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The previously observed temperature dependence of, in particular, the conductivity o(T) in me-
tallic Si:P is reanalyzed according to a recent conjecture; such a conjecture proposed a scenario for
reaching the metal-insulator transition at 0 K despite strong electron interactions, supposed to be
of Hubbard-type contact. In the present paper we pursue the same scenario at finite 7. When the
disorder increases, the role of the interactions upon o(7) first increases but then weakens, while
the localization contribution from the inelastic scattering process via paramagnon exchange be-
comes sizable. Moreover, according to a recent theoretical result, for low-T ranges reasonably
easy to attain experimentally, the interaction and the localization terms in o(T) both vary with
V'T but with opposite signs. The competition between these two contributions results more and
more in favor of localization for increasing disorder. Moreover, the present analysis could also ex-
plain why perturbative results appear to account for experimental observations even in the strong-
disorder regime near the metal-insulator transition. The resulting behavior of o(T) agrees qualita-
tively well with previous observations in metallic Si:P for varying donor densities. The most re-
cently measured temperature dependence of the susceptibility X(7T) of Si:P is also discussed. This
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analysis is also compared with previous ones using screened Coulomb interactions.

I. INTRODUCTION

The theoretical problem of the understanding of elec-
tron localization in the presence of strong electron-
electron interactions is not yet completely solved.! Sim-
ple perturbative theories’>~> as well as more sophisticat-
ed ones using the renormalization-group procedure,® all
agree on the general tendency that for increasing disor-
der the system develops strong spin fluctuations which
drive the system away from the metal-insulator (M-I)
transition: the electrical conductivity at 0 K, o(T =0),
cannot vanish as it ought to, in order to account for ex-
perimental data.’” However, the above results are all
based on lowest-order expansion in the disorder parame-
ter and, therefore, cannot make definitive statements
concerning the M-I transition in the regime of strong
disorder.

On the other hand, a number of changes occur experi-
mentally close to the M-I transition. For instance, the
archetypal Si:P system, which is believed' to contain
strong correlations among the electrons, exhibits a
temperature-dependent contribution in the electrical
conductivity o(T), whose coefficient changes sign when
the donor density n varies as one approaches the transi-
tion from the metallic side.

In an attempt to account for the occurrence of an M-I
transition despite the presence of strong electron correla-
tions, a conjecture was recently proposed’ in the specific
case of three-dimensional, disordered, nearly magnetic
fermion systems, containing, already in absence of disor-
der, strong spin fluctuations, the paramagnons.

The purpose of the present paper is to examine further
this conjecture and its consequences in connection with
the above experimental observations: we will show that
it may, in particular, allow one to qualitatively under-
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stand the variation observed in the behavior of the elec-
trical conductivity of Si:P (Ref. 7) and the change of sign
recalled above in the T-dependent coefficient of o (7).

We must first recall the main points of Ref. 3. The
model interaction chosen was the Hubbard-type contact
repulsion I among opposite spins, of order €5 (the Fermi
energy of the free fermions), so that, in the pure system,
the Stoner criterion for magnetism to occur is almost
fulfilled (I ~1 but <1, with T ~I/eg). Such a system,
free of impurities, is thus nearly magnetic at O K and ex-
hibits strong spin fluctuations, the paramagnons.

When random and independent impurities are added
to such a system, it has been shown?~* that, at least in
the weakly disordered (“weakly localized”) regime,
(epT)>>1, where 7 is the elastic lifetime, the- system
shifts closer to the magnetic instability for increasing
disorder among the fermions [i.e., when (err)~! in-
creases]. The effective interaction I.; increases above
the initial value I and closer to 1; the paramagnons be-
come stronger, yielding the 0-K conductivity o(T =0),
to increase above the Boltzmann value o, thus prevent-
ing the M-I transition [o(T =0)=0] from occurring.
But it was also shown in Refs. 2 and 3 that these
paramagnons not only become stronger in presence of
impurities, but altogether tend to switch from uniform
paramagnons to local ones, i.e., tend to form local mo-
ments at random. Assuming that this tendency still
holds when (sFT)“1 increases further, the author of Ref.
3 examined the case where the crossover between uni-
form and local paramagnons occurs before the magnetic
instability is reached, i.e., with I.; remaining smaller
than 1.8 It was then argued in Ref. 3 that such a cross-
over yields a I.4 to stop increasing and, instead, starts to
decrease continuously towards O, as implied in an earlier
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result ° according to which local paramagnon theories
scale to free ones, so that the tendency to form local mo-
ments becomes less and less plausible and is ultimately
completely suppressed. Thus 1.5, before vanishing,
would eventually reach a sufficiently modest value (I in
the following) below which, when T4 <I,, o(T =0) can
possibly vanish, as would be the case in absence of any
interaction,'®! and thus the M-I transition can occur
(this will be illustrated later on with Fig. 1). In the fol-
lowing we pursue the study of the same case as that in
Ref. 3 (i.e., crossover, for increasing disorder, from uni-
form to local paramagnons, with I.; remaining smaller
than 1). We examine the physical implications of such a
model in order to facilitate comparison with experimen-
tal observations.”

II. THE CONTRIBUTION TO THE TEMPERATURE
DEPENDENCE OF THE CONDUCTIVITY

To lowest order in the disorder [(ep7) "' << 1], o(T)
reads!

o(T=o0y1+80, /o¢g+b0;; /0y), (1

with, in a.u., the Drude value 0g=2kpep7/(37%) (ky the
Fermi momentum); 8o ; is the localization contribution
in the absence of interactions"!® and 80, the electron-
interaction quantum correction.'

At the lowest temperatures, 77 < 1, the T dependence
of o(T) is usually' believed to be dominated by the one
in 80, [~(T7)2 compared to that in 8o, ~(T7)""2
with p >1]. However, in our strongly enhanced case,
the relevant T range is no longer unique (T7<1): Tr
has to be compared not only to 1, but also to 1 —17I and
(1—1)'2, We examine both 80, (T) and 80, (T) in
the following.

A. The localization contribution 8o,

The T dependence of 80 ; (Ref. 1) contained in the in-
elastic time 7y, is

8o =—[kp/Q2mepm)][1—37/7,)' %] . )

T/Tin is proportional to (T7)°, where p is equal' to 3,2,
or 3 depending on whether electron-electron interactions
in the dirty or clean limit, or electron-phonon interac-
tions, respectively, determine the inelastic scattering.
The lowest value of p, p=3, and thus the strongest T
dependence in 8o, has been found in the case where
screened Coulomb interactions are responsible for the in-
elastic scattering.!! So far, the only calculation which
considered Hubbard-type contact interactions instead of
Coulomb ones (to be the source of 7;,) was that in Ref.
12, which was restricted to two dimensions. We have re-
cently'? extended the calculation of Ref. 12 to the case
of three dimensions. In particular, when T is close to 1,
we found the following contribution:
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93 1 Tr o
= _ Tr<1—I,T~
] ](1) Ve (EFT)2 7 T< 1(3a)
. 1 9v3 _ _
Tin L T7 | Ferre 1,T~1. (3b)

4 (EFT)Z 1—-1

(The complete formula, not restricted to I ~ 1, was given
in Ref. 13.) When the system is close to the magnetic in-
stability 7 ~1, the range T7<1—TI may be difficult to
study experimentally, so that the range 1—7J <Tr<1
would instead dominate the observations.

Moreover, for screened Coulomb interactions it has
been emphasized'® that some contributions due to dia-
grams dropped in previous papers (as well as in Ref. 12)
are important and yield to an extra contribution
(7/73)% as follows:

(n (2)
S _ | + | , 4)
Tin | Ref 13 Tin Tin
with

(1
Sl « — (T, (5a)
Tin |Ref 13 (EFT)

(2) )
— S S(T7) . (5b)
Tin Ref.13 (EFT)

In Ref. 13 we first extended to three dimensions the cal-
culations of Ref. 12, thus dropping the same diagrams,
resulting in the contribution (7/7,,)'" [formulas (3)
above]. Then we pointed out that the reason for neglect-
ing these diagrams, which was explained in Ref. 15 in
the case of screened Coulomb interactions, is no longer
relevant in the case of the Hubbard contact one.'®
Therefore it was expected in Ref. 13 that an extension of
the treatment of Ref. 14, with T7/(1—TI) replacing
(T7), would yield

(n )
T 4| , (6)
Tin Tin Tin
with (7/7,,)'V given by formulas (3) and
T ? 1 TT
— « > = . (7
Tin (epm)” 1—-1
In that case one expects
T 1 . T‘r_ (8)

Tin  (€pT)

both in the T7<1—TI range where T7/(1—1) of
(1/7:,)'?) would prevail over the [T7/(1—=1)1*"? of
(/7in)'", and in the 1—T < T <1 range, where both
terms are proportional to T7/(1—TI). The consequence
for the T dependence of 8o is that

8o, =—[kp/Qmepn){1—alepr) ' [T7/(1-DV¥"?} ~ —[kp /Qrern) {1 —alerr) " [Tr/(1—D]"?}, T~1 (9
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where a is a constant. Such a 7 dependence is important
when compared to a similar one in 80 ; , recalled below.

B. The interaction contribution 6o .

8011 (T) has been extensively studied in the literature,'
mostly for the screened Coulomb interaction, and, for the
Hubbard-type contact interaction, in Refs. 17 and 18. In
the following, as in Ref. 3, we use the notations of Ref.
18. (We found it helpful, to benefit nonspecialists, to
show in the Appendix the connections between the vari-
ous notations found in the literature.)

60 (T) for a nearly magnetic disordered system, in
three dimensions, is
V3 ke i 1s3vT (10)

80’1L=-—
’ 87T2 EpT

g is a complicated coupling constant, depending on the in-
teraction T and the disorder (ez7)~!. In Ref. 3, following
Refs. 17 and 5, g was separated into the ‘“‘singlet” part g,
and the ‘“‘triplet” one g,, due to the particle-hole diffusion
processes, and g., due to the particle-particle diffusion

processes:

g8=8;+8 +8: - (11)

According to the results of Ref. 18, g, >0 while g, <o.
Moreover, g, +g. varies little as a function of T in the
range o <I < 1. In contrast, g, varies from o to infinity in
the same range. Due to mathematical difficulties, only an
estimate of g, was given in Ref. 18; as it plays a minor
role in g in most of the T range, we neglect it in the fol-
lowing. Close to T=1, one has

g, ~1.3 _

g,~—(1—1—)_”2 for I—1. (12)
We rewrite (10) as

8o« —[g— & | Nexr) " (1=VTT), (13)

where g, — | g, | is a function of T.

C. The total conductivity o (1)

From now on we will replace I by I 4 everywhere, tak-
ing into account the renormalization of T by disorder and
disordered paramagnon effects according to the scenario
of Ref. 3. Combining formulas (9) and (13), (1) reads as
follows:

172
3 1 3r
= 1—_ —— ——
U(T) Op l 41 (EFT)Z Tin ]
3vV3 g —
———2—(1-1.83V'T7) (14)
16 (epr)? T

Next, we discard all purely numerical constants that are
not important in the qualitative scenario that we study
here,

o(T)~a(0)+ AT /Tp)"? , (15)

with

1
0(0)~0q [1— )2(1+g5~\g,\> ,

(SF’T
_ (16)
A~(epr) Vg, —(1—(epr) " D1 =T )],
with
Tr=(eg™(T/Tf),
(17)

OgXERT ,

Tr being the Fermi temperature of the free electrons. In
the next section we examing how the expected variation of
I with (ex7) ! affects the T dependence of o (7).

III. ANALYSIS OF THE THEORETICALLY EXPECTED
VARIATION OF 0 WITH T
ACCORDING TO REF. 3

We illustrate on Fig. 1 the ideas of Ref. 3 by drawing a
qualitative variation of I.; when the disorder (ez7)"! in-
creases from the pure case (77'=0). The figure is
schematically separated into five different regions (a)-(e).
To each region will correspond a certain behavior for
o(T) (Fig. 2).

A. Region (a)

_One starts with a pure homogeneous system
[T.g(7~'=0)=T], paramagnetic (I <1), but close to
becoming an itinerant magnet (I close to 1) which con-
tains strong uniform paramagnons. When a weak disor-
der is introduced [0 <(ep7)~! << 1] and increases, so do
Ig(I<Ig<1)and |g,|; the system becomes inhomo-
geneous and the paramagnons get stronger. As
(1—T.5)"'>>1, 14+g, and g, are negligible compared to
|g; | in (16), and, due to the smallness of (ez7)" ' <<1,
o(T) is dominated by 8o :

left

0

FIG. 1. The qualitiative behavior of I.; for increasing disor-
der according to the scenario of Ref. 3 with the different regions
(a)—(e) explained in the text. In (a) the paramagnons are uni-
form; they cross over in region (b) to local ones in regions (c),
etc. I.g<1 corresponds to a paramagnetic regime and Iz > 1 to
a magnetically ordered one. The dotted line would describe the
situation where Iy would reach 1 (and the susceptibility would
diverge) before the paramagnons have crossed over to local ones.
T, is the value of the effective interaction below which the locali-
zation transition can occur for higher 7~ values.
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0@ T) =0 0)+ A (T/Tp)?, (18a)
o@(0)=0o[1+(ep7) " g, |]
~(epm)[ 14+ (epr) M1 —=T4)" 7], (18b)
Apy~—(epr) g, |
=—(epr) V1T q)" 2. (18c¢)

Although o(,, (0) remains larger than o o, (0) de-
creases for increasing (ez7)~! [within the validity of per-
turbation theory, (ex7)~2|g, | <1]. The main results in
this region are

o@(0)>00,

0 »(0) decreases when(ez7) ! increases ,
4@ <0,

| A(a) | increases when(ez7)~! increases .

The results (19) are illustrated by the two *“(a)” lines on
Fig. 2, where o(r) is plotted versus V'T [(ep7)~! in-
creases upon going from the top lines to the bottom ones].

The most sophisticated theories so far® stop here,
faced with the puzzling problem that o, (0) does not
decrease below o and that (1—TI4)~!— . The follow-
ing remark was added in Ref. 3: while I 4(w=0, ¢ =0)
certainly increases toward 1, the q dependence of the
static enhancement [l —7.4(w=0, g£0)]~! tends to
disappear; the paramagnon correlation length shortens
compared to the pure case [see formula (3) in Ref. 3(a)]
and the uniform enhancement becomes a local one. The
result was® that the paramagnons altogether get stronger
and tend to become local paramagnons. Consequently, a
tendency to form local moments develops.

o(T),

< }(a)

e

—_ }d)

/

~,
>

0 Al

FIG. 2. The qualitative behavior expected for various degrees
of disorder from the scenario of Ref. 3 and 7-dependent analysis
of the present paper, for o(T) vs V'T; from the top to the bot-
tom of the figure, at fixed T, the disorder increases; the curves
(a), (b), etc. give the T dependence of o(T) corresponding to the
various regions (a), (b), etc. of Fig. 1.
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B. Region (b)

Such a region exists only within the hypothesis® that
the uniform paramagnons in the left-hand part of region
(a) cross over completely to local ones when (ep7)~! fur-
ther increases [in regions (c)-(e)], and that they do so be-
fore the magnetic instability is reached (/.; remains,
<1). If a more elaborate calculation could prove that,
contrary to the assumption considered in Ref. 3, the
magnetic instability is reached before the above cross-
over is achieved, then I would evolve as shown by the
dotted line of Fig. 1. This case was considered in Ref. 4,
where it was suggested that after I.; has reached the
value 1 and the susceptibility has thus become infinite, a
‘“spin-glass-type” order could set in. One must
remember, though, that in real spin glasses the magnetic
susceptibility remains finite at the transition. I.q cross-
ing the borderline I.4=1 should instead be visualized, as
was done in Ref. 6(c), as the formation of a random
spin-density wave. In the present paper, instead, local
moments never form, although they are close to doing
sO0.

C. Region (c)

From this region on, the paramagnons are local when
(er7)~! increases. Moreover, interactions among these
local paramagnons rescale the effective electron-electron
interaction I.g to smaller values according to the argu-
ments developed in Ref. 9, so that I.; stops increasing
and starts to decrease instead. Now we argue that the
behavior of o(7) can still be described by the perturba-
tive formula (14). Indeed, the perturbation results ob-
tained for (e57) ' << 1 were supposed to hold as long as,
essentially, g /(e7)? < 1 or, replacing g by its most im-
portant contribution, (1—TI.g)" "2 <(er7)% when the
disorder increases €x7 decreases; but since in region (c)
I is expected to also decrease,’ so does (1—TI4)" 72,
and the condition g <(gp7)* can still be fulfilled. This
may explain why, experimentally,® the observed varia-
tion of o(T) can be accounted for by the same T depen-
dence as that given by perturbation theory, even in the
neighborhood of the metal-insulator transition (where
erT~1). So we continue to consider (14) and (15) with
I.; decreasing when (ep7)~! increases. As a conse-
quence |g,| still predominates over g, and 14g,, but
less and less so, so that A is still negative but | 4 |
weakens; in other words, | 4 | would have reached a
maximum value in the crossover region (b), reflecting the
behavior of I.; versus (er7)~!. On the other hand,
(er7)~ ! is no longer very small compared to 1, so that
1—(ep7)~1in (16) is no longer reducible to 1. The local-
ization contribution to o(7T) starts to play a role, al-
though still minor. At first, I is still sufficiently close
to 1 for |g,| to still be approximated by (1—TI.q)~!/?
and we write

(T =0()(0)+ A NT/Tp)?, (20a)
0((0) =01+ (epm) (g, | —1—g,)]
~(epm) {1+ (epm) (1 —T,) 2 —1—g,1} , (20b)

Ay~ —(epm) V(1 =Tg) V1 —(epr) " ']1—g,} . (20c)
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The main points in this region are
0(0)>00,
0)(0) decreases when (ez7) ! increases ,
A <0,
| A, | decreases when(ep7)~! increases .

This is illustrated by the two ““c” curves of Fig. 2.
D. Region (d)

This region is characterized as follows: In the renor-
malization process of I.; towards vanishing values and
the corresponding decrease of |g, |, I.q reaches a value I,
at the border between regions (c) and (d) where €z has
decreased enough to approach 1 and where g, +g, has
lowered enough so that 14+g,— |g, | is now positive in
(16). There o(0) starts to be smaller than o, and the
metal-insulator transition may be reached at 0 K. More
precisely, restoring all terms from (14) in o(0), with g
and g, extracted from Ref. 18 and recalled in Ref. 3,
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o(0) will be smaller than o for 1 +1.36g > 0. One writes

1+1.36g=1.36g. + f(I.¢) , (24a)
fTg)=1+1.36(g,+g;)
=4.63+ 5;44 £+ 1_ T
ar |3 3(1+1e)
1

—_— | . (24b)

(1—T5)'"? ]

Simple algebra shows that

fTg) >0 forl ;0.4 . (25)

As already mentioned at the end of Sec. II, g. is not
known from Ref. 18 at 0 K but plays a minor role: at
finite T given by formula (2.29) of Ref. 18, g. is negative
but |g.| amounts to only a fraction of I Therefore,
in the absence of a better knowledge of g., we can con-
sider, as a very rough estimate, I,~0.4. On the other

1 3 hand, at finite temperature an in a T range where
7(0)=00 (ef»r)z 477_[1+1.36(gc te+e)l), (22 (r/7;,)'V is linear in 7T, an underestimate of 7/7;, is
given by (7/7,)'" since both (7/7,,)'" and (7/7,,)'? are
4 + 1 3 positive. Then, neglecting g. in g compared to (g;+g
=—— |201+T - N ¢ . s o0
8 & 3. (4 Leg)+ (+I )" (=T, one gets approximately, for A4 in (15) [when
1-T<Tr<1, ie., when (1=I)/(epm) < T /Tk
(23) <1/(ep7)],
|
k — ‘/‘31— 172 3 _ I—I_e 172

An—t Y3 1 { ? =t L8 204+ Tl — L) =+ |2 ,26)

(epm)V? 2w (1—Tq) 2m(ept) | 2—1I.4 T 3| 1474
A>0 forL> and I.5<I, , (27)

erpT ~ (epT)
To~0.4, (8[:7')0""1.2 . (28)
—

Again, these values are only orders of magnitude. To
render these calculations more precise, one would need
to calculate g. and (7/7{2’). This is out of the scope of
the present paper, which only aims to qualitatively un-
derstand the behavior of o(0) and o(T) in the various
regimes for I.; versus (ex7)~!. The main point in re-
gion (d) is that the inelastic scattering processes may

now dominate over interaction.'” In this region we have

0@\ T)=~0g)(0)+ A (T /Tp)"?, (29a)
ow\0) <oy forlg<Ty , (29b)
0(4)(0) decreases when (ep7)~! increases , (29¢)
Ag)>0 for(epr) !> (epr)g!, (29d)
| A4, | increases when(ep7)~! increases . (29e)

This is illustrated by the two bottom curves *““(d)” of Fig.
2. The key results here are the following: First, although
the electron-electron interaction is still present, its renor-
malized value I.; has become weak enough for the locali-

zation transition to occur ““‘as if”’ there were no interaction
at all; second, the role of the inelastic processes becomes
crucial and governs all behaviors close to the localization
transition (in agreement with Ref. 19).

E. Region (e)

Finally, when T ¢ reaches zero, one recovers results
analogous to those from the noninteracting case'® and the
T dependence of o(T) arises only from inelastic processes.

In the next section we reexamine the experimental
work’ from the point of view of the present analysis.

IV. COMPARISON WITH EXPERIMENTAL
OBSERVATION IN Si:P

We now turn to the examination of the experimental
situation of Ref. 7 for metallic Si:P [in particular, Figs. 1
and 2 of Ref. 7(a)], and compare it with our Fig. 2 [de-
creasing the P density n =7 X 10'® cm 3 in Ref. 7 corre-
sponds to increasing the disorder (er7)”! in our
analysis; the metal-insulator transition occurs at
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fi, =3.74]. The experimentalists found in the metallic
region (7 >7.) a low-temperature dependence of o(T)
which could be fitted almost as well by a T'/? or T!/3
law. They, however, confirmed the T2 power law later
on.”®>20 They attributed that behavior to interaction
effects [i.e., o(T)~0(0)+80(T)], especially since the
inelastic process 80, (T) was believed!! to yield a much
weaker temperature dependence in T?’? with p> 3.
They also remarked that the T!/? formula, obtained in
perturbation theory to first order in the disorder,
surprisingly is still obeyed in the region of strong disor-
der when gx7—> 1. It is generally believed?! that metallic
Si:P near the metal-insulator transition may be con-
sidered an enhanced fermion system with strong spin
fluctuations; therefore our disordered paramagnon model
could be reasonably applied. It is clear that our
schematic Fig. 2 qualitatively agrees with the general
trends of the observations [see, in particular, the inset of
Fig. 1 in Ref. 7(a), as well as the change in the variation
of the coefficient of V'T versus disorder in Fig. 2 of that
same reference]. As already stressed earlier in this pa-
per, our scenario of Ref. 3 allows one to understand why
a formula obtained in perturbation theory [(ep7) ! << 1]
still holds in the region of strong disorder, (ep7) ! —1,
due to the weakening of I in that region. Second, to
explain the change of sign of the coefficient of V'T, the
authors of Ref. 7(a), using the screened Coulomb interac-
tions, invoked the change in the Thomas-Fermi screen-
ing length as increasing when 7 decreases towards 7,.
But this was shown to be erroneous later on, as, actually,
the Thomas-Fermi screening length does not change
dramatically.?? Instead, in our scenario we invoke a de-
crease in the strength of the interaction T4 which weak-
ens the contribution of 80 ;;; moreover, we also take
into account the inelastic processes 80 ; neglected in the
previous analyses, since, following Ref. 13, they may in-
troduce a similar contribution V'T more and more im-
portant when the disorder increases (or 7 decreases to-
wards 7,).

The most recent?’ susceptibility (X) measurement in
Si:P down to 30 mK was made for 77 ~4.08. This would
correspond [according to Fig. 2 of Ref. 7(a)] to a strong-
ly negative coefficient of V'T in o(T), which, in turn,
compared to our Fig. 2, would correspond to the border
between regions (a) and (b) of our Fig. 1. In other
words, this would be the point where I.; would be
closest to 1. The experimental®® log-log plot of X versus
T suggests a behavior X(T)~ T ~!/%; extrapolation of the
experimental points down to 77=0.01 K would give an
enhancement of X(7 =0.01) compared to Xp,,; (also in-
dicated on the figure) of ~37.5. If X would saturate at

much lower T, one would thus expect
X(T =0)/Xpaui=(1—T.5)"'>37.5 and thus
0.97<Tg<1. (30)

The experimental behavior may be understood as follows:
from perturbation theories,'®?* one may write2*

No+8X

X(T)= oot
=TI, 1o0)

(31)

when Ny /(1—1IN,) would be the enhanced Stoner suscep-
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tibility in the absence of paramagnons and in the absence
of disorder (N is the density of states at the Fermi level),

SX=8X(T =0)+8X(T) , (32)

I[Ny+8X(T =0)]=I,4 . (33)
It was shown in Refs. 18 and 24 that

8X(T)~ —BN,V'Tr , (34a)

where B depends on T (weakly) and of the amount of dis-
order. However, it was emphasized in Ref. 24 that such
behavior holds as long as

Tr<(1-I)17? (34b)

(while, for (1—I)"><T7r<1, 8X rather behaves as
V'TT[T7/(1—I)"/?]). On the other hand, it was also
pointed out in Ref. 24(b) that 8X(T =0) strongly renor-
malizes the effective interaction, so that

I_<Teﬁ<1 . (35)
Then, we write
No+8X(T =0)—BN,V Tt
X(T)=-2 o’ T (36)

1—-Is+IBVTr

Both 8X(T =0) and BN,V Tt are small compared to N,
(in perturbation theory); however, in the denominator of

(36) both 1—1I 4 and IBV T are small quantities. There-
fore one may reasonably approximate

No

1—T+IBVTr

(37)

Now if (and this is apparently the case in Si:P) I is
very close to 1, unless one is at extremely low tempera-
tures, the measurements may instead be in the range

1T g <<IBVTrT, (38)
in which case
N
X(T) 0 1 (39)

TIBVT: VT’
which would be in agreement with the experimental law.
Note that the range of T in (38) is not incompatible with
the T range where o(T)—0(0)~V'T both from the in-
elastic and the interaction processes, which was
Tt>1—1. Combining all the conditions, and in terms of
the unique effective value T4, our main point here is to
show that when

1—T.q

T.«B

2
<1—T4g<Tr<(1—Tg)""?,

(40)

one may have simultaneously
o(T)—0(0)e —VT ,
— (41)
X(T)«1/V'T .

In order to observe the saturation of X(T'—0), i.e., in or-
der for 1—I. in (37) to dominate over the T-dependent
term, one should reach extremely low temperature
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TT<(1—T.)*/(IT.zB)? in which case X should saturate,
but altogether the T dependence of o(T) would be more
complicated since, for TT< 1 —TIq, (7/7,,)'" is no longer
linear in T but rather behaves'3 as (T'7)3/2.

Note that the renormalization-group result® found a law

XD —e 42)
which could not fit the measurements of Ref. 23. Howev-
er, the authors of Ref. 6 emphasized that the 7=%3 law
should be taken too seriously since their renormalization-
group procedure breaks down in the region where, in our
language, I.¢ approaches 1.

Other low-T measurements of X(7T) in metallic Si:P
were done in Ref. 25 down to 20 mK. Although the au-
thors of Ref. 23 mentioned that a T dependence of X well
below T also found in Ref. 25, they did not comment on
a detailed comparison between these two sets of measure-
ments. Reference 25 exhibits for #=4.5 a variation of X
versus T which rather fits a Curie law between 30 and 100
mK,

X(T) e 30<T <100 mK (Ref.25), (43)
uncompatible with Fig. 1 of Ref. 23, where in the same T
range it was found that

1
X(T) ek
On the other hand, the authors of Ref. 25 found a sharp
rise of X(T) below 30 mK (but the data points stop at 20
mK. This may suggest a divergence of X(T) where T—0
K as considered in Ref. 4 (corresponding to the dotted
line in our Fig. 1).

It would thus be most useful if measurements of X(T)
on the same sample (with the same donor density) could
become available’® at the lowest possible temperature in
order to check whether X(7T—0) saturates or diverges and
also to get a definitive power-law dependence at finite
temperatures. It would also be fruitful to measure X(T)
and o(T) for donor densities closer to the metal-insulator
transition, where o(T) decreases with decreasing T.

In the above analysis of Si:P we have neglected the
mass-anisotropy and intervalley effects considered in Ref.
5. Although these effects are weaker in Si:P than in other
systems, they ought to be included in a more quantitative
analysis together with a detailed account of (7/7,,)* and
of g..

30<T <100 mK (Ref.23) . (44)

V. CONCLUDING REMARKS

In this paper we have reanalyzed the temperature
dependence of the conductivity and partly of the suscep-
tibility of metallic Si:P, which is one of the most widely
studied examples of a metal-insulator transition. To do
so we have developed our recent scheme® according to
which, within the (disordered) paramagnon model, one
may understand how the localization transition can be
reached despite the presence of strong electron interac-
tions. In our scenario, for increasing disorder, the
effective interaction I.g first increases so much that the
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system becomes very close to the magnetic instability, in
agreement with the renormalization-group theory,® but
then I crosses over to decreasing values when the dis-
order further increases. Therefore in that last regime,
first of all, perturbative results may still hold (due to the
combined weakening of Iy and ep7), which would ex-
plain why perturbative results account for the observed
behavior, even close to the metal-insulator transition;
this would also justify a posteriori the additivity of the
inelastic and interaction effects; secondly, in that same
regime the interaction contribution to the conductivity
weakens and the inelastic effects start to predominate
with the same T dependence (according to Refs. 12 and
13) and with an opposite sign, so that, although the in-
teractions are still present, they no longer prevent the lo-
calization transition to occur. In this regime, as ex-
plained in Ref. 3, the paramagnons have become local
ones, as if one would have randomly distributed almost
magnetic impurities in the system,’ this picture is closely
linked to the “pseudolocal spin fluctuations” of Ref. 6 or
to the local spin fluctuations of the Brinkman-Rice-
Gutzwiller form?!. But, then, one has to take into ac-
count the interactions among those local spin fluctua-
tions;” this yields a decrease in the strength of I 4: the
“almost magnetic impurities” become less and less close
to becoming magnetic. At the earlier stage when I, has
increased to be very close to 1 and where such a strong-
coupling regime induces the renormalization-group pro-
cedure to break down,’ instead of I.; reaching 1, the
model studied in Ref. 3 and here, is that the system
crosses over towards a regime where I.; departs more
and more from 1. If such a scenario actually happens,
or if the system switches to a magnetically ordered
phase, may be clarified by experiments performed at
lower temperatures. On the other hand, in a metal
where the disorder is due to random impurities, it has
been shown?’ that interactions between impurities de-
creases the conductivity, i.e., short-range order among
impurities act as a localizing agent for the electrons.
More generally in cases like Si:P, fluctuations in the
donor distribution or local concentrations of the P may
play a role in the electron localization. From this last
point of view of highly inhomogeneously distributed
donors, one may have to face a more complicated behav-
ior of I4. Instead of a unique one, either following the
solid line of Fig. 1 or the dotted line, I.; may split into
two parts, (Ig)'" and (I4)?, corresponding to two sets
of paramagnons existing simultaneously. Some remain
uniform, retaining their ¢ dependence with their (I.5)'"
reaching 1; thus, (I.4)'" follows the dotted line on our
Fig. 1 and local moments are formed. Other paramag-
nons would lose their q dependence before (I.q)?
reaches 1, and would cross over to local paramagnons
with the consequences studied in this paper; this (I4)?
would follow the solid line of our Fig. 1. This splitting
of I.z would thus be linked to the degree of inhomo-
geneity in the composition of the system and could be
tested by local measurements like NMR by varying the
sample preparation for a given donor density. A model
was recently proposed?® for the nuclear-spin relaxation
in Si:P involving both electrons near the Fermi energy
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and singlet pairs of localized spins deep below the Fermi
energy. This is somewhat different from what we have
here.

Finally, we emphasize that if our local paramagnon pic-
ture proves to be useful, much theoretical work is needed
to render it quantitatively useful (for instance, concerning
the possible modification in the ratio value of the low-T
coefficient y of the specific heat, to the susceptibility®’).
Indeed, the standard local paramagnon model®® tells us
that the exchange enhancement of the host is modified lo-
cally at the impurities sites, but ignores the fact that the
impurities also introduce a finite mean free path for the
electrons. Similarly, as emphasized by Anderson,?' a
disordered Brinkman-Rice-Gutzwiller theory does not yet
exist. On the other hand, none of the localization theories
that contain electron interactions' ~® accounts for the fact
that these interactions may be modified locally at the im-
purities sites. That is why it is impossible at present to
provide quantitative results in the strongly disordered re-
gion.
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APPENDIX

Correspondence between various notations and expres-
sions found in the literature for the interaction contribu-
tion 80, to the conductivity is given below. This appen-
dix is of no interest for theoreticians expert in the field.
But it may appear helpful for experimentalists and also, of
course, for readers not familiar with the problem.

In the following, only the contribution from particle-
hole diffusion processes (called g, +§g; in Ref. 3 and in the
present paper) are considered.

In the review by Lee and Ramakrishnan! (LR) dealing
with screened Coulomb interactions, we find [their formu-
la (3.41¢) in a.u.].

1/2
1 1.3 -
80, (T)=801,(0)= 5 2 [%—%FO‘ -g— . (A
with
. 16 1+4+dF/4—(1+F/2)%"?
Fo=—
°= " dd—2) F/2 , d72
so that
16 1+2(F/2)—(14+F/2)*?
S} L d=3 (A2

3 F/2

(note that a fraction bar is missing just before the last F
appearing in the formula for F,, in the printed version
of LR, but was present in the prepublication version).

The expression (£ —3F ) in (A1) is identical to the ex-
pression 2(g;—2g;) (still for screened Coulomb interac-
tions) given by Isawa and Fukuyama'’ (IF), when they
used the T matrix approximation for the effective F, i.e.,
when their initial F /2 is replaced by F /2(1+(F/2)).

Then, with their formulas (2.14) and (2.19) one gets,
with their (2.15b) and A= (2mep7) ™", £(1)= —1.46,
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1 a3
SOI,L(T)—UO —‘+——]
0 0o
o V372 _
T V3T 5146V TT)
47%(epT) 8
x(g1—283), (A3)

and inserting their formulas (4.2b) and (4.3b) one gets

12
50, (T)—80,(0)= 5 2 2g1—283) | 3 | (A%
with
2(g1—2g3)=% 243 1“;52/2 -3(1+}f//22’3/2 ] . (AS)
Comparing with (A1) and (A2),

(4 —3F, ) lr=2(81—283)1F with T matrix - (A6)

On the other hand, formula (9) of Altshuler and Aronov'®
(AA) reads

BUI,L(T)—BUI'L(O)
1/2

—812 % [£430Y=D(F)]x0.915, d=3 (A7)
o
with their formula (10):
A=n___16 1—dF/4—(1—F/2)%"?
7 d(d—2) F/2
16 1—3F/2—(1—F/2)"?
== 72 d=3. (A8)

Then we have to make the following correspondence be-

tween the F of AA and that of LR:
(—F/2)=F/21x . (A9)

This sign difference is just a different notation, as is clear
from formula (7) of Rg:f. 16. Then,

AN V=(F )R » (A10)
and then (A7) may be rewritten
SGI,L(T)—BUI,L(O)
172
L\ [£4+2M=1(F)]x0.915 (A11)
472 | D 3o ) '

This formula would identify with the one by LR [formu-
la (A1)] above, were it not for a different sign inside the
square brackets of (A11). However, Ref. 16 contains a
few misprints, so we assume that formulas (A7) and
(A11) should be understood with a minus sign inside the
square brackets instead of a plus sign, or, alternatively,
there should be an overall minus sign missing in the ex-
pression of Ay =1,

As far as F is concerned, it is given by formula (3.36b)
in the review by Altshuler and Aronov,' or formula (3.34)
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of Lee and Ramakrishnan' by the angular integral:
F JdQu(g=2kgsin(6/2))
2 Jdfv0)

) (A12)

pg=dr 1

K3 1+q2/K3

when &3 ! is the three-dimensional Thomas-Fermi screen-

ing length; kr is the Fermi momentum (actually, in Lee

and Ramakrishnan! F appears on the left-hand side in-

stead of F/2). The result as given in Altshuler and Aro-
1 .

nov' is

F_ T . 1
1 0do
N fo S 2k, /ey P sin®(6/2)
In[1+ (2kg/K3)?
_ n[1+ F ;‘3 | (A13)
(2kF/K3)

[F has to be understood in the sense of Ref. 1, equal to
minus that in Ref. 16. Note also that F in (A13) corre-
sponds to what is called F /2 in formula (3.36b) of the re-

3673

view by Altshuler and Aronov']. F/2 clearly varies be-
tween 1 and O when the screening length increases from 0
to .

The experimentalists of Ref. 6a used an earlier expres-
sion [1—23(F/2)] for the coefficient of V'T in 80;.
However, Altshuler and Aronov!'® showed that 1 has to
be replaced by % as recalled in LR after their formula
(3.41¢). Moreover, as mentioned above, following Finkel-
stein,® Altshuler and Aronov'®! showed that it is rather
[+—3(F,/2)] which ought to appear [see also LR (Ref.
1), end of their Sec. III c] with F_ given above in (A2).

With all these ingredients in hand, one can proceed to
the Hubbard model where, according to Ref. 17, in for-
mula (A3) g, and g; should be given, respectively, by for-
mulas (3.2) and (2.20b) of that reference, which yields (re-
placing now F /2 by I)

1 _ 3
(1+T)1/2 (1__'1-)1/2

(A14)

(81—283 )Hubbard = 20141+

SAES

This is what was called, in Ref. 3, g, +g,:

(85 +8:)Ret. 3= (81 —283)Ret. 17, Hubbard model - (A15)
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