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An analysis of a prototypical percolation model (the fuse network) for breakdown in quenched ran-
dom systems is given. The breakdown voltage and the topology of the eventual breakdown path are
studied analytically and numerically. New scaling concepts, based on the most critical defect in the
network, combined with standard percolation scaling ideas, lead to a complete picture of the strength
of the network. The mean breakdown strength and the distribution of breakdown strengths are de-
rived in the different concentration regimes. The breakdown path is described by new order parame-
ters on approach to p.. One, the number of bonds broken in the breakdown process, is studied in de-
tail. Many models and physical systems should show an analogous behavior and simplified models
for two of these problems, brittle fracture and dielectric breakdown in solids, are discussed.

I. INTRODUCTION

Electrical and mechanical breakdown are factors which
limit many practical uses of modern ceramics, thin films,
insulators, and other structural and electrical materials.
Despite intense study,' there is little basic understanding
of microscopic breakdown processes with most studies
simply modeling experimental data at an empirical or
phenomenological level. Nevertheless, it is clear that de-
fects are of primary importance in all breakdown process-
es and often a few critical defects can determine the
breakdown strength of the entire system. Recently,
statistical-mechanical models based upon defects and per-
colation clusters have been introduced to study break-
down phenomena in the case of quenched random defects.
For example, a percolation model for dielectric break-
down was introduced by Takayasu? and the nature of the
breakdown paths was studied. The random-fuse network
was introduced by de Arcangelis et al.® who performed
numerical simulations. Models for brittle fracture have
been recently introduced by Sahimi and Goddard,* who
also consider continuous distribution functions of bond
strengths. Percolation models of breakdown have been
studied in detail by the present authors who presented a
new formula for the size dependence of the mean break-
down strengths,5 and for the distribution of breakdown
strengths.® This paper contains a clarification and expan-
sion of the results contained in Refs. 5 and 6, and in addi-
tion presents a study of an order parameter describing the
geometry of the eventual breakdown path.

The random-fuse network model is also the scalar ana-
log to the vector problem of brittle fracture or mechanical
breakdown. Just as one introduces a network of fuses in
the case considered here, one can introduce a network of
breakable rods for the brittle fracture case. Each rod in
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the network would be stable up to a breaking point at
which it would separate and fail.* In this case the current
enhancement at the edges of the defects would be replaced
by stress enhancement. The difference would be that the
equations for the resulting stress distribution are vector
equations whereas the electrical analog discussed here
contains only scalar equations. In the vector case, there is
also the question as to whether one considers purely cen-
tral forces or whether one also includes bending forces
and whether the bonds are completely elastic or not.
These considerations affect the location and nature of the
percolation critical point and the relevant critical ex-
ponents, but do not affect the methodology used in ob-
taining the scaling behavior for p near the pure limit.
Thus, we believe that there is qualitatively similar behav-
ior in the fuse and brittle fracture cases, and the discus-
sion in the context of brittle fracture is outlined in Appen-
dix C. In this paper, the breakdown strength of the ran-
dom fuse network is studied analytically, using methods
specifically designed to take into account the pronounced
effect of the most critical defects. The predictions made
using these methods are tested numerically by computer
simulations of the two-dimensional fuse network. The
predictions that are of immediate practical interest, and
which are also true for dielectric breakdown and brittle
fracture, have been recently reported.>® The methods
presented here for the fuse network are thus of much wid-
er applicability, and with this in mind, we have written
the paper in a pedagogical way to allow easy access to the
methods and results for application to similar problems.
In addition, two problems to which we believe the results
and methods are immediately applicable are outlined in
Appendix C.

The paper is arranged as follows. Section II contains
the model along with its behavior in the pure limit. Sec-
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tion III contains the analytic methods we have used to
qualitatively study the average breakdown strengths of the
fuse network in the various regions of concentration p of
defects. Section IV contains a discussion of the analytic
methods we have developed for the distribution of break-
down strengths expected for an ensemble of fuse net-
works. Section V contains the tests of these analytic be-
haviors through computer simulations of the model in the
bond problem on a two-dimensional (2D) square lattice.
Finally, Sec. VI contains our final conclusions and com-
ments on the shortcomings of our calculations and sug-
gests for future research directions. There are three ap-
pendices, two of which give details of certain results quot-
ed in the body of the paper, and the third of which out-
lines problems that are closely related to the fuse network
discussed in the main body of the paper.

II. MODEL

Make a random network of fuses. For simplicity, con-
sider each fuse to have a resistance of 1 ) and a breaking
point of 1 A (1 V). Its current-voltage characteristic is
shown in Fig. 1. Above 1 V, the fuse becomes an insula-
tor. Now place such identical fuses at random on the
bonds of a d-dimensional hypercubic lattice until a frac-
tion (or concentration) p of the bonds are occupied. The
remaining fraction (1—p) of vacant bonds act as insula-
tors. There is a fuse network only when the concentra-
tion is not below percolation threshold (p. <p <1). As il-
lustrated in Fig. 2, above percolation threshold (in the
infinite lattice) there is a connected path or network of
fuses across the lattice. Now consider that two busbars
are separately installed horizontally across the top and
bottom of the sample (see Fig. 2) and that a voltage
difference or electric field is applied vertically between the
two bars. If a sufficiently small voltage (certainly any-
thing less than 1 V is small enough) is applied then the
system conducts just as a random-resistor network in the
ordinary percolation problem. Now if this externally ap-
plied voltage V is sufficiently large some of the fuses will
break. And if enough fuses break there will no longer be
a connecting path between the busbars so we will say that
there has been a breakdown of the entire network. The
geometry of a typical random-fuse network is shown in
Fig. 2 for an 11X 11 square lattice. The ‘“breakdown
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FIG. 1. I-V characteristic for a single fuse. Above a voltage
of 1 V, no current flows.
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FIG. 2. Geometry of the random-fuse network on a square
lattice. V), is the externally applied voltage and the model is
defined above the percolation threshold, where a connected path-
way of fuse exists.

strength” of a particular configuration is the lowest exten-
sively applied voltage ¥, or current I, at which the net-
work breaks down.

One useful way of calculating the breakdown voltages
in the fuse network is to perform the following, two-step
process iteratively’ for each lattice configuration: (1)
Solve Kirchhoff’s equations (the numerical procedure we
use will be described in detail in Sec. VI); (2) Find the
fuse which contains the most current (the “hottest fuse”)
and remove it. As the set of equations to be solved is
linear, it is easy for each step in the iterative process to
find the external voltage required to break the hottest
fuse. One then obtains a sequence of breakdown voltages
or currents, which is typified in Fig. 3 for a particular
configuration on a 5050 square lattice. We introduce
the notation that the external voltage at which the first
fuse breaks is V| (the corresponding current is /) and the
maximum of the external voltages (the maximum of Fig.
3) required to break a hottest fuse is ¥, (the maximum of
the externally applied currents required to break this fuse
is I;). We also define the number, N,, of fuses that are
broken before the network disconnects. At this point is it
useful to note the difference between the case of an exter-
nal voltage source as compared to the case of an external
current source. In the latter case, there is no conductivity
factor involved, and so in many ways this is the more nat-
ural configuration. However, the values at which the first
fuse breaks are simply related by the conductivity of the
percolation network, which is known to be finite for all p
away from p, and which goes to zero with exponent ¢ on
approach to p.. These properties, and the fact that V),
and ¥V, are qualitatively the same in the thermodynamic
limit (see Sec. V) means that the behavior of the models
used here are qualitatively the same (up to the percolation
conductivity factor) for either an external current source
or an external voltage source.

Let us now consider the pure limit (p=1) when there
are no defects in the network, as illustrated in Fig. 4 for a
L X L square lattice. Clearly the total resistance of an L¢
hypercubic lattice is 1/L?~2 Q. Since all the current
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FIG. 3. Sequence of external voltages that induce failure in
the hottest fuse in the network. V), is the external voltage that
need to be applied to break the hottest bond at the /th step of the
iterative process defined in Sec. II; V, is the voltage at which the
first fuse blows, and V,, is the maximum (¥;). N, is the number
of iterations to failure of the network. The calculation which
lead to the figure was for one configuration on a 70X 70 square
lattice at p=0.75.

flows vertically through columns each of which is a series
of fuses of total resistance L Q, and there are L% ! such
columns in parallel. The external voltage needed for 1 A
to flow in each column is then L V. And since the same
current flows in each vertical fuse, we find that all fuses
break at once so that ¥y =V,, and this critical external
electric field and current density are given by

€=V,/L =¢,=V,/L =1 (1a)
and

iy=I,/L* '=I,/L"'=1, (1b)
and all the vertical fuses break so that

N,=L%d . . (lc)

A single defect placed in the horizontal hyperplane of
the network has no effect on the properties of the net-
work. However, when placed on a vertical bond (as
shown for the 2D square lattice in Fig. 5) a single defect
has a rather dramatic effect. By the superposition princi-
ple in this linear system, the voltages and currents around
this single defect are equal to the sum of those in the
unaltered pure network with the same external source
plus those of a pure network with the external sources re-
moved and a dipole voltage source placed along the defect
bond. This second problem may then be solved in terms
of the equilibrium Green’s functions of the pure system.
It is straightforward to show that the explicit expression
for the current in a bond a vector distance » from the di-
pole source, I(r), is;

I(r)=2[G(r+j)—G(r)], (2)

Yo T

L
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FIG. 4. Pure network for a L X L square lattice, the vertical
bonds all carry the same current. The horizontal bonds carry no
current.

where j is a unit displacement in the vertical direction,
and the Green’s function G (r) is given by

d
1—(1/d) 3, cosk;

i=1

G(r1=—5 S explikyr) / 3
L%

for hypercubic lattices. It is evident from Fig. 5 that if we
consider the breakdown of the network with one vertical
bond removed, it is the vertical bonds horizontally adja-
cent to the defect bond which carry the most current and
hence break first with increasing external voltage. From
Egs. (2) and (3), for the square lattice, we find

I=i+2[GO,)—-G(,)]=i+41/m—L)i=4i/m, (4

where i is the externally applied current per column
(I =iL*~'). Now, the bond labeled 1 (see Fig. 5) breaks
when Ig.; =1, so by setting Eq. (4) equal to 1, we find
iy=m/4. After the first fuse breaks the fuses adjacent to

FIG. 5. Single-defect problem on a square lattice. The bonds
labeled 1 break first. The bonds labeled 2 then feel an enhanced
current, and hence break. A crack propagates outward in the
direction of the arrows in the figure.



370 P. M. DUXBURY, P. L. LEATH, AND PAUL D. BEALE 36

them (labeled 2 in Fig. 5) feel an even greater enhance-
ment of current and hence immediately also break.
Indeed, there is then a cascade throughout this horizontal
hyperplane which entirely severes the network into two
parts. Therefore, for a single vertical defect, we find

iy=Ii,=a (5a)
or

e=€,=V,/L=V,/L =a(14+0(1/L)) , (5b)
where a=w/4 for the square lattice, and

a ={2[G(0,0,1)—G(0,1,1)]—1} ~! for the simple cubic
lattice. The order 1/L correction in Eq. (5b) accounts for
the change in conductivity due to removing the one bond.
Contrasting this result with Eq. (1), the pure limit, we see
that the existence of even a single defect moves the break-
down strength down from i, =1 to i, =7 /4 on the square
lattice in two dimensions, with a similar effect occurring
on other lattices, the reduction now being from 1 to a as
given above. Therefore, any finite concentration of defects
will have an even more dramatic effect. And clearly the
defects dominate this problem.

III. FINITE CONCENTRATIONS OF DEFECTS

A. Dilute limit

First we consider the dilute limit where 0 <1—p <<1,
where we can treat percolation clusters singly and ignore
interactions or interference effects between clusters. Since,
from the discussion above, it was seen that a single verti-
cal defect has a profound effect on the breakdown
strength, clearly a cluster of such defects although less
probable to occur, will have an even larger effect. Indeed
if n fuses are moved, a large reduction in the breakdown
strength occurs if these are n vertical bonds arranged to-
gether as compactly as possible so that as much current
enhancement as possible appears at the edges of the defect
cluster. In two dimensions, this “most critical” defect is a
horizontal line of adjacent vertical bonds (see Fig. 6),
whereas in three dimensions it is a horizontal ‘‘penny-

=

FIG. 6. *‘Lifshitz defect” of size n for the square lattice fuse
problem. The bonds labeled 1 break first, and a crack propa-
gates outward in the direction of the arrows.

shaped crack” (which is familiar from brittle-fracture
theory! where it is the starting point of many theoretical
analyses). In general the most critical defects in the fuse
network problem seem to be identical to those in the brit-
tle fracture problem, so that the results found here may in
many cases apply directly to brittle fracture theory (for a
detailed transcription of the breakdown strength results
see Appendix C).

It can easily be seen that the most critical defect in two
dimensions is a horizontal line of neighboring vertical
bonds simply because in this case the dipole fields for the
removed bonds add constructively to produce the max-
imum current enhancement at the defect edge (whereas
vertical dipoles placed end to end destructively add to
produce a reduced current enhancement). In order to
quantify the identification of the most critical defect, it is
necessary to answer two questions: (1) What is the
current enhancement at the edge of the critical defect
cluster; and (2) given a defect fraction 1—p, what is the
probability that the critical defect will occur somewhere
within this network?

The first question is straightforward but often tedious
to answer precisely on a lattice. But the important quali-
tative behavior may be found from the continuum limit by
using an elliptical defect in two dimensions (see Fig. 7).
The three-dimensional defect that we use is made from
the two-dimensional one by forming a solid of revolution
about the vertical direction. Then to find the current den-
sity enhancement at the tip of the elliptical defect we solve
Laplace’s equation is elliptical coordinates. The details
are given in Appendix A where the result is jp,
=j(14a/b), where a and b are defined in Fig. 7 and
where j is the externally applied current density. To find
the lattice limit of the ellipse result, we integrate equation
(A9) over the lattice spacing 3, and find i, ~(a /B2 for
b? <<PBa; where a and b are defined in Fig. 7. Taking
B=1, we find for a horizontal row of n removed vertical
defects, that the current in the vertical bond just at one
end of the defect has a square-root dependence on n;
namely,

igp~i(1+kyn'’?) for 2D, (6a)

where k, is a constant and 7 is the externally applied

Vo

i
|

<L

FIG. 7. Continuum representation of the *“Lifshitz defect”.
The defect is elliptical with elongation ratio a /b.
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current per bond. Essentially this formula (6a) says that
the current at the tip of the defect is proportional to the
square root of the total current that is being diverted by
that defect. In three dimensions n defects in a disc or
penny-shaped region must be removed and the corre-
sponding result is

igp~i(1+ksn'’*) for 3D, (6b)

where k; is a constant. In this case, the n cut bonds of
the penny-shaped crack give a total diverted current pro-
portional to n!/? which is spread evenly around the per-
imeter of size n!/? as it is diverted so that any single bond
on the tip only carries a diverted current proportional to
n'/4. In the hypercubic lattice, the general result is

igp~i(14+kgn!/2@=1) (6¢)

The single-ellipse results will certainly lead to the failure
of the entire network, for as soon as the bond at the tip of
the most critical defect fails, the crack is enlarged and
hence feels a greater stress at its tip. The crack thus prop-
agates and leads to the failure of the entire network.
However, there may be defects that funnel a current pro-
portional to the size of the defect cluster through the most
critical bond (for example in two dimensions two horizon-
tal cracks with one bond between them have this proper-
ty). If such a defect exists, one expects i;;,~n. In gen-
eral, this may not lead to the eventual failure of the whole
network. We thus introduce two exponents, a; and a, to
denote the tip currents that are produced by the defect
which produces the most current in a bond and the defect
cluster that is first to induce complete failure, respectively.
Based on the above isolated cluster arguments, the ap-
proximate inequality, 1/[2(d —1)]<a, <a;<1 holds. A
more detailed analysis of this question is deferred to a
later publication. For the purpose of comparison with nu-
merical results in Sec. V, we note that in two dimensions
a;=1. The detailed analytical results of this and the next
section may be discussed in terms of the exponents ¢, and
a, without reference to their specific values. In the equa-
tions that follow, we will use a generic exponent «, and it
is understood that for initial breakdown quantities (such
as i; and v,) the appropriate exponent is a;, while for
final breakdown quantities (such as i, and v,), the ap-
propriate exponent is «,. [Here we note that if one does
not take the lattice limit of the ellipse results, one obtains
the approximation «,=1/(d —1), used in our previous
letter on the fuse network.’]

The second question is what is the probability P (n) that
n adjacent vertical defects in a hypercube will be missing
somewhere in the L9 network. To leading order in
L%1—p)", the answer is

P(n)~(1—p)"L?, @)

since (1—p)" is the probability of n bonds missing and L?
measures approximately the number of places in the
volume that the critical defect cluster can be placed on the
lattice. The characteristic largest critical defect cluster is
determined by that value of n =n, for which p(n) is of
order 1 or

(1—p)"Lé~1, (8a)

which implies
n.~[—d/In(1—p)JinL . (8b)

The important feature here is that for any nonzero (1—p),
a defect of size n, ~InL will occur somewhere in the net-
work. This result is true in all dimensions and for all
Pe <p <1 and only changes upon approach to the percola-
tion threshold p. when a defect of size L occurs.

With the above answers to our two primary questions
we can now make a Lifshitz-type argument using Egs. (6)
and (8). Since a most critical defect of size n. ~InL surely
occurs somewhere in the network, and since then the
current enhancement at the tip of this critical defect [Eq.
(6¢)] will also be of order (InL)%, then the external applied
current that need be applied to produce one ampere
through a bond at the tip of this defect is reduced by a
factor of order (InL)* from that for the pure limit. That
is, setting i;j,=1 in Eq. (6) and combining Egs. (6) and (8)
gives

iy=I,/L ~1/[1+K(InL)?] , (9a)

where K =k,;[—d /In(1—p)]® is independent of sample
size L. A similar dependence is found for the breakdown
fields and critical voltage

€ =V,/L~[Z(p)]""/[14+K (InL)*], (9b)

where 2(p) is the conductance. Similar expressions hold
for the complete breakdown current and voltage, and the
number of bonds broken in the complete breakdown pro-
cess is

Ny~Lé='—n . (10)

In the dilute limit, the interference of other defects or
clusters can be ignored due to their low probability of oc-
currence in the vicinity of the rupturing cross section. We
believe that Eq. (9) gives the qualitative behavior of the
scaling behavior of the breakdown strength in the dilute
limit for all dimensions. In particular, it is clear that in
the thermodynamic limit that the breakdown fields €, and
€,; and the breakdown currents i; and i, go to zero as
L— «. In Sec. V below we demonstrate that the results
of the numerical simulations in two dimensions are con-
sistent with this result.

As we all know, the breakdown strength of typical
macroscopic samples is not zero. This is just an indica-
tion that even macroscopic samples are not in the thermo-
dynamic limit since the logarithmic decay of breakdown
strength is so very slow. Indeed macroscopic samples can
be used to test and verify the size dependence suggested
here.

The Lifshitz-type argument above is strictly applicable
only in the dilute limit where the interaction between de-
fect clusters can be ignored. At larger concentrations
(1—p) of defects, these interference effects must be con-
sidered. Nevertheless, the breakdown will clearly still be
dominated by the extreme fluctuations rather than by the
mean of the distribution of defects. So, if there are still
extreme fluctuations of order InL in an L9 sample then
the decay of the mean breakdown strengths will remain
logarithmic.
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At percolation threshold a different behavior appears.
Here a tenuous infinite cluster extends across the network.
Indeed the infinite cluster at p =p. is so tenuous that it
can be severed by breaking a finite number of bonds.”
Often there is at least one bond whose breaking severs the
infinite cluster (the so-called “red” bonds’). If a red bond
exists then all the current in the L¢ sample must go
through this bond so that the critical total current is
I,=1I,=1 ampere since when this critical fuse breaks the
network is broken. In any case (even if several bonds
must carry all the current) the critical total current is of
order 1 or

(11a)
or

iy =iy =0(1/L) . (11b)

Similarly, the critical breakdown voltage or field can be
calculated since e=o ~!i, but from the percolation finite-
size scaling law we know that o ~L ~'/*. So we find

61~6b~kL'/V7(d_]) , (12)

where k is a constant, ¢ is the conductivity percolation
critical exponent, and v is the percolation correlation
length exponent. A L¢~? factor has been included in Eq.
(12) to correctly change from conductivity to conduc-
tance. Depending upon a comparison of ¢ /v with (d —1)
the breakdown field strength may either diverge or go to
zero with increasing sample size. In three dimensions®
t/v—(d —1)>0 so that the breakdown strength will
diverge at percolation threshold. In two dimensions ¢ and
v are approximately equal [the precise belief at present is
t/v=0.973 (Ref. 9)] so that the behavior of Eq. (12) is
nearly constant. This issue is discussed further in the nu-
merical analysis of Sec. V. The scaling results are incon-
sistent with the fluctuation argument of Eq. (9). The reso-
lution as p approaches p,. is clearly that there are two re-
gimes depending upon the size of L relative to the per-
colation correlation length £. For L > §&, the fluctuation
argument of Eq. (9) is correct whereas for L <£ the scal-
ing behavior of Eq. (12) dominates and the fractal
geometry is important.

Since only a few fuses need to be broken to break the
network at percolation threshold, we find N, ~0(1) or

ny=N, /LY 150 as p—p, . (13)

This result is discussed further in Sec. V below where we
find n, goes continuously to zero as a power law in
(p —p.) as p approaches p,.

IV. DISTRIBUTION OF BREAKDOWN STRENGTHS

The calculations of the previous two sections have been
for the average breakdown strength and the average num-
ber of bonds broken in the breakdown process. In the
case of the breakdown strengths, it is possible to make
further analytic progress and to calculate the form of the
full distribution of breakdown strengths occurring away
from p.. The calculation relies upon the same hypothesis
as the Lifshitz-type argument presented in Sec. IIT above,

namely, that the eventual failure of the network is dom-
inated by the most critical defect in the network. The cal-
culation of the full distribution function of breakdown
strengths then reduces to the calculation of the distribu-
tion functions of these most critical defects. To do this,
we develop a scaling argument as follows. Divide the L¢
hypercubic system into N =(L /L )¢ subcubes of size L¢.
The probability C(n) that no most-critical defect of size
greater than n occurs in the L¢ cubes should in the ther-
modynamic limit be of the same form as this function for
the L9 cubes. In addition, if the characteristic size of the
largest defects is much smaller than L, the probability of
there being no most critical defect of size greater than n
on the L¥ lattice is [C(n)]", using the statistical indepen-
dence of the subcubes in the thermodynamic limit. To in-
sure that the distribution functions have the same form on
the L¢ and L“ lattices, we require

[C(m) ¥ ~Clayn +by) , (14)

where ay and by are functions of N only. The functional
equation (14) is equivalent to the stability postulate of the
statistics of extremes,!® and its method of solution is out-
lined in Appendix B. Two general solutions that are
monotonic in n are

C(n)~exp(—cL%% ™), (15)
and
C (n)~exp[ —cL %exp(—kn)] , (16)

Where ¢, k, and m are constants. The form (15) is the
correct one when the distribution from which the extreme
configurations are drawn is algebraic, while Eq. (16) is
relevant when the distribution from which the extreme
configurations are drawn is exponential. (See Appendix B
for more details.) It is well known that the distribution of
defect clusters, P(n), above p. in the percolation problem
is exponential.!! What is needed in this problem is the
distribution of defect clusters of a particular most critical
shape, P,,.(n) (linear defects in two dimensions and disc
or penny-shaped defects in three dimensions). It is clear
that an upper bound on P, (n) is P(n). To construct a
lower bound, we note that the set of distinct bonds visited
by all Brownian walks with 2n steps on the lattice repro-
duces all percolation clusters of n bonds at least once. In
particular, the most critical defect shape is produced at
least once. In addition, the probability of occurrence of
each shape depends on the length of its boundary accord-
ing to a factor p® where b is the number of bonds on the
defect cluster boundary. To construct the lower bound
on the most critical defect probability, we consider the
most critical defect cluster to be completely ramified and
hence to have a boundary factor p?®" associated with it.
If we consider all other possible defect clusters to have no
boundary factor we obtain the lower bound
p¥"P(n)/(2d)*" < P,,.(n). We thus find on combining
the upper and lower bounds,

exp(—an)<P,,.(n) <exp(—bn) , (17)

where @ =b +21n2d —2d Inp, and b is a finite constant!!
that describes the rate of exponential decay of the cluster-
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size distribution in the percolation problem. The distribu-
tion of defects with the most critical shape is thus ex-
ponential, and thus the distribution of largest defects of
the most critical shape is given by Eq. (16) for this prob-
lem.

Since we now have in Eq. (16) the probability that no
critical defect of size greater than n exists, then we also
can express this distribution in terms of the breakdown
strength by using the relationship between the defect size
and its tip current discussed in Sec. III. We thus find for
the probability that the first bond will fail upon applica-
tion of an external current iy, F(i;),

F(iy)=1—exp[ —cL %exp(—ki7T /)], (18)

where k and, in this case, a=a;, the enhancement ex-
ponent appropriate for initial failure. A similar expres-
sion may be found for the breakdown field or voltage dis-
tribution, and this voltage distribution is calculated nu-
merically for the two-dimensional fuse network in Sec. V.

As a check of the validity of this scaling derivation and
as an illustrative example we can calculate this distribu-
tion function exactly in two dimensions if we assume that
only linear defects are present in the network. Specifically
we wish to calculate the probability C(n) that the hor-
izontal rows of an L X L square lattice contain no critical
cluster (row of adjacent defects) of greater than n defects.

|

c

Cm==1 ¢= wexp(—ikL?dk 3 [ 3 (pe
27 c:li:loizl

For simplicity we can adopt spiral periodic boundary con-
ditions, i.e., we attach the left end of each row of the lat-
tice to the right end of the preceding row. Then it is easy
to see that the problem becomes one dimensional. If there
are c distinct clusters of present bonds, then there are now
exactly c¢ distinct clusters of defects (since each cluster of
fuses is separated by a cluster of vacancies and vice versa).
Then the probability C (n) is given by the sum

Cm=3II 3 3pit1—pisx—L?, (19)
c=1i=lol=1u,-=1
where
X= 2 iu), (20)

where o; is the number of sites in each occupied cluster of
fuses, where u; is the number of adjacent defects in each
defect cluster, and where the 6 function ensures that the
total of the occupied and unoccupied sites is L 2.

If we expand the 8 function according to

(X —L2)=—— [ explik(X —L%)]dk @1)
27T — o

and interchange the integration with all the summation
signs in Eq. (19), we find the intermediate form

lk)"i i [(I_P)eik]“i . (22)

u;=1

All of the sums in Eq. (22) are geometric and hence summable with the result

p— 3 2 — — —
Cln)= 1 = exp(—ikL )p.(l plexp(2ik) {11 [(1—plexp(ik)]"} dk (23a)
27 1 —explik)+p (1—p)" Tlexplik (n +1)]
[
which, with the change of variable z =e ~** becomes the F(iy)=1—exp[ —cL%xp{ —kiiT'/*}] (26)

contour integral about the unit circle
1 zL p(l—p [1—(1—p)"z "]
= ﬁ n4ly, —(n+1) dz
1—-1/z +p(1—p)

the largest pole of the integrand that lies inside the unit
circle dominates in the large-L limit, and in this limit is
given by z =1—a where

a=p(1—p)"*1/[1—(n +2)p(1—p)"+1]. 24)

The residue at this pole gives, for L, n >>1,

(23b)

Cln)~[1—p(1—p)y"+1E* (25a)

for (1—p) sufficiently small and » sufficiently large, this is

C(n)~exp[ —p (1—p)L%exp(—nk)] , (25b)

where k = —In[(1—p)]. This equation is of the form ex-
ponential of an exponential as found in Eq. (16) above, us-
ing the scaling argument.

To now get the failure distribution from the C(n) we
must again use in the current enhancements discussed in
Sec. III with iy, =1. The probability of failure for a given
applied current is then seen to be

where ¢ and k are constants. A similar expression with
related constants is also found for the distribution of
breakdown fields and voltage F(e,)=F(V, /L).

F(€;)=1—exp{ —cL %exp[ —ke; 1/*]} (27)

where ¢ and k are different constants than in Eq. (26). In
Egs. (26) and (27), a=a,. Similar expressions hold for
the complete breakdown of the networks with a=a,, and
different constants. We now proceed to the numerical
work where the predictions made in the analytic sections
are tested using simulation studies on the two-dimensional
random-fuse network.

V. NUMERICAL WORK

To perform numerical simulations of the random fuse
network, one follows the procedure given in Sec. II. The
basic numerical method is to solve Kirchhoff’s current
law at each node in the network. With a constant applied
voltage source, Kirchhoff’s equations are given in matrix
form by

My=b (28)
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where the first L and last L rows of the matrix M are zero
except for ones on the diagonal, and the rest of the rows
of the matrix have the form

My =0%_ 0k +07; 18k
+08;8,1+07 ;8,1 41+070k 141 (29)
and
b=WVy---Vyg 0---0), (30)

where the first L elements of the b vector are given by the
external potential value V. The above matrix and vector
are for a L? square lattice in the geometry shown in Fig.
2. of; and o7 are the conductivities of the bond emanat-
ing from the (i,j) node in the positive x and y directions,

respectively:
X X
o, j=(0F;+07;+0i_1;+07; 1)

In the fuse network studied here, affj and U{j are 0 or 1
according to whether the appropriate bond is present or
absent. p is the solution vector containing the voltage at
each node in the network. The matrix M is very sparse,
and so iterative methods of solution to the linear set of
equations are most efficient. The conjugate gradient
method is well suited to this class of problems, and in ful-
ly vectorized form, we are able (on average) to solve for
the node voltages on a 128X 128 square lattice at p. in 18
sec of CYBER 205 CPU time. The convergence criterion
that we use is

R*=3 w/;—v/;"V <1072, (31)
ij
where v,{j is the voltage at the (i,j) node at the /th itera-
tion.

To complete the breakdown procedure, we calculate the
voltage drops across each present bond in the network
and remove the hottest one. Carrying out this procedure
iteratively leads to a sequence of breakdown voltages as
shown in Fig. 3. V| and V, are as defined in this figure.
A similar sequence also occurs for the current in the hot-
test bond at each iteration, and so we can calculate /; and
I,. N, is the number of iterations (bonds broken) before
the network disconnects. Using the numerical results for
the two-dimensional random-fuse network on a square
lattice, we now address three questions. (i) Do V|/L and
V,/L (and I,/L and I, /L) have the same scaling behav-
ior in the thermodynamic limit, and is this behavior given
correctly by Eq. (9)? (i) Is N, /L4~ the correct order
parameter for the number of bonds broken in the break-
down process, and what is its critical exponent on ap-
proach to p.? (iii) Does the form (27) give a correct
description of the distribution of breakdown strengths
occurring in this model, and is it possible on the basis of
numerical analysis to discriminate between this form and
the Weibull form (to be defined) most often used in break-
down testing?

(i) €, and €, are expected to scale in the same way at
the percolation point if red (singly connected) bonds’ are
present in the infinite cluster. If there are no defects in
the network [i.e., at the pure limit—see Eq. (1)] it is cer-

tainly true. We have therefore chosen p=0.75 as the di-
lution value that should indicate clearly any differences in
the scaling behavior of V,/L and V, /L. The numerical
results are plotted on logarithmic scales in Fig. 8. Al-
though V', /L and V, /L are not equivalent, it is clear that
both are decreasing functions of L. The fact that they are
not equivalent is evident from Fig. 3, where the first bond
clearly breaks at a lower voltage than the maximum. It is
thus clear that the Lifshitz argument is an approximation,
and the approximation is that the bonds that break are al-
ways at the end of the most critical defect, which implies
that the breakdown path is always linear. To illustrate
that this is a good approximation, especially near p=1,
the breakdown path is shown for two values of p in Fig.
9. It is evident from this figure that near p=1, the break-
down path is very nearly linear, and becomes more con-
torted on approach to p.. For any p away from the pure
limit, there are some cooperative effects in addition to that
due to the largest defect, and one of the objectives of the
numerical analysis is to test whether these cooperative
effects produce any qualitative change in comparison with
predictions of the extreme defect calculations of the previ-
ous sections.

The fact that neither V,/L nor V,/L are saturating
with L >> & (see Fig. 8), where & is the percolation correla-
tion length, already implies that these quantities are not
behaving as standard percolation order parameters. The
percolation point is still important however, and the full
behavior of the average breakdown voltage is dominated
by different effects depending on the ratio of L /§. In par-
ticular, we expect the behavior of the breakdown voltages
to be algebraic in L (influenced by the percolation fixed
point) for L << §&, and logarithmic in L (dominated by the
most critical defect expressed by the Lifshitz argument)
for L >>£. The novel behavior occurs in the regime
L >>£, and to illustrate this, V'; /L is displayed as a func-
tion of L for p=0.70 and p=0.90 in Fig. 10(a). The
curve does not approach a constant value for values of
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FIG. 8. Comparison of the scaling behavior of V,/L and

V, /L for the fuse network on 50 50 square lattices at p=0.75.
Each point is an average over 50 realizations of the random fuse
network.
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L >>§, and so the curvature is not due to crossover
effects. The Lifshitz argument [Eq. (9)] predicts that in
this regime

I,/L~V,/L~1/(a+bInL) . (32)

An unbiased test of the data is to see if a plot of InL
against L /V, is a straight line. The data of Fig. 10(a) is
plotted in this way in Fig. 10(b). The data is consistent
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FIG. 9. Topology of the final breakdown path on 50X 50
square lattices at (a) p=0.70 and (b) p=0.90.
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FIG. 10. (a) Scaling behavior of V,/L at p=0.70 (/) and
p=0.90 (@). (b) Plot of the same data as in (a), testing for the
logarithmic behavior given in Eq. (32).

with Eq. (29) although it does not give convincing evi-
dence that the form (32) gives a better description than
several other forms which may also fit the data. Another
way of plotting the breakdown data is to plot V;/L and
I, /L versus p at fixed system size, as shown in Fig. 11,
for a 70X 70 lattice. From a figure of this sort the au-
thors of a previous calculation® (without any p=0.50 cal-
culations) deduced that V', /L diverges on approach to p..
Their deductions are incorrect for two reasons.

(1) At p., V| /L appears to be finite. In fact the scaling
argument in 2D suggests that ¥V, /L ~L ~%%7 yusing the
best estimates of ¢ /v available for 2D.” There is no evi-
dence to suggest that it diverges at p..

(2) In attempting to find the critical exponents pertinent
to V,/L on approach to p. one must take into account
the logarithmic behavior depicted in Fig. 10(a). This was
not done by the previous authors, and is the reason why
V', /L appears to diverge on approach to p,.

At first sight, the breakdown voltage behavior of Fig.
11 is surprising in that the strength of the network, to an
externally applied voltage, appears to increase on ap-
proach to p.. This effect is due to the fact that V,/L is a
ratio of the conductivity and the current, both of which
decrease on approach to p.. The behavior of V,/L is
then determined by which of these two quantities de-
creases faster at the percolation point. In two dimensions,
this ratio is especially subtle, and our numerical results
suggest V' /L =1.00%£0.05, even though the scaling argu-
ment (combined with previous numerical estimates of the
conductivity exponent’) gives V;/L ~L ~%%7, It is thus
clear that in the fuse network, the breakdown currents I,
and I, are more fundamental quantities theoretically.
The numerical data for the breakdown current I, /L as a
function of system size is given on a log-log plot in Fig.
12(a). We again test for the scaling prediction (32) [Fig.
12(b)] and find that the fit to the current data is consider-
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FIG. 11. Average breakdown voltage (®) and current (/) as
a function of p on 70X 70 square lattices. Each point is an aver-
age over 50 configurations.

ably better than that found for the voltage data and pro-
vides convincing evidence that the prediction (9) is
correct.

(ii) As seen in Fig. 9, the nature of the breakdown path
changes markedly as one varies p away from the pure lim-
it. The variation may be measured in several ways.
Clearly, the ratio of the vertical to horizontal bonds bro-
ken is one, the fractal dimension of the final breakdown
path is another, and finally the number of bonds broken
in the breakdown process is another. The number of
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FIG. 12. (a) Average breakdown current on square lattices as
a function of L for p=0.6 (@), p=0.70 (A), p=0.80 (O), and
p=0.90 (O). (b) Same data as for (a) plotted on log—Ilinear to
test for the behavior predicted in Eq. (32).

bonds broken in the breakdown process N, is the easiest
to calculate as it is just the number of iterations to failure
in the iterative process defined in Sec. II. This is the one
we numerically investigate. As shown by Egs. (Ic) and
(10), N, changes radically when defects are introduced
into the network. It is thus not immediately obvious
which is the correct scaling quantity, in that the single de-
fects suggest

ny=N,/L¢"1, (33)

rather than the pure one N, /L The numerical analysis
shows that the correct order parameter for all p away
from the pure limit is n, as defined in Eq. (33), and this is
evident in Fig. 13, where n, is shown to be saturating
with L for L >>§, as is to be expected for an order param-
eter. On approach to p., n, goes to zero with a charac-
teristic exponent Xx,

ny~(p—p.) . (34)

From the log-log plot of n, against (p —p.) in Fig. 13, we
are able to estimate the exponent x to be

x =1.240.2 (35)

As argued by de Arcangelis ez al.,? x may be naively ex-
pected to be equal to v, the percolative correlation length
exponent. However, this is not altogether convincing, as
the number of bonds broken in the fracture process is
affected by different aspects of the backbone topology than
the pair connectedness. Indeed the fact that x is close to
v in two dimensions may be a peculiarity of that dimen-
sion. It would thus be interesting to do detailed calcula-
tions in three dimensions to determine the exponent x
there. Before proceeding further, we note that in their
calculations de Arcangelis ez al.® used N, /L9 as the or-
der parameter to estimate x. Fortunately, this does not
effect the calculation of x from a log-log plot using only
one value of L (as they did), as only the intercept of the
graph and not the slope is affected. The value they find,

1 Or /
/
/
»
/
/
r' 4
4
Np 0.1 ///
T 74
4
r//):(
&
-
0.01 1 |
0.01 0.1 0.5
(p—pc)

FIG. 13. Number of bonds broken in the breakdown process
N, for L=18 (@) 35 (0), 50 (O), and 70 (A) square lattices.
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x =1.4x0.2, is thus consistent with ours, to the accuracy
of the calculations.

(iii) In two dimensions, the distribution of failure
strengths for V| /L is expected to be of the form [by put-
ting d=2 and a;=1 in Eq. (27)]

F(V,/L)=1—exp[ —cL%xp(—kL /V,)] . (36)

A similar expression holds for the complete breakdown
voltage V, /L. We now study this distribution in detail
for V,/L, as this is an easier quantity to calculate, and
thus allows us to construct the detailed distribution func-
tions necessary for a comprehensive analysis.

F(V,/L) is the probability that on application of an
external voltage of V| /L, the first fuse in the network will
fail. For V| /L near O, this probability is near 0, while for
V,/L large, F(V,/L) tends toward 1. This is illustrated
in Fig. 14, where the failure distribution is given for
p=090 on a 50X50 square lattice using 1500
configurations. It is straightforward to fit the data in Fig.
14 with the distribution (36), as given by the solid line in
Fig. 14. What is more difficult is to differentiate between
the fit given by Eq. (36), and that given by the Weibull
form

F(V,/L)=1—exp[ —cL%V,/L)"], (37)

which is most often used in fitting breakdown distribu-
tions in engineering applications of materials. In Eq. (37),
c and m are again constants. A direct fitting of the data
using the Weibull distribution (37) gives results which to
the resolution of Fig. 14 are identical with that found
from Eq. (36). A more sensitive test of the data is thus
required. This may be done by isolating V', /L from Egs.
(36) and (37) and we find from Eq. (36)

A=In{—In[1—F(V,/L)/L%]}=—kL /V,+Inc , (38)
and from (37),
A=In{—In[1—F(V,/L)/L%]}=—m In(L /V|)+Inc .

(39)

Now we plot A4 against L/V, and In(L/V,) and see
which plot lies closer to a straight line. These plots are
given in Figs. 15(a) and 15(b), respectively, where it is
seen that the new distribution function [Egs. (36) and
(38)] provides an appreciably better fit to the numerical
data, than the Weibull form [Eqgs. (37) and (39)]. The two
fits are most different in the small V|/L region, and this
is of special engineering interest as it corresponds to the
“high reliability” (in the sense that the probability of
failure is small) end of the failure distribution of Fig. 14.

VI. SUMMARY AND CONCLUSIONS

The random fuse network has been studied in detail in
this paper, and using analytic arguments based on the hy-
pothesis that the most critical defect in the network deter-
mines the strength of the network, we deduce that be-
tween the pure limit and the percolation point, there is a
new and novel behavior in the properties of the network.
There are basically three new analytic predictions in this
region of dilution.

F(V,/L)

v, /L

FIG. 14. Failure distribution for 50X 50 square lattices at
p=0.90, constructed from 1500 realizations. The solid line is a
fit to the data using the Weibull form (37) with ¢=1.826 and
m=13.146. A fit to the same data using the form (36) with
¢=194.582 and k=6.889 is, to the resolution of the figure, indis-
tinguishable from the Weibull fit.
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FIG. 15. (a) Plot of 4 [see Eq. (39) in the text] against
In(L /V1), to test for the Weibull form. (b) Plot of the same data
using A against L /V to test for the new form given by Eq. (36).
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(1) The average strength of the network, in comparison
with the pure limit, is reduced by a factor (InL)%, where
a=a, for initial breakdown and a=«a, for complete

breakdown. Arguments based on the most critical
defect in the network lead to the inequality,
1/[2(d —1)]<a, <a;<1, where a; and «, are the

enhancement exponents for initial and complete break-
down, respectively [see Egs. 9(a) and 9(b), and the argu-
ments leading to them].

(2) The distribution of breakdown strengths is not of
the Weibull form (37) (except at the percolation point),
most often used in engineering studies of failure, but is of
the form exponential of an exponential [Egs. (26), (27),
and (36)]. The implications of this result for the predic-
tion of design criteria in high reliability applications is
currently being investigated.

(3) The order parameter describing the final breakdown
path changes markedly as soon as any finite fraction of
defects is added to the fuse network. In the pure limit for
example, the number of bonds broken in the breakdown
process is N, =L“/d, while the addition of any finite frac-
tion of defects leads to the correct order parameter being
Ny =kL“~1, for the fuse network [see Eq. (10)].

The new scaling behavior described above apply in the
regime L >>&, where £ is the percolation correlation
length. In the region L << &, standard percolation scaling
arguments may be used, and lead to the prediction given
in Egs. (11) and (12) for the average breakdown strength.
The predictions described above are tested using numeri-
cal calculations on the two dimensional random-fuse net-
work (Sec. V), and to the accuracy of the simulations,
confirmed.

In a more general context, the methods that we have
used in the analytic analysis of the random-fuse network
emphasize only the most critical defect in the network.
This is because the bond that carries the most current in
the network is the one that will undergo failure first. The
breakdown problem thus depends on the very high mo-
ments of the bond current distribution of the random
resistor network. In the approximation used in this pa-
per, the infinitely high moment is the one considered.
The mathematicians have also studied problems of
the sort that depend only on the most extreme
configurations in a distribution function, in the prediction
of the likelihood of earthquakes, floods, and other natural
disasters. The mathematical method developed for these
problems is called the statistics of extremes,'® and con-
tains many results that may be taken over to the study of
breakdown problems.

With the realization that essentially all breakdown
problems are dominated by extreme configurations in the
defect distribution function, it is straightforward to con-
struct models of failure for many branches of physics, and
to extend the extreme defect analysis described in the
main body of the paper for the fuse network, to those
problems. In Appendix C, this is done for the problems
J
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of (1) brittle fracture and (2) dielectric breakdown in
solids.

The final comment that should be made is that in most
real systems, the distribution of bond strengths is not of
the percolation form used in the analysis described in this
paper. This will certainly affect V|, which in models with
a continuous distribution of breakdown strengths on the
bonds, will be close to zero. However, we expect the cal-
culations described here to apply to V,, which is the im-
portant physical quantity. The fact that V| behaves, in
the thermodynamic limit, in the same way as V, in the
percolation models described here, is a strength of the per-
colation models as V', is an easier quantity to study
theoretically, and still gives the important behavior of V.
The same is not true in models with a continuous distri-
bution of breakdown strengths.

APPENDIX A: CALCULATION OF THE CURRENT
DENSITY AT THE TIP OF AN ELLIPTICAL DEFECT

Consider an elliptical defect in an infinite two-
dimensional lattice. The equation for an ellipse centered
at the origin is

x%/at+y*/b?=1, (A1)

which is depicted in Fig. 7 in the text. To find the
current density at any point just on the boundary of the
elliptical defect (§;) solve Laplace’s equation with the
boundary condition

av
3¢

which ensures that no current flows into the insulating de-
fect. Laplace’s equation is invariant under a transforma-
tion to elliptical coordinates, and in that frame, the ap-
propriate form of the solution is,

(E=60)=0, (A2)

V(£,1)= Ay + Be ~5sin(+€)+ CeSsin(n+¢€) , (A3)
where
x =c cosh(§)cos(n); y =c sinh(&§)sin(y) ;

(Ad)

a =c cosh(&,); b =csinh(&,); and ¢ =(a?—b?)1?%;

where A, B, C, and € are constants. Choose e=C=0 and

A = — Vyy to produce the externally applied electric field.
Then,
V(E,m)=—Voy +Be Ssin(n) (A5)
= — Ve sinh(£)sin(17) 4+ Be ~%sin(7n) (A6)
and the boundary condition (A2) implies
B = —VycePcosh(&,) - (A7)

The current density in the y direction (see Fig. 7) is then'?

v
a7

Iy ¢ (cosh?£ —cos?y)
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where 2 is the conductance:

Jjy=VoZ —3Be ~%[cosh(£)sin’(7) —sinh(&)cos?(n)]/c[cosh*(£) — cos’(7)] .

The tip of the defect is defined by =0, and £=¢&,,
where,

Jiip=Z2Vo[1+cosh(§g)/sinh(&)] (A10)
=j(l+a/b), (A12)

where j is the current density at an infinite distance from
the ellipse.

APPENDIX B: SOLUTIONS TO THE SCALING
EQUATION (14)

The equation in question is
[C(m)N=Cl(ayn +by) . (B1)

It is straightforward to solve this equation in two cases.
(1) We have ay =1, and hence

[C)¥=C(n +by) . (B2)
Taking two logarithms of this equation leads to

In(N)+In[ —InC (n)]=In[ —InC (n +by)] , (B3)
which is solved by

In[ —InC (n)]=—kn , (B4)
with —kby =InN. Which implies

C(n)=exp[ —cL %exp(—kn)] , (B5)

where c¢ is a quantity that is independent of N and n. By
direct substitution, Eq. (BS) can be seen to solve (B1).

(2) The second case that is easily solved is when by =0
and

[C(m)]V=C(ayn) (B6)
and therefore

N InC (n)=InC (ayn) , (B7)
which is solved by

InC(n)=—cL% "™, (B8)
where ay =N ~!/™. C(n) is then given by

C(n)=exp(—cL%m ™). (B9)

Again c is a quantity that is independent of n and N.

Now it is possible to show that the form (B5) is correct
when the distribution from which the extreme values is
drawn is exponential, as is the case in the percolation
problem away from p.. This is seen upon considering the
tail of the defect distribution, which is of the form (see
Eq. (17) of the main text of the paper, and the associated
discussion)

P,.(n)~exp(—an) . (B10)

Now for large n, the probability that the large defect is
smaller than r is given by

C(m)=1— [ *exp(—an’)dn’ (B11)

=1—exp(—an)/a (for n large) . (B12)

This form is the correct one in an expansion for large n of
the form (BS), and shows that (BS) is the correct form for
the percolation problem away from p.. The full details
and other evidence that the form (BS) is correct in this
problem can be found in a work by Gumbel (Ref. 10,
Chap. 6).

APPENDIX C: MODELS OF FAILURE WHICH
ARE RELATED TO THE FUSE NETWORK

In this appendix we describe two problems for which
one may construct percolation models that are closely re-
lated to the fuse network. They are, (1) brittle fracture
and (2) dielectric breakdown in solids. For these two
problems, percolation models are constructed, and the an-
alytic predictions analogous to those contained in Secs. III
and IV for the fuse network, are stated.

1. Brittle fracture

On the present bonds in a percolation network above
the percolation threshold, place brittle elements (i.e., they
are completely inelastic and undergo no extension) that
have a threshold for breakdown upon application of bend-
ing or tensile forces. If the bending threshold is zero, the
percolation point is the rigidity percolation point p,, while
if there is a bending threshold, the percolation point is the
conductivity one p.. The scaling behavior is different in
these two cases, but the behavior for L >>¢ is qualitative-
ly the same. The most critical defect is of the same form
as that found in the fuse network (the penny-shaped
crack), and transcribing the results to the terminology of
mechanical failure, one finds that for L >> &,

op~1/[a +b(nL)*], (C1)

where o, is the average failure stress of the network, with
1/[2(d —1)]<a, <a; <1 as for the fuse network, and

n,=N,/L?~'=0(1), for p away from p. . (C2)

That is, the correct order parameter for the number of
bonds broken in the breakdown process is the same as for
the fuse problem. The distribution of failure strengths is
(in the large L limit)

F(o,)~1—exp{—cL%xp[—k(1/0,)"*1}, (C3)
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where F (o) is the probability of failure upon application
of an external load o,. As stated above, the scaling be-
havior depends upon whether one considers the rigidity
case, or the percolation case, and we leave a full discus-
sion of these questions for later work.

2. Dielectric breakdown in solids

Consider a percolation network composed of conduc-
tors and insulators, where the fraction of conductors is
less than p., and hence no current flows initially. The
distribution of voltages in the connected insulating cluster
is given by the solutions to Laplace’s equation. If the in-
sulators are given a threshold beyond which they break
down and become conductors, the whole network is a
model for dielectric breakdown in solids. The most criti-
cal defects in this problem are different than the penny
shaped crack appropriate for the fuse and brittle fracture
problems in three dimensions. The nature of the most
critical defect in this problem is clear when one recalls
that the electric field is largest near the tips of a conduc-
tor. The most critical defect is then seen to be a long thin
defect oriented in the y direction in Fig. 7. This is easily

confirmed in a calculation analogous to that described in
Appendix A for the fuse problem. The only change is
that the boundary condition on the ellipse is now
V(£0)=0, and this changes the orientation and shape (in
3D) of the most critical defect. The remaining calcula-
tions carry through in an analogous manner, and we find
that the average breakdown strength of the dielectric net-
work for L >>§ is

Vy/L ~1/[a +b(InL)?], (C4)

where 1/2<aj <a;<1 (note that in our previous letter’
we used the approximation a;=a, =1), while the failure

distribution becomes
F(Vy)~1—exp{—cL%xp[—k (L /V,)"*]} (C5)

and the number of bonds broken in the breakdown pro-
cess behaves as

ny,~N,/L~O0(1), for p away from p, . (C6)
The scaling behavior for L <<§ is given by
Vy/L ~(p.—p)" . (C7
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