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Simple model for the equilibrium shape of He crystals
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A nearest-neighbor Kossel-crystal model accounts for many of the observed features of hcp He
equilibrium crystal shapes, including the identity of the principal facets, the class of crystal-shape
thermal evolution, the macroscopic aspect ratio of the crystal, and the sequence and order of magni-

tude of faceting temperatures.

I. INTRODUCTION

A number of groups' have made detailed observa-
tions of the shape of macroscopic ( —1 cm) He crystals in
coexistence with the superAuid phase at temperatures less
than 1.46 K. In this regime the bulk solid is hexagonal
close packed (hcp). Above a highest roughening tempera-
ture Tz ——1.28 K the crystal shape is everywhere smooth-

C

ly curved. The two basal-plane I0001} facets (the so-
called c facets) make their first appearance at Tti and

C

grow as the temperature is reduced below this value. Be-
tween 1.28 K and a second roughening temperature
TR —1.0 K these are the only two facets present; the rest

of the crystal surface remains smoothly curved and meets
the facets without slope discontinuity. At Tz the six

Q

I 1100] or a facets appear, perpendicular to the c facets
but separated from them and from one another by curved
regions. The twelve I1101I or s facets show up below a
third roughening temperature Tz -0.35 K. Facets con-

S

tinue to grow as the temperature is lowered but remain
separated from one another by curved regions. Observa-
tions have been extended down to -0.07 K without ap-
pearance of further facets. Even at the lowest tempera-
tures reached, significant curved regions remain. It is be-
lieved on theoretical grounds that the crystal shape
should become completely faceted at temperature T=O K
(only).

The thermal evolution of equilibrium crystal shapes has
been studied theoretically for simple model systems, '

and in this context it is believed to be generically under-
stood. There are two types of behavior. ' "Class A" be-
havior is like that exhibited by He: Faceting is complete
only at T=O; for T&0 facets are always separated by
curved regions and disappear as temperature is increased,
each at its own characteristic roughening temperature. '

Class A also includes certain metal crystals such as Pb
(Refs. 8 and 18) and In' ' in coexistence with their va-

por; however, mass transport in these systems is much
less efficient than it is for "He, so even for small ( —1 p, m)
crystals equilibrium can only be established over a narrow
temperature interval near melting. Thus, He is at this
time the most completely explored example of class A
evolution. In "class 8" evolution, exhibited, for example,
by NaCl, the crystal remains completely faceted up to a
nonzero temperature.

The purpose of this paper is to point out that a simple
Kossel-crystal model suffices to account remarkably well
for many of the observed features of He crystal-shape
evolution. The model is described in Sec. II, with spe-
cial emphasis on the way in which its interpretation
difFers from that of similar models of vapor-crystal coex-
istence. Sections III and IV deal with T=O properties
and roughening (faceting) temperatures, respectively.
Some discussion of possible refinements is included in
Sec. V. Inclusion of nearest neighbors only is certainly a
gross approximation, and it is not surprising that some
features —such as the s-facet roughening temperature-
are not well described. Treatment of this model is
justified by the principle of doing the simplest things
first.

II. MODEL

We take the atoms of the bulk crystalline solid to be sit-
uated on the sites of a perfect hcp lattice. We assume that
the interfaces between the crystal and the superQuid may
be relaxed but are not reconstructed, so the surface atoms
can still be indexed to the perfect lattice. Our hy-
pothesis is that the energy of any given microscopic inter-
face configuration is proportional to the number of
nearest-neighbor ("dangling" ) bonds which cross the
solid-superAuid boundary. The c/a ratio observed at low
temperature for He is experimentally indistinguishable
from its ideal, spherical-packing value &8/3=1.633. . . ,
so it is reasonable to assume that the energy U/2 per bond
is the same for in-plane and out-of-plane pairs. The factor
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of —,
' introduced here makes v the energy required per bro-

ken nearest-neighbor crystalline bond to cleave a macro-
scopic crystal (in coexistence with its superfluid) into two
parts along a specified interface, since in this process each
crystalline bond broken leaves two dangling bonds, one
on each of the two resulting interfaces. In Sec. IV we
shall briefly consider the effect of relaxing the assumptions
of in-plane and out-of-plane equivalence and nearest-
neighbor-only interactions.

Operationally this model is just the hcp version of the
"broken-bond" or Kossel-crystal models which have been
extensively used (especially at T=O) to study solid-gas in-
terfaces. ' The present context is somewhat different,
however, in that (i) the coexisting fluid here is a con-
densed phase, reduced in density from the solid by only
about 10%, and (ii) solid formation in He is at these
temperatures driven by the external pressure (P). This
means that the parameter v cannot be thought of as equal
(even approximately) to the energy required to separate a
pair of atoms from their crystalline nearest-neighbor dis-
tance off to infinity. Indeed, for He the (negative) poten-
tial energy of formation of the solid is more than off-set
by the (positive) kinetic energy, so that at P = T=0 the
solid is unstable. When the solid does form, at Po=25
atm, the energy change across the transition is related to
the volume change by b,E= POKV (s—ince the entropy
term is small at low temperature), so the bulk energy of
the superfluid phase is actually lower than that of the
solid phase, quite the reverse of the situation at ordinary
gas-solid coexistence. Thus, although the interface energy
per unit area is required to be positive (for stable phase
separation), there is no simple rule relating U to bulk pa-
rameters [analogous, for example, to u-L (latent heat)].
We shall argue only that

U —V(ai;q„;d) —V(a),

where V(r) is the He-He pair potential, a is the nearest-
neighbor spacing in the solid (a=3.57 A at T=O), and

a&;q„,d is a characteristic interatomic spacing in the
superfluid. Equation (1) expresses the expectation that the
relevant "bond-breaking" energy should be comparable to
the energy required to increase the pair spacing from a to
the larger value a&;qUd Kinetic-energy effects, local relax-
ation in the solid, structure in the near-surface fluid
profile, etc. , may all be expected to modify this estimate
by factors of order unity. In Sec. IV, we shall need a
value for v to calculate Tz . To obtain a numerical esti-

C

mate, we may put

1/3
hquid / ( Vliquid / Vsolid )

(the ratio of molar volumes ) and use for V(r) the Aziz
potential. This gives v=1.15 K. Alternatively, as we
shall see in Sec. IV, it is possible to fit v to the observed
value of Tz . This procedure leads to a similar estimate

C

for v.

gy per unit area f;(T,m) as a function of interface orienta-
tion m (relative to the bulk-crystal axes) and then to per-
form the Wulff construction. ' ' At T=0 the calculation
reduces to counting the number of broken bonds per unit
interfacial area. This calculation has been carried out
for the hcp lattice by a number of authors. ' ' Since
the explicit forms do not seem to be available in the litera-
ture, we take the liberty of quoting them here. For the c,
a, and s facets, we find,

f;(T =O, c)=&3
a

f;(T =O,a)= 3&6 v

4 a''

(2)

(3)

7&123 U

41 a2 (4)

C, =—(&2,0, &3)
a

and

1 3 1 v

2 v'2' ' v'3 a' ' (7)

The ECS which follows from Eqs. (2)—(7) is shown in
Fig. 2. The form is an hexagonal prism exhibiting c and
a facets, truncated perpendicular to [16 16 9] and
equivalent directions to form the s facets. No other facets
appear on the ECS. Note that these are precisely the
facets observed in experiments. The aspect ratio
(height/width) is 0.94 or 0.82, as the crystal is viewed

Quite generally, the three-dimensional plot f;(T =O, m) is
composed of several distinct intersecting surfaces, ' which
we shall index j, each with the equation

f; (T =O, m ) =2C~'m

corresponding to a sphere of radius C~ centered at C~.
For the ideal hcp lattice there are 24 such spherical re-
gions; however, because of the symmetry, only two are in-
dependent. These two cover the fundamental stereo-
graphic triangle as shown in Fig. 1 and have centers at,

III. EQUILIBRIUM CRYSTAL SHAPE AT T=O
(001) (101) (100)

To find an equilibrium crystal shape (ECS) at tempera-
ture T, it is necessary to calculate the interfacial free ener-

FIG. 1. The fundamental stereographic triangle, showing the
regions covered by the spherical surfaces 1 and 2 given by Eqs.
(5)-(7j.
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FIG. 2. Calculated equilibrium shape of the nearest-neighbor
hcp crystal at T=O. Lower right shows a perspective sketch.

along the [110] or [100] directions, respectively. There
are no measurements of the equilibrium aspect ratio at
low T; however, observations at 1.26 K which are36 37

probably near equilibrium show an aspect ratio of about
0.76, which is in the right range. Finally, all the T=O
ECS edges are "marginal" in the sense that Wulff planes
of all orientations touch the ECS, so each edge is highly
degenerate. It is a consequence of this degeneracy that
the edges are rounded at any T& 0, corresponding to class

11,14A evolution, ' as is (apparently) seen in experiment.

IV. FACET ROUGHENING

As the temperature is raised above zero, each facet
disappears at a "faceting" temperature, characterized by
the disappearance of the corresponding cusp in the Wulff
plot. Because the slope of the cusp is the step free energy
per unit length, ' this faceting temperature is just the10,38

roughening temperature of the face in question.
Roughening temperatures of the three T=O facets can

be estimated via appropriate restricted solid-on-solid
(RSOS) models. For example, for the c facet, each basal
plane consists of a triangular lattice, with adjacent planes
in the ABAB sequence, as shown in Fig. 3. The "restric-
tion" is simply that a site in layer z + 1 can only be occu-
pied if all its near neighbors in layer z are already present.
The analogous model for the bcc lattice [the body-
centered-solid-on-solid (BCSOS) model] was solved exact-
ly by van Beijeren and gives a description of the critical39

behavior near the faceting transition which is genericall'ay
correct (XY-like). Furthermore, the RSOS estimate of TR
is probably excellent, since the neglect of overhangs and
vacancies is not expected to be numerically important.
With these considerations in mind, we adopt the RSOS
estimate of Tz. Unfortunately, the triangular (hcp) RSOS
model has not to the best of our knowledge been solved,

FIG. 3. Ising approximations to RSOS models for the c, a,
and s interfaces, as viewed along the directions [001], [110],and
I 110~ respectively. Open circles show positions in the layer
(z= lj which may be either occupied or unoccupied. Solid lines
connect in-layer nearest neighbors. Black dots give positions of
atoms in the layer below (or above). For the a and s facets, there
are two inequivalent classes of sites, A and B, in each layer. The
full (12-fold) coordination of representative sites is shown.
Dashed lines connect to neighboring sites in the layer above; dot-
ted lines, to those in the layer below. Unequal numbers of "u "

CS WSand down neighbors leads to a magnetic field in the equivalent
Ising models.

even numerically, so it is necessary to resort to further ap-
proximation. We recall that the two-layer SOS model
(completely filled z=0 plane, partially filled z= 1 plane) is
equivalent to a triangular Ising ferromagnet with Hamil-
tonian,

U
H, = ——g o.;o. +const, cr, =+I,

&i j )

where the sum (ij ) is over nearest-neighbor pairs. Al-
though the critical behavior of this Ising model is quite
different from that of the corresponding RSOS model, the
Ising T, is probably a good approximation ' to both the
true TIt and Tz (RSOS). This T, is known exactly,

kT, (Ising) = 3.641 —=kT~
4

Using U —1.15 K from Sec. II leads us to estimate
T~ =1.05 K, in good correspondence with the observed

value. Although this level of agreement may be fortui-
tous, it does lend some credence to the model. Alterna-
tively, we may use Eq. (9) in reverse, inserting the ob-
served Tz and finding U =1.41 K.

Other facets lead in a similar way to (different) Ising es-
timates for Tz. For the a facet, the Ising lattice is sti11 tri-
angular but, because alternate rows of atoms have
different numbers of "up" and "down" nearest neighbors,
a staggered magnetic field h, =U/2 now appears, switch-
ing sign from each row to the next (see Fig. 3),

U UH
4 g CT (TJ + — g a. ; —g o; + const . ( 10)

(ij ) iEA iCB

The critical temperature of this model is not known ex-
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actly; however, it is certainly less than the value (9)
(since the staggered field competes with the ferromagnet-
ic order) and may be estimated by taking the ratio
T„(h, =u/2)/T, (h, =0) of the mean-field critical tem-
peratures with and without the field term. This calcula-
tion leads to the prediction (independent of u)
TR /T„=0.93, in crude agreement with the observed
value of 0.78.

Finally, the s facet leads to a staggered-field Ising
model on the q =5-coordinated "brickwork" lattice,
shown in Fig. 3,

g 0';oj+
4 g o; —g o.; +const . (11)

This model has been solved exactly at zero field and
gives k T, (h, =0)= (2/In2)(u /4). Scaling with the
mean-field ratio for this lattice, T, (h, =u/4)/T, (h, =0)
=0.971, leads us to the prediction (independent of u)
Tz /Tz -0.77. This gives correctly the ordering
Tz & Tz & Tz but is almost a factor of three higher than
the experimental value 0.35/1.28=0.27. It is possible
that this discrepancy may be at least partially accounted
for by (i) inaccuracy in the experimental Tz (it is hard to

S

pinpoint the first appearance of the s facet) or (ii) inade-
quacy in the Ising estimates of the RSOS T, . Probably,
however, it indicates the need for refinement of the sim-
ple, one-parameter model.

V. DISCUSSION

The simplest nearest-neighbor model seems to account
well for many of the main experimental observations, in-
cluding (i) the identity of the principal facets, (ii) the class
of thermal evolution of the ECS, (iii) the macroscopic as-
pect ratio of the crystal, (iv) the sequence of faceting tem-
peratures, and (v) the order of magnitude of the roughen-
ing temperatures Tz and Tz . Of course, it would be

C a

preferable not to have to rely on the Ising estimates of the
RSOS Tz s and the various additional approximations in-
voked in treating the Ising models. Improvements along
these lines are in progress.

The poor value obtained for Tz suggests that
S

refinement of the model may be necessary. Two avenues
immediately suggest themselves: (i) inclusion of asym-

metry between basal-plane and out-of-plane nearest-
neighbor bond strengths and (ii) inclusion of further-
neighbor interaction. The ideal value observed for the
c/a ratio suggests that (i) is not important, so we concen-
trate on (ii). Each atom has six next-nearest neighbors
(NNN's) situated at distance av'2. The He-He potential
is attractive at NNN separation, and we may estimate
[in analogy to Eq. (I)]

uNNN —V(&2a~;q„,d) —V(&2a) =0.122 K . (12)

The eft'ect of NNN attraction on the T=O crystal shape
has been studied by Stranski and Kaischew, ' ' who
find that the (1102I and [11201 facets appear. Class A
thermal evolution is still expected as long as UNNN &0.
Since these new facets have not yet been seen, it is im-
portant to estimate their roughening temperatures. Be-
cause these facets are absent for UNNN

——0, it is natural to
expect,

Tg (1102)/Tg —Tg (1120)/Ts —uNNN/u —1/9, (13)

which would lead to roughening temperatures in the vi-

cinity of 0.1 K. This is, of course, only an order-of-
magnitude estimate; however, it suggests that new facets
should appear near the lower limit of present observa-
tions. It is tempting to think that the critical slowing
down reported by Puech et al. at 0.21 K might corre-
spond to the appearance of one of these facets. Whether
the next-nearest-neighbor interactions could play a role in
reducing the step free energy for the s facet is not yet
clear.
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