

(2 —d') /2
Ri
L

2
L

(2 —d')/2
cos[2ir(n. Ri)/L]K(z d.)/z(2nnR((/L)

K(2 —d') /2 (R
(~
4 ) +

n(d )
(n )(z —d')/z (119)

We now make the following observations on this ex-
pression.

(i) If we keep R fixed and let L (and along with it g) in-
crease indefinitely, then the first term of this expression
reduces to

long-range order term 1 —(T/T, ). In the second part, we
may, under these conditions, replace the summation over
n(d*) by an integration, which yields precisely the isotro-
pic term characteristic of the d-dimensional bulk system,
v1z.

r 2 —d'
2

To d —zgz —d'

2(4 )d'/2JL d —d' (0&d'&2), (120) r d —2
2

T d —2

[(R/g)~0] .
g~d/2JR d —2 (121)

which, with the help of Eq. (58), reproduces exactly the For d'=2, the approach has to be slightly different. Now,
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for the first part we use the standard approximation'

Ko(z) = —[ln( —,'z)+yz] (z 0), (122)

g cos(pn)KO(qn)
n=1

where yE is Euler's constant, while for the sum over n

(which, in the present case, can only be one-dimensional
because, with d' =2, 0 & d *

& 2) we use a tabulated re-
sult, namely
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APPENDIX

In this appendix we propose to examine the behavior of
a d'-dimensional bulk system (d'&2) as T~T, (d')=0.
The constraint equation for the system in zero field is
given by the standard expression

7T 1 q

2(p 2+ q
2

)
i /2 2 4'ln +yg

(123)
t„~ A, 2J g c—os(2vrn, /Nj)

=2NP
J J

[n~ =0, 1, . . . , (N~ —1)], (A 1)

Expression (119) then reduces to

Ta g L
4~JL L 2R

(d =3, d'=2) . (124)

Using (61), this becomes precisely the result expected of a
three-dimensional bulk system, viz.

2NPJ =-,' y f ".-'""'g. -""' 'd

In-I J

which, in the bulk limit, becomes
d'

(A2)

where various symbols have their usual meanings; in par-
ticular, P= 1/T. Following a straightforward pro-
cedure, " Eq. (Al) can be put in the form

T Ta

T, 8~JR
(125) 2PJ ] f ~ —(k./2J)x 1 x cosl9d g

0 27T 0

(ii) If, on the other hand, we keep L fixed and increase

R~~ indefinitely, we encounter a very different situation.
Now, as R

~~

becomes much larger than I„ the second term
of expression (119) becomes insignificant; the correlation
function is then dominated by the first part which yields a
result characteristic of a d'-dimensional bulk system; see
Eq. (17) of the appendix. Thus, quite generally (for
0 & d' & 2), we obtain what may be called the "splitting
theorem" for the correlation function, namely

= ~d (P)

where

Wz (P) = —,
' j"

e ~" [e "Io(x)]"dx

P= ——2d'J (A3)

G(R, T;L X oo )=
L

G (R
II

' T:oo )

I,(z) being the other modified Bessel functions. For
P « 1 and d' & 2, the integral in (A3) may be evaluated by
substituting'

[L «R~~ —O(g)] . (126) ex
Io(x) =

21rx
1+ +,+1 9

128x
(A4)

The physical interpretation of this theorem is straightfor-
ward; it must, however, be emphasized that the correla-
tion length g appearing in the function GI" ' pertains to

I

the actual system in geometry L &( ~" and not to the
d'-dimensional bulk system.

The exceptional case of the "block" geometry (d'=0) is
worthy of a special note. Here, R~~ is irrelevant, so the
foregoing considerations (and those of case 3 of the
preceding section) do not apply. The appropriate results
for this geometry are given under cases 1 and 2 above,
and the underlying feature of these results is that long-
range order at T & T, pervades the whole system. Finite-
size effect in the correlation function may in this case stay
as a small correction to the R-dependent bulk term
(R «L) or become comparable to it [R =O(L)] but does
not, under any circumstances, mollify the R-independent
term, 1 —(T/T, ), representing the long-range order in the
system.

with the result that
|

2pJ I y
—(2 —d')/2+ O (yd'/2)

(4 )d'/2 (A5)

It follows that, in the limit T~O,
T2/(2 —d') (A6)

and

T —1/(2 —d')

X= 1/(2Ja P) —T

e (s)
(J/a d')(dP/dT) —Td'/(2 d')—

(A7)

(A8)

(A9)

The correlation length, g, the zero-field susceptibility, Y,
and the singular part of the specific heat per unit
"volume, "c",are then given by
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with respective exponents

2

(2 —d') ' (2 —d')
a=—

(2 —d' (d'&2) .

Proceeding as before, we obtain in the bulk limit

G(R, T)= J
" -~""~ [ -"I„,.( )]d4J p

(A15)

For d'= 2, on the other hand, one obtains"

(A 10) For the functions I (x) we may use the asymptotic ex-
J

pression'

2PJ = In(32/P)+0((b In/),1

4m

with the result that

(Al 1)
x —v2 /2x

eI (x)=
J 2trx

9—32v~
&+ + +

8x 128x 2
(A16)

P —32 exp( —8rtJ/T)
with the result that, for P « 1,

(A12)

whence

g —exp(4rtJ /T), X —exp(8'J/T),
c"—T exp( —8trJ/T) (d'=2) .

The correlation function of the system is given by

= T cos(k. R)
2% ~~~ A, —2J g cos(kla)

J

(A13)

(A14)

G(R, T) =
' (2 —d')/2

K(2 „)/2(R /g),
2(2n. ) J a

(A17)

T (g/4a)exp( —R /g) (d'= 1), (A18)

( I /4m. )Ko(R /g') (d'=2) . (A19)

where g( =a/&P) is the correlation length of the system.
For the special cases d'=1 and 2,

~S. Singh and R. K. Pathria, Phys. Rev. B 31, 4483 (1985),
herein referred to as I.

2V. Privman and M. E. Fisher, Phys. Rev. B 30, 322 (1984).
S. Singh and R. K. Pathria, Phys. Rev. Lett. 55, 347 (1985).

4J. Shapiro, Phys. Rev. Lett. 56, 2225 (1986).
~S. Singh and R. K. Pathria, Phys. Rev. Lett. 56, 2226 (1986).
A preliminary version of these results has already appeared; see

S. Singh and R. K. Pathria, Phys. Rev. 8 33, 672 (1986).
7T. D. Schultz, E. H. Lieb, and D. C. Mattis, Rev. Mod. Phys.

36, 856 (1964).
G. S. Joyce, in Phase Transitions and Critical Phenomena, edit-

ed by C. Domb and M. S. Green (Academic, New York,
1972), Vol. 2, pp. 375-442.

9M. E. Fisher, M. N. Barber, and D. Jasnow, Phys. Rev. A 8,
1111 (1973).

~PM. E. Fisher and V. Privman, Phys. Rev. B 32, 447 (1985).
' M. N. Barber and M. E. Fisher, Ann. Phys. (N.Y.) 77, 1

(1973).
M. E. Fisher and V. Privman, Commun. Math. Phys. 103, 527
(1986).
J. M. Luck, Phys. Rev. B 31, 3069 (1985).
E. Brezin, J. Phys. (Paris) 43, 15 (1982).

'~M. Abratnowitz and I. A. Stegnn, Handbook of Mathematical
Functions (Dover, New York, 1970)~

~ G. H. Hardy, Mess. Math. 49, 85 (1919); M. L. Glasser, J.
Math. Phys. 14, 409, 701 (1973); I. J. Zucker, ibid. 15, 187
(1974).

'7A. N. Chaba and R. K. Pathria, J. Phys. A 9, 1411 (1976),
herein referred to as II.
V. Privman and M. E. Fisher, J. Stat. Phys. 33, 385 (1983).
A. N. Chaba and R. K. Pathria, J. Phys. A 10, 1823 (1977).

2ol. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series
and Products (Academic, New York, 1980), p. 978.


