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Upper bound on the specific-heat jump: Application to the high-T, oxides
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We establish an upper limit on the normalized specific-heat jump hC/y(0) T, at T„ for the case
of an isotropic Eliashberg superconductor. Functional derivative results for AC/y(0)T„ in the
case of realistic electron-phonon spectral densities, lead us to consider a model delta-function
spectrum which, we can prove, gives a local maximum in AC/y(0) T, for some low but finite pho-
non energy. The value of the maximum depends somewhat on the value of Coulomb pseudopo-
tential (p*) used, but is always surprisingly small. As an example for p* =0.15,
AC/y(0)T, ~ 3.73 with the inequality holding for realistic spectra. This is smaller than some re-
cent experimental values published for La& 85Sro [5Cu04.

I. INTRODUCTION

The recent discovery of superconductivity in La-Ba-
Cu-0 by Bednorz and Muller' has led to great interest in
related systems and to the discovery of superconductivity
above 90 K in Y-Ba-Cu-O. A great deal of experimental
information is already available in the published litera-
ture as well as in unpublished form. It is well established
that the mechanism responsible for superconductivity, in
most conventional metallic systems, is the electron-
phonon interaction. While some evidence exists that, at
least for La~ 85Sro &5Cu04, the mechanism may be the
same, it is by no means, as yet, completely certain, and
rival theories ' have been put forward. Thus, the ques-
tion of the nature of the mechanism involved, which is
fundamental, remains open.

In this paper we pose and attempt to answer, partially,
the following question. For an electron-phonon supercon-
ductor, described by the Eliashberg equations, " ' with
arbitrary strength of the electron-phonon spectral density
a F(co), is there a maximum value for the electronic
specific-heat jump hC(T, ) at T, normalized by the
"normal-state specific heat" y(0)T, [where y(0) is Som-

merfeld constant]? The answer to this question could help
rule out or confirm the electron-phonon interaction as the
mechanism in a particular case. For example, if
AC(T, )/y(0)T, is firmly established, experimentally, as
larger than any maximum that may exist for an Eliash-
berg superconductor, this could be taken as strong evi-
dence against such a mechanism. It should be stressed
that in the approach taken in this paper, no attempt is
made to understand whether or not the spectral densities
used are consistent with lattice stability or, for that
matter, with Migdal's theorem. We simply proceed as if
this were the case. The free energy is discussed in Sec. II
and functional derivatives are introduced in Sec. III. A
scaling theorem is formulated and proved in Sec. IV, fol-
lowed by results (Sec. V), and conclusions in Sec. VI.

II. FREE ENERGY

The free-energy difference between the normal and su-
perconducting states in Eliashberg theory is given by the
formula"

2
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where N(0) is the single spin density of electron states at
the Fermi surface and k~ is the Boltzmann constant. The
A(ico„) and co(ico„) are, respectively, the Matsubara pair-
ing energy function and renormalized frequencies with
ico„=irrT(2n —1), n =0, + 1, + 2, . . . , and T is the tem-
perature. The superscript zero on one co(ico„) in Eq. (I),
denotes that the normal-state value of this quantity is to
be taken.

The two coupled nonlinear Eliashberg equations on the
imaginary frequency axis are well known" ' and have
the form
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with

„( ) 2
" coa2F(co) dco
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(4)

It is clear that Eqs. (2) and (3) depend only on the
electron-phonon spectral density. This is because the
Coulomb repulsion pseudopotential p* in our work is
fixed at several convenient values and the linearized ver-
sion of the Eliashberg equations, in the Matsubara repre-
sentation, then gives the critical temperature T, . The cut-
off in p* is not an extra parameter but is fixed at some
large value. In principle, some choice of electronic density
of states N(0) is also needed if one wants the free energy,
but this does not enter if we are interested only in a nor-
malized ratio, such as the specific-heat jump AC(T) at T,
divided by the "normal-state specific heat" y(0)T, . It
should perhaps be stressed, at this point, that y(0)T is
not, strictly speaking, the "normal-state electronic specific
heat at temperature T" because, in general, y(T) is tem-
perature dependent when the electron-phonon interac-
tion' ' is taken into account. Thus, y(0)T is the zero-

temperature Sommerfeld constant multiplied by T.
While, for conventional superconductors, y(0) and y(T, )
are not very different, when T, gets very high this is no
longer the case. Still, we will follow convention and use
y(0)T, for normalization purposes. This is attractive be-
cause it is y(0) and not y(T, ) that comes into the slope of
the upper critical field at T„a quantity that is often used
to extract an estimate of the Sommerfeld constant. The
normal-state electronic specific heat itself at T, would be
extremely difficult to measure, even in principle, since it is
superimposed on, and strongly coupled to, a large un-
known phonon background in high-T, superconductors.

III. FUNCTIONAL DERIVATIVES

To understand how we might proceed from here, we
consider first the functional derivative with electron-
phonon spectral density a F(co) of b C(T, )/y(0) T, .
Marsiglio, Schachinger, and Carbotte' give the formula

B[~C(T)/T, ]
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from which
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follows using the relation

1 6'

y(0) Ba'F(co)
ac(T, )

T.
By(0) d C(T, )

y(0) Ba2F(co) y(0) T,
(6)

where

By(0)/Ba F(co) = —', pc k ppN(0)2/ co.

This last result follows from the usual formula y(0)= —', N(0) pr ks(1+k) with X the electron-phonon mass
renormalization given by formula (4) with n =m.

As an example, functional-derivative results for the
case of Pb are presented in Fig. 1 (solid curve). What is
plotted is (I+X)T„multiplied by the functional deriva-
tive of interest, as a function of phonon energy co normal-
ized to the critical temperature T, (ks—the Boltzmann
constant sometimes taken to be one in this work). The
divergence toward —~, at low m, can be traced to the
1/co factor in the second term of Eq. (6) and comes direct-
ly from our use of y(0) as normalization factor. If instead
y(T, ) were used, as in the work of Marsiglio et al. ,

' the
divergence would not be present and the corresponding
functional derivative would go smoothly to zero as n 0.

At higher frequencies, around co/T, =—5, a positive max-
imum occurs and then the functional derivative slowly de-
cays towards zero as co ~. We have tried many other
realistic tunneling-derived spectra' instead of Pb, and
find, in all cases, the same shape for the functional deriva-
tive. ' For example, the dotted line was calculated using
the Al spectrum given by Leung, Carbotte, Taylor, and
Leavens. ' It is very close to the dashed line which was
calculated using a two-square-well model for A, (n —m).
Details of the two-square-well model results can be found
in the work of Marsiglio and Carbotte. In this
simplified model, no assumption is made about the shape
of the spectral density, except that all important phonon
frequencies should be much greater than several k~T, 's.
This is the usual BCS limit, and applies to all weak cou-
pling systems.

From the above, we conclude that the shape of

B4C(T,)/y(0) T,]/Ba'F (~)
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FIG. 1. The functional derivative of the specific-heat pump at
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dashed line for any weak coupling superconductor in a two-
square-well model.
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for a given a F(co), we should take weight from some fre-
quency where the functional derivative is smaller than its

This suggests that to maximize h, CwT
f A =f F(co)dco we should use a delta

~ ~

function with all its weight placed at the same Einstein

forF' 2 we show results of such calculations orIn Fig. we s ow
p* =0.051. What is plotted (dashed curve) is the di
sionless ratio —, AC(T, )/y(0)T, as a function of AE/T,

right-hand side label). It is seen that, as we expected
from our functional derivative arguments, on lowering t e
position of the delta function AE/T, from high requen-
cies, the value of hC(T, )/y(0)T, increases until a max-
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moving on, that the value of d, C(T, )/y(0) T, at maximum
is not very muc argerh l than the value observed in some
rea systems. We will return to this fact later.

IV. A SCALING THEOREM

At this poin, i is
'

t, t
'

necessary to stress that our estimate
for hC(T, )/y(0)T, at maximum is independent o t e

for 2—the area under the delta-functionvalue chosen or — e a
ions due to adel s ectrum, except for small corrections ue to a

finite p*. This follows from a scaling law, or g yi inall dis-
' for T. This work was extended to

include paramagnetic impurities y A fAshraf an ar-
botte and to below T, by Carbotte, Marsiglio, and Mi-

F(co) =AS(co —A~), the Eliashberg
equations an(2) d (3) can be written in the dimension ess
form

5.0 Iso 30.0

FIQ. 2. The value of —' hC( T )/[r(0) T, l (rig" -"
f Einstein spectrum as a function o Eor an i

enc . The resultsh 0 is the position of the phonon frequency.
are independent of the value used for the area under the
delta function. e p va ueTh * alue was 0.051. The functional deriva-
tive 8 hC T, )/&y(0) T,&ll/6'a F(co) multiplied by (1+k T,
( -h d label) for the case of a delta-function spectrum

of the max-aFco = m-( j =AS( —rt*) where ri~ is the frequency o
andimum in the as e curve.o h d Note that it is negative definite an

exactly zero at the frequency AE of the optimum spectra. is

indicates a local maximum.

and
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with T= T/A, &E=nE/A, co—(ico )=co(ico )/A, —an

(1) for the free energy, we see that hF is proportiona to
N 0) and to A with the proportionality factor a function

d T onl . Thus, BF=N(0)A f(AF. , T), where
the function f can be identified from Eqs.
(8). Thus, the specific-heat difference

d f(AE, T)
hC(T) = T = TAN(0)

dT2 dT
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and therefore

aC(T, ) 3 d'f(n&, T)
y(0)T 2tr ka(I+2/~~) dT

(10) 3.0— ~ ~

which is independent of 4 and a function only of AE for a
given p. *. Denoting this function by g(AE, p ) we have

~C(T, ) =g Qp, p

O
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so that a single curve applies for all values of A. The only
approximation is the neglect of A in the Coulomb cutoA'

correction that can safely be ignored. Note that, in Fig. 2,
we have used QF/T, instead of Il~, since it is easily shown
that AC(T, )/y(0) T, —=G (ft E/T„p *) with G an appropri-
ate functional form.

V. RESULTS AND DISCUSSION

To check on the optimum spectrum (a delta function at
QF*. with entire weight 2 at a single frequency) we have
worked out its functional derivative. This is shown in Fig.
2. The solid curve is

(I+X)T,8[BC(T,)/(y(0) T, )]/6'a F(ro)

(left-hand label) for a model delta function a F(ro)
=MB(ro —Qg) with QF*. the frequency giving the max-
imum of the dashed curve. It is clear from the figure that
the functional derivative is now very diferent from those
found for realistic a F(ro) spectra. It is negative definite
with value zero right at QE. This proves that a delta
function at AE gives a local maximum. Removal of some
weight from the delta function at A, E and placing it at any
other frequency reduces the specific-heat jump. Our ex-
perience with realistic spectra would lead us to believe
that this is, in fact, an absolute maximum, although we
have not found a rigorous mathematical proof. Figure 3
sheds more light on this point. In this figure we show as
the solid line, the maximum value of hC(T, )/y(0) T„ob-
tained for diff'erent choices of p*. On the same figure, we
show (dark points) values for the same quantity obtained
in realistic cases. ' ' They all fall below our theoretical
local maximum indicating that for physical systems, the
solid line is, indeed, an absolute maximum. Results of cal-
culations based on Weber's spectrum for the oxide
La~ ssSrp ~sCu04 give dC(T, )/y(0)T, =2.82, also below
our maximum.

In an experiment on the specific-heat jump of the high-
T, oxide Lai 85Sro i5Cu04 with T, =36 K, Dunlap et al.
have found a value of hC(T, )/y(0)T, of 2-10 depending
on the analysis of the data. The upper limit obtained is
higher than our theoretical maximum and, if confirmed,
would rule out the electron-phonon interaction as the
mechanism for this system. Having said this, it needs to
be stressed that other measurements give more conserva-
tive values. It is clear that accurate measurements of
hC(T, )/y(0) T, could make a critical contribution to our
understanding of the mechanism responsible for the su-
perconductivity in the oxides. Such accurate measure-
ments are, however, very difficult. Not only is the jump a
small correction over and above a large phonon specific-
heat background, but the present value of y(0) is quite

1

0.25oo O. 200.15 0.30

FIG. 3. The maximum possible value for AC(T, )/[y(0)T, l as

a function of p*. The solid dots represent theoretical values for
the following materials in order of decreasing value of
AC(T, )/[y(0) T,]: Pbp 7Bip 3, Pbp 6sBip 35, Pbp sBip 2, Pbp 9Bip i,
Pb, PbpsTlp2, Nb3Sn, Nb3Al, Nb36e, Pbp. 6Tlp4, Hg, Pbp. 75Bip25,

Pbp4Tlp6, V3Ga, Pbp5Bipq, La, Ga (amorphous), Bi (amor-
phous), V3Si, Mo (amorphous), Nb, In, Tlp 9Bip ~, Tl, Sn, Ta, V,
Al (BCS).

0.05

uncertain. As an example, when it is derived from a mea-
surement of the slope of the upper critical field H, 2(T) at
T„quite diferent values of y(0) result if one uses a dirty
or clean limit formula in the analysis. Also, the slope it-
self is uncertain. Orlando et al. find —2.2 T/K using the
midpoint of the transition and —5 T/K using the onset.
This problem cannot be avoided until samples are pro-
duced, in which the resistive transition to the supercon-
ducting state is sharper.

VI. CONCLUSIONS
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In conclusion, we have found a local maximum for
t),C/y(0)T, which applies to electron-phonon supercon-
ductors for which the Eliashberg equations are assumed to
be valid. We argue that this local maximum is probably
an absolute maximum for realistic values of the electron-
phonon spectral density a F(co). The maximum value of
hC(T, )/y(0) T, is surprisingly small and varies only
slightly with the value of the Coulomb pseudopotential
p*. As an example, it rises from a value of 3.4 for p* =0
to a value of 3.9 for p* =0.3. This last value is smaller
than a recently suggested upper limit for the jump in

Lai 85Sro i5Cu04. Confirmation of this upper value as the
actual value would rule out the electron-phonon mecha-
nism in this material. Note that, since our maximum
value for hC(T, )/y(0)T, of 3.73 for p* =0.15 is not that
much larger than some of the experimental values found
in real electron-phonon superconductors, it could be used
to extract, from a measured value of /3C(T, ), a lower lim-
it on the zero-temperature Sommerfeld y(0). This may
prove of some help in the analysis of experimental data.
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