
PHYSICAL REVIEW B VOLUME 36, NUMBER 7 1 SEPTEMBER 1987

Internal structure of a Landau quasiparticle wave packet
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Starting from the conventional definition of the state of a Fermi system containing a quasi-particle
of momentum k, we construct a state with a quasiparticle wave packet (QPWP) by the usual super-

position. We have studied the distributions of charges and currents in such a state to first order in

the interparticle interaction. The dressed QPWP state contains a charge, e, which is less than the

bare charge, e. (The charge e is different from an incorrect value previously proposed on different

grounds. ) The remaining charge resides at infinity. In more dimensions than one, the charge density
of the QPWP also contains anisotropic components that fall off as r away from the center of the
wave packet. Similar conclusions hold for the current density. We have verified that the continuity
equation is satisfied at every point in space. The relationship of these results to the classical formal

Landau theory is discussed. We conclude that the Landau quasiparticle distribution function,
n (k, r), cannot be interpreted in terms of the QPWP's defined here. Finally, experimental conse-

quences of the work presented in this paper are briefly discussed.

I. INTRODUCTION

1, k(kF
n, (k):—.

0, k)kF
(k~ ——Fermi momentum), and n(k, r) describes the distri-
bution of quasiparticles. Thermodynamic properties are
formulated in terms of

n(k)= f n(k, r)dr; (3)

transport properties are obtained by solving the Landau
transport equation' for n(k, r). Conditions for the valid-
ity of this theory include the following:

n (k, r) =0 unless k —k~
~

Ikt; &&1, (4)

and the dependence on r must be slow compared to kF '.
The transport equation has exactly the form of trans-

port equation for classical interacting particles of effective
mass m and charge e = 1. Observable quantities are
unambiguously calculable from n (k, r). For example, the
charge density is given by

n(r)= gn(k, r);
k

the current density is given by

j(r)= g n(k, r)j , ) (6)
k

where jz is the current associated with a quasiparticle of
momentum k. For a translationally invariant system,

jw=
k

(7)

Classical Landau-Fermi liquid theory is formulated in
terms of the quasiparticle distribution function

n, (k, r)=n, (k)+n(k, r),
where

where m* is so-called effective mass. The conventional
argument for group velocity then leads to the conclusion
that a QPWP moves with velocity

k
vk ——Vke(k)= (k =kz) .m* (9)

On the other hand, a quite general argument, using
momentum conservation, shows that particle current j&,
Eq. (7), is left unchanged by the interaction.

To obtain consistency between Eqs. (7) and (9) they as-
sumed that the integrated particle density associated with
the wave packet was m*/m. For ease of expression we
shall call the localized integrated particle density
"charge, " even for the case of uncharged particles. In this
terminology the conclusions of Stern and Falicov were
that

e*= (~1) . (10)

These results have been obtained without needing to in-
terpret n(k, r) as referring to wave packets of quasiparti-
cles with average momentum k and center of mass r.
Some years ago we attempted to extend the Landau
theory to homogeneous systems bounded by surfaces. A
microscopic derivation of such a theory is extremely
difficult and therefore we attempted to obtain it by general
physical arguments using quasiparticle wave packets
(QPWP's) rejected from the surface. This led us, as a
preliminary study, to examine in detail the internal struc-
ture of a QPWP in an infinite homogeneous system. The
results were unexpected and are reported here.

QPWP's had been considered earlier by Falicov and
Stern. These authors concluded that a QPWP carries a
charge e different from unity, essentially by the follow-
ing argument: the energy of a QPWP is given by

kF
e(k)=

~

k —k~
~
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Both authors argued that e*/e effects the de Haas —van
Alphen periods. This was, however, found incorrect by
explicit calculations ' in which only the bare charge e ap-
pears.

In the present paper we put forward what, in our view,
is the natural definition of a QPWP and study its density
and current density distributions. Our results, obtained
by explicit calculation to lowest order in the particle-
particle interaction were unexpected.

We find that the particle density consists of three parts:

n(r)=n& p(r)+n& p(r)+5n(r) .

r~O, n&(r)~0,

Q(
r ~, n((r)

(12)

Finally,

6n (r) -O(O '), (13)

where 0 is the volume, and 6n r dr= 1 —e .
There is a similar decomposition of the current density

into three parts. We have explicitly verified that total
charge is conserved (although a finite fraction is at
infinity) and that the continuity equation is satisfied at all
points r.

These results are independent of the detailed shape of
the envelope function of the QPWP. The details of our
calculation are presented in Secs. II—V and there is a dis-
cussion in Sec. VI.

II. CHARGE AND CURRENT OF A QPWP

In this section, we will give the formal definition of a
QPWP. We will also define charge-density and current
operators and discuss the general behavior of the expecta-
tion values of these operators.

Consider a system of N spinless fermions at T=O K.
We denote by +0 the noninteracting ground state of this
system,

C&p= Q cj
k'&kF

(14)

where N„, is the vacuum state and c& creates a particle
of momentum k'. Let pk be an eigenstate of momentum k
obtained by adding a particle at k to 4p, i.e., pk ——ck4p,
where we have assumed that k ~ kF. We create a state

containing a wave packet of bare fermions with aver-
0

age momentum kp by superposing states pk,

&ko —g Akpk ——g Akck+p
k k

The envelope function 2& is a smooth function that is

Here np(r) has spherical symmetry, is integrable, and in-
tegrates to a value e&1. This e is not equal to the e* of
Eq. (10). The next term has the expansion

n& p(r) = g n~(r)P (ic osg),
1 =2,4,

where the nt have the following behavior:

k

We want to calculate the total charge and current car-
ried by the QPWP. We will do this by studying the
Fourier transforms &(q) and j(q) of the charge and
current density operators for small q. In the plane-wave
representation, these operators are given by

n(q)= gck qck
k'

(17)

and

j(q) = g k' —
—,
'
q c „qck

k'
(18)

For simplicity, we take the volume A of our system to be
unity and we use atomic units in which e =m =A= 1.

Since the charge-density and current-density operators
commute with the full Hamiltonian, the total charge of
the system and the total current are conserved by the in-
teractions. Hence

n(q=O)=—(%k, 6'(q=O)+k )

=&+ g l
Ak

l (0k ckck0k) iv'+1
k

and

sharply peaked near ko has a spread Ak, where
Ak ~&ko —kF, and vanishes for k &kF. The state Nk is

normalized, so gk l

A k l

= 1. The charge density of
the state +& then consists of a spatially uniform part
from the N electrons in the filled Fermi sphere plus a
unit charge localized within a distance a=6k '. For
simplicity, we shall only consider envelope functions of
spherical symmetry; for example, a Gaussian, 3& ——const

—a (k —k0) /2
)& e ' . However, the results in this paper do
not depend qualitatively on the detailed shape of the en-
velope function.

We now consider a system with interparticle interac-
tion V(r). We take V(r) to be a function of r only, in-
tegrable, short-ranged, repulsive, and sufficiently regular.
For definiteness we assume that its Fourier transform is
a monotonically decreasing function of q. An example is
a Yukawa potential, V(q)= Vp/(x +q'), with a of the
order of kF.

To define a wave packet in the interacting system we
first consider a single-momentum eigenstate, pk, and then
turn on the interaction "adiabatically. ' This state will
then evolve "adiabatically" into a momentum eigenstate
t(k of the interacting system. (Of course the interaction
cannot be turned on literally infinitely slowly since in the
meantime the quasiparticles would decay. However, we
show in detail in Appendix A that this limitation does not
cause any difficulty. It will be ignored in what follows. )

For k near kF, the states defined this way are precisely the
quasiparticle states defined by Nozieres and Luttinger
(hereafter referred to as NL) and used in their microscopic
derivation of the classical Landau-Fermi-liquid theory.
Using the same Ak as in Eq. (15), we define the corre-
sponding quasiparticle wave packet as
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j(q =0)=—('Pk, , j(q =0)'Pk

=X
l
~k '«4k Ckckfk) k0

k

(20) k,—p k, —p k,
k

k,—p

We shall find that n(q) and j(q) behave discontinuously
at q=O: k,

lim n(q)&1, limj(q)&ko .
q~o q~O

(21)
(o) (b)

Moreover, in more than one dimensions, the limits de-
pend on the direction of q. These discontinuities at q=O
signal the existence of delocalized charges and currents (at
infinity), associated with the QPWP. Details are de-
scribed in Secs. IV and V. where

FIG. 1. First-order corrections to the state pk.

III. FIRST-ORDER PERTURBATIQN THEORY
" =(E& Ho) —(1 P) Vg—k (25)

We shall now calculate n(q) and j(q) to first order in

the interaction V by ordinary Rayleigh-Schrodinger per-
turbation theory. We shall apply nondegenerate perturba-
tion theory to ttk, although the unperturbed state pk is

embedded in a continuum. We shall find that divergen-
cies, due to vanishing energy denominators, are integrable
and —without having a formal proof —shall assume that
this procedure is valid. Where our integrals pass through
divergencies we shall interpret them as principal part in-
tegrals. The imaginary parts vanish as (ko —kF) and can
be ignored.

We shall also explicitly verify that the continuity
equation is satisfied to first-order perturbation theory.

The Hamiltonian of the system is

8'=Ho+ V

= g Ekckck+ 2 g V(p)Ck) pCk2Ck2 pck(
k kik2p

with E& ——Ho/i, . The Projection oPerator 1 Pelim—inates
the possibility that V scatters the state pk back into the
same state. Equation (25) is graphically depicted in Fig.
1. The first-order correction pk' to the state pk that con-
tributes to Eq. (24) describes an electron in the state pk P

and an electron-hole pair of momentum p [Fig. 1(a)]. For
this to give a contribution to n(q), Eq. (24), there are two
possibilities: Either c k qck can annihilate the electron-
hole pair, which gives p=q, or these operators can an-
nihilate the hole and the particle of momentum k& —p.
This gives p=k' —k. [There are also other first-order
corrections to pk, for example, the term represented by
Fig. 1(b). However, these do not contribute to Eq. (24).]
For q =0, however, the term Vpk does not lead to states
with an additional electron-hole pair. Thus for q =0,
n(q) has no first-order correction consistent with the fact
that it represents the total charge, N+1 which is con-
served.

We define a function Q(q) by

with eI, ———,'k . With the definition

Q(q, k)—:AkAk q

we have, for q&O,

n(q)= g Q(q, k)(tt|k q, ck qck gk)

(23)

Q(q) ==& Q (q k) = »k ~ k
k k

This function is analytic at q =0, and

limQ(q)=Q(0)=1 .
q~o

(26a)

(26b)

kk'

= & Q(q k)«0k —q+0k —q) Ck' —qck'(4k+0k '» (24)
kk'

Carrying out the simple calculations in Eq. (24) we then
have

N+1, q=O
n(q)= . n, (k' —q) —n, (k')

Q(q) —g Q(q,k), [V(q) —V(k' —k)], q~O .
q (k' —k)

(27)

From the value for q=0 we see that the total charge is indeed conserved. The second term for q~O in Eq. (27) is pro-
portional to the available phase-space and inversely proportional to the energy diA'erence for a scattering event. Both
these quantities are of order q for small q. This leads to

q-k'6l k' —k~ )
limn (q) = I —g ~

A k ~, [ V(0) —V(k' —k) ], (28)
q (k' —k)
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where, as we will prove in the following sections, the second term is nonzero. Hence there is indeed a discontinuity in
n(q) at q=O (in addition to the one arising from the uniform charge density of the filled Fermi sphere) which, as we
shall see, implies that part of the charge contained in the QPWP has been delocalized.

From Eqs. (18) and (27) we immediately have

k0, q=0
j(q)= . n, (k' —q) n—, (k')

g Q (q, k) (k ——,'q) —g (k' ——,'q), [V(q) —V(k' —k)], q&0 .
k q. (k' —k)

(29)

Thus the total current of the system is k0 and is con-
served, but

&n(q) =Q(q)f(&q, gq),

where

(34)

q. k '5(k kF )—
lim j(q) =ko —& I

~ w I

'k'
q. k' —k

q.k'6(k' —k~)
f(&q, Pq)= —g, [V(0)—V(k' —k0)] . (35)

X [ V(0) —V(k' —k)] . (30) For the current density we similarly define

In later sections we will prove that limz Dj(q) is not
equal to ka. As with the charge we can then conclude
that part of the current has been delocalized.

For q&0 we define a quantity An(q) by

n, (k' —q ) —n, (k')
&j(q) = —g Q(q, k)(k' ——,'q)

q (k' —k)

X [V(q) —V(k' —k)] (36)

b, n(q)=n(q) —Q(q)

n, (k' —q) —n, (k')
(k' —k)q.

b, j(q) =g(6)~, P~)Q(q), (37)

for q&0. Repeating the arguments for An(q) we can
then write

X [ V(q) V(k' k)] (31) where

The envelope function Az has a length scale u and for

q & Ak, A~A& q rapidly approaches zero. The function
multiplying Q ( q, k ),

q.k'ilk' kF)—
g(0q, (hq)

—= —g k', [ V(0) —V(k' —ka)]q. (k' —k0)

(38)

n, (k' —q) —n, (k')f(q, k) = —g, [ V(q) —V(k' —k)]
q (k' —k)

(32)

contains the atomic length scales ~ ', the range of the
interaction, and the Fermi length kF '. These are of
similar magnitudes and, by construction, much smaller
than the range a of the envelope function. Hence when

q is sufficiently large that f(q, k) starts to vary as a func-
tion of q, i.e., when q is of the order of k~, Q(q, k) is
effectively zero. Therefore, in Eq. (31) we can make the
replacement

We shall see that the quantities An(q) and b, j(q) tend
to finite (angle-dependent) limits as q~O, thereby causing
the discontinuities in n(q) and j(q) at q=O.

To verify the continuity equation, we consider its
Fourier transform

a
n(q, t)—+iq j(q, t) =0;

at
(39)

(40)

We use the interaction representation for the time devel-
opment. In this representation, the time development of
any operator O is given by

f(q, k)~ lim f(q, k) .
q~a

(33)

Here the limit is taken with the direction of q fixed. This
function of k varies on the scale of kF and we can there-
fore make the further substitution

and for the state 4& we have
0

ql„(t) =U(t, O)+q

where, to first order in the interaction,

(41)

f(q, k)~ limf(q, k0) =f(0~,$~),q~0
(33a) I

U(t, O)=U (O, t)=1 —i J dt'e ' Ve
0

(42)

where 0&,gz are the angles of q relative to k0. The right-
hand side of Eq. (31) can therefore be factored,

Combining Eqs. (40)—(42) we obtain to first order in V for
q&0
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n( q, t) =(eg (t), Il(q, t)eg, (t) )

n, (k' —q) n—, (k')= QQ(q, k) e " "-' —g, [V(0)—V(k —W)]e
'" '"-

q. (k' —k)

i Hot i Hot' ~ —iHot'
i —g P„q,e c~ c„dt e Ve

k' 0

i Hot ~ —I Hot p
—i Hot+i g Pg q, dt'e Ve cq qcge (43)

In the last two summations in Eq. (43), the scattering by f is not restricted to scattering from Pz only to states that are
different, but scattering from P& back to Pq also contributes. All the different scattering events that contribute are depict-
ed in Fig. 2. The contributions from Figs. 2(a) and 2(b) cancel out between the two summations, and after performing
the time integrations we are left with

n, (k' —q) —n, (k')
n(q, t)= g Q(q, k)e " ~ 1 —it[X(k) —X(k —q)] —g, [V(q) —V(k' —k)]q. (k' —k)

Here

X(k)= g n. ( k)[ V( 0)
—V(k' —k)]

k'

[cf. Figs. 2(c) and 2(d).] We can then immediately write down the expression for j(q, t):

(45)

j(q, t) = g Q(q, k)e " " ' (k ——,'q) —it(k ——,'q)[X(k) —X(k —q)]
k

n. (k' —q) no (k—')—g (k' ——,'q), [ V(q) —V(k' —k)]q. (k' —k)
(46)

From Eqs. (44) and (46) we then have

a n. (k' —q) n. (k')—
n(q, t)+iq. j(q, t)=i g Q(q, k)e " ~ —[X(k)—X(k —q)]+ g (q.k), [V(q) —V(k' —k)]

q (k' —k)

n. (k' —q) n. (k')——g(q.k'), [ V(q) —V(k' —k)]q. (k' —k)

=i g Q(q, k)e " " ~ —[X(k)—X(k —q)] —g [n, (k' —q) —n, (k')][V(q) —V(k' —k)]
k'

(47)

From Eq. (45) we have

X(k) —X(k —q)= g n. (k')[ V(0) —V(k' —k)]

a
n(q, t)+iq. j(q, t) =0-

at
(39)

—g n. (k')[ V(0) —V(k' —k+q)]
k'

= +[no (k' —q) —no (k')][ V(k' —k)] .
k'

for q&0. For q=O the continuity equation is trivially
satisfied. Hence the continuity equation is satisfied for
each q to first order in V, and thus at each point r.

Finally, let us for future reference write down the con-
tinuity equation for q vanishingly small. For q~O and
k=ko

(48) X(k) —X(k —q) ~—q. V'gX(k) = —q. ko (49)
Since g&,[no(k') —no(k' —q)]=0, it follows by inspection
that the term in Eq. (47) proportional to V(q) vanishes.
When we now substitute Eq. (48) in Eq. (47) we obtain

where m* is the conventional eA'ective mass of a quasipar-
ticle. With Eq. (49), the substitution
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q k '6(k' —kF )g Q(q, k)k, [V(q) —V(k' —k)]
q (k' —k)

q k '6(k' —kF )
=ko g Q(q,k), [ V(q) —V(k' —k)]

q (k' —ko)

(50)

and the replacement kp~kF, where kF is in the direction
defined by ko, inserted in Eq. (47), we arrive at

k —p

(a)

kj&

k, k k &i

k&&

(c)

q.
kF —kF —q. bj(q)+q kFhn(q)=0 (q 0) .m*

(51) k &&

k-k'

ii k k-qs, k-

k&i

k —k

IV. ONE-DIMENSIONAL SYSTEM

In one dimension, we have from Eq. (34)

(0') (e)
FIG. 2. Diagrams that contribute to the last two summations

in Eq. (39). The first-order self-energy is given by the diagrams
2(c) and 2(d).

6(k'+ kF ) —6(k' —kF )
bn(q)= g, [V(0)—V(k' —ko)]Q(q)(k' —ko)

1 1 [V(0)—V(k —k )]— [V(0)—V(k +k )] Q(q) .
1

2~ kp —kF kp+ kF

An(q)= — [V(0)—V(2kF)]Q(q) .
1

4~kF

From Eq. (53) it is clear that

(53)

Since ko is very near kz we can expand V(ko —kF) in a
Taylor series around ko —kF ——0 and V(ko+kF) in a Tay-
lor series around 2kF. From our assumptions of V(r) it
follows that (0/Bq)V(q) 0

——0. If we then insert the
expansions in (52) and let k„approach kF from above we
obtain

I

Following the same arguments as with An(q), we obtain

Aj (q) = [ V(0) —V(ko —kF )]Q (q) .
1

4~

From this we see that

lim b j(q) = [ V(0) —V(kp —kF)]
1

q 0 4w

(57)

(58)

For kp ~kF the localized current associated with the
QPWP is then

lim bn(q) =-
q~p

1
[V(0)—V(2kF)] (0

4~kF
(54) j*=kF 1+ [V(0)—V(2kF)] ) kF .

4~kF
(59)

e ' = 1 — [ V(0) —V(2k~)] ( 1 .
1

4~kF

The current density, in one dimension, is

(55)

since we have assumed that V(0) & V(2kF). We can then
conclude that the localized charge of the QPWP is e*,
where

Since total charge and total current are conserved, we
conclude from Eqs. (53) and (57) that there a charge
X + 1 —e * and a current kF —j* at infinity. '

We can also easily calculate the effective mass of the
QPWP. We have

kF
bj(q)= g [6(k' —k~) —6(k'+kF)J

, kp —kF

)& [ V(0) —V(k' —ko]Q (q)

kF
[ V(0) —V(kg —kF )]2~ kp —kF

=ko — f dk', no(k') V(k' —k~) .
1

2~ Bk'

As kp approaches kF, this gives

kF =kF+ [V(0)—V(2kF)] .
m*

(60)

(61)

+ [V(0)—V(ko+kF)] Q(q) . (56)
1

kp+kF

We now verify that the charge e* and the current j*
are related by the continuity equation. Expanding the ra-
tio of j* and e * to first order in the interaction and using
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Eq. (61) we obtain

J
e*

kF
(62)

V. THREE-DIMENSIONAL SYSTEM

For definiteness, we will now take the envelope function
to be a spherically symmetric Gaussian, for which

Q(q) =e q [cf. Eq. (26a)].
Returning to Eq. (34), we have in three dimensions

f(Hq, g )e ' /', q~o,bn(q = .

0, q=O

where

(34')

This is consistent with the fact that j' is the current of a
charge e * moving with a velocity kz/m *.

We can summarize the one-dimensional system as fol-
lows: We imagine the system to be a ring. Injecting a lo-
calized electron at the Fermi level then gives rise to a total
current of magnitude kF. This total current has two com-
ponents. One is the current of a localized charge e* trav-
eling with a velocity kz/m *. The other component
comes from the charge N+1 —e* at infinity and has a
sign opposite to the current of the localized charge.

fo ~ 2 2/4
b,no(r) = f e q j o(qr)q dq

2m

O 2g 2

3
e

(a&~)'
(66)

l 3 3
&& F —+ —I+—-—

2 2' 2'
2

a2
(67)

where iFi(a, b;z) is the confluent hypergeometric func-
tion. The asymptotic form (z &&1) of this function is
given by

I (a) 1 (a)
,F, (a, b; —z) — ( —z)

1(b) ' ' I (b —a)

so for r »a,
(6g)

2i 'f, I (I /2+ —', )

b, n(r)= g P((cosH) r
1&2 I (I /2)

Moreover, when r «a b, n((r) goes to zero as r .I

To study the charge at infinity, we separate from b n(q)
the term containing fo:

(69)

and is thus nonzero at the origin and integrable. For l )2
and f(&0 we have

I (I/2+ —,')
bn((r) = i'f(P((cosH)7T'"

q k'5lk kF)f (H, P ) = —g, [ V(0) —V(k' —k )] .
q k' —k)

(35')
and (Hq, pq) give the direction of q relative to ko. We ex-
pand f(Hq, Hq) in spherical harmonics. From symmetry it
follows that

bn(q)=An (qo)+ g b, n((q),
1&2

where

—q a //42 2

0
b, no(q) =

0, q=0

(70)

(71a)

f(Hq, (tq)= g f(P((cosHq),
1

(63)
e

—q a /4
q, (71b)

where I are even integers and the coefficients f( are given

by and

f( — f f((Hq)P((cosHq)dQq .
2I + I

4' (64)
a /4f,P, (cosHq)e q, q&0

an( q =.
0, q=O l&2 . (72)

The first-order correction to the charge density is

bn(r)= g bn((r)= g4n((q)e'q'
I q

= g g f(P((cosHq)e e'q' . (65)
q I

We shall prove below that the localized parts (i.e., the
parts that are not at infinity) have the following form:
The spherically symmetric part is integrable and nonzero
at the origin, whereas the higher spherical harmonics falls
of as r for r »a and goes to zero as r goes to zero.
Before we proceed to prove this, let us first note that, for
a fixed point r, it is permissible to perform the Fourier
transforms by converting the sums over q to integrals. In
a volume L we will at the most make errors of order
L if we convert the summations to integrals. As
L ~~ these errors can then be ignored.

The spherical part of b, n (r) is then

Referring to Eq. (71b), let us consider the density distri-
bution, b.no(r), corresponding to b, no(q) in a large
volume L:

—q a /4 iq. r

L L
q

(73)

For fixed r, we replace the summation over q and k by in-
tegrals as L ~ oo. The first term then represents a local-
ized charge distribution of total charge fo(&0) and shape
identical to the unperturbed QPWP. Since, by Eq. (71a),
Ano(q)=0 for q=O, it follows that f bno(r)dr
=0, so that a charge of fo must reside at infinity—.

From the second line of Eq. (72) we see that b, n((q)
(I)2) does not represent any net charge in the system.
For these functions the discontinuities at q =0 give rise to
the r tails of the corresponding charge densities. In
Appendix A we show that fo &0, so that there is an ex-
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bj,(q) = g giPi(cosBq)e (74a)

cz /4Aj (q) =cosPq g gi IP~'(cosBq)e
1

2 2 4Ajy(q) =sinfq g g, IP,'(cosBq)e
1

(74b)

(74c)

where 1 are even integers. If we transform to b,j(r) we ob-
tain

cess of charge at infinity.
We now turn to the current density

bj(r)= g Aj(q)e'q'

with Aj(q) given by Eq. (37). We denote the Cartesian
components of bj(r) by bj (r), bj~(r), and bj, (r), and
those of b j(q) by hj (q), bj (q), and hj, (q), respectively.
We expand the components of b j(q) in spherical harmon-
ics, and from symmetry arguments the expansions have
the forms

Thus the higher spherical harmonics of j(r) have r
tails, similar to the higher harmonics of 13,n (r).

From conservation of total current and Eq. (74a) (in
the limit q~O) it follows that there is a current density
—goz at infinity. In Appendix A we show that go & 0 so
this particle current is, as in the one-dimensional system,
in the direction opposite to the propagation of the wave
packet.

The following considerations refer to charge and
current densities at arbitrary fixed position vectors r in the
limit 0' /r~ oo.

In view of the r behavior of the charge and current
densities there is no obvious way to define a localized
charge e* and a localized current j*. One would be
tempted to define e*=—1+fo and j*—:(ko+go)z, i.e. , as
the spherical parts of n (r) and j(r), but we shall now
show that these definitions do not satisfy the integrated
form of the continuity equation, koe ' /m *=j*. From
F.qs. (44), (46), and (49) we obtain

bj, (r)= e

kO —ko —lim b,j(q)+kolim b,n(q)
q~Q q~O

2 I (1/2+ —,')+ 3 y3 g g iPI ( cos8 ) I + 3 r ( 1 3
1)2 CX + 2

q X (k'X ko)
[V(0)—V(k' —ko)] .

(k' —ko)
(77)

l 3 3XF —+ —l+ ——
2 2' 2' (75a)

l 3 3 r
X (F) —+ —,1+—;,(75b)

2 I (1/2+ —,
' )

b j„(r)= 3 cosP g gi IPI'(cosB)

The right-hand side of Eq. (77) is a vector perpendicular
to q. By forming the scalar product of Eq. (77) and q we
arrive at the continuity equation for q small, Eq. (51). If
the spherical average of the right-hand side of Eq. (77)
were zero, then the relationship koe */m ' =j* would
hold. But this spherical average is not zero, so the spheri-
cal parts alone of n (r) and j(r) do not satisfy the continui-
ty equation. In fact, if we multiply Eq. (51) by cosBq and
integrate over solid angle we obtain

2 r(1/2+ —', )

Ajar(r)= sing g gi (PI'(cosB) 1ko, +fo —( o+go)= —,'gz+ —,'gi, z
—-', of3W

XiF) +,l+l 3 3 r2

(75c)

2 ~ I
I (1/2+ —,

'
)

&j, (r) = — g i 'gjPI(cosB)
(ri/tr)3, r(l /2)

(76a)

2 r(l /2+ —', )
&j (r)= — cosP g i'gi IPi'(cosB)

(r 3/~) 3 „, r(1/2)

From Eq. (75a) we see that b j,(r) has a spherically sym-
metric, integrable part. For r »a, the components of
j(r) have the asymptotic forms

This rejects the fact that whereas the l =2 components
of charge and current densities behave as r asymptoti-
cally, the time derivative and divergence of these com-

~ 2/~2
ponents have terms that vanish as re ' ~ for r &&a, as
well as terms that go as r asymptotically.

For r very large, the leading terms to n (r) and j(r) are
the r tails. These terms have a common r dependence
and therefore must satisfy the continuity equation by
themselves. This leads us to the following definitions:
For every point r, except r=O, we deftne a long-range
charge density, nt (r), and a long-range current density,

jt (r), as the asymptotic forms of n(r) and j(r) taken all
the way to the origin. Explicitly,

I"(1/2+ —', )

bj~(r)= — sing g i'gi IPi'(cosB)
(r 3/~)3 „, r(1/2)

(76b)

and

(79)
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, I (1/2+-', )

jL, (r)= [zg(P((cos(2()+(x cosp+y sing)g( (P('(cos8)] .
(rV2r) , l(1/2)

We define, for r~O, a short-range charge density, n, (r) and a short-range current density, j,(r), as

I+fo „2, 2

n, (r)—=n(r) —nL(r)= 3e-" /

(a&2r)

(80)

and

+ g i f(P((cos8)I —+-l 3

1)2

rl l 3 3 y2
F —+ —l+ ——

I (1+—')a'+ 2 2 2 a
2

1

I (1/2)r'
(81)

p +go „2g 2

j, (r) =—j(r) —jL, (r) =z
3

e
(a&2r )
T' r

+ 3Z2 &' +
1&2

r' l 3 3 rF —+—,l+ —,
1(1+2)a(+3 2 2 2+2

1

I (1/2)r

X [ zg(P((cos9) + [x cosP+ y sin())g( (P('(cos8) ] I (82)

We shall now verify that the long-range charge and current densities and the short-range charge and current densities
satisfy the continuity equations separately for r&0. With the substitution r~r+kot the continuity equation becomes

koO=P ((co9s) e " —kp+kp(fp+ z f2) —gp —
&g2

—5g( 2m*

2r'I( —,') 7 9—P3(cos8) (F(a'I ( —,')
—', «ofz —g2+-,'g2, 2)

r'r( 1/2+,') 1 S 5

()4 a'+ 21+1 a I (1+—', )

1(»2+ l)
P( ((cos6) ]F) —+ —;l+—;—

21+1 1(l+—,') 2 2' 2'

y2

Ct2

CX2
(kof( g()—

.(1(1+1) 2r' ' r I (1/2+ —, ) 1 5 5+ g gi, ( 21 1 (+3 P(+((cosO). . .F, —~ —,1+—;—
21 + 1 a + a I (1 + 2 ) 2 2

'
2

'

+ ) 1 3 1 r+P( ((cos8),F, —+. —;1+.—;—1(l+—,') 2 2' 2'

For r /a &&1, we obtain from Eq. (83)

I ( —', )
o= —P3(cos()) F,),[-,'(kof 2

—g2)+ -,'gi, 2]I —,') r~

a2

(83)

I (1/2+ —', ) l I (1/2+ —,')
, (cos~) (kof( —g()

, gi ( 1(1 + 1) I (1/2+ —,
'

) I (1/2+ —,')
I (1/2) I (1/2 —1)

(84)

It is then easy to check that (8/Bt)nL (r, t)+ V.j (rt, t) is
precisely equal to the right-hand side of Eq. (84), from
which it immediately follows that nt (r) and jL(r) satisfy
the continuity equation. From Eqs. (78), (83), and (84) we
then conclude that n, (r) and j,(r) also satisfy the con-

tinuity equation for r&0.
Summarizing, we have in this section shown that in

three dimensions the charge and current densities have
the form stated in Eqs. (11) and (12). There is, however,
no obvious way to define an e* and a j* such that they



3574 OLLE HEINONEN AND WALTER KOHN 36

satisfy the continuity equation, but we have succeeded in
separating n(r) and j(r) into short-range, integrable parts
and long-range parts that satisfy the continuity equation
separately.

VI. CONCLUSIONS AND DISCUSSION

1— Ul

1+Fo
kF

V(0) .
2

(87)

It is not the same as the fractional charge displaced to
infinity by the interaction in the case of a QPWP, which
to first order in V(r) is given by

In this paper, we have given what we believe is a natu-
ral definition of a dressed QPWP and studied its struc-
ture. We found two unexpected features brought about
by the interparticle interactions: (1) Finite fractions of the
noninteracting charge e, and current, k/m, are displaced
to infinity, and (2) even though the density distribution of
the unperturbed wave packet is spherical and exponential-
ly localized, the dressed density contribution has long-
range (r ) anisotropic tails.

We have no reason to believe that these results are in
contradiction with the results of classical formal
Landau- Fermi-liquid theory. We do, however, believe
that our work has implications on the interpretation of
the quasiparticle distribution function, n (k, r), of the
Landau theory. Nozieres and Luttinger (NL) have
shown how to obtain the distribution function, n (k, r),
of the Landau- Fermi-liquid theory from microscopic
calculations. Their derivation clearly shows that the
Landau quasiparticles couple with the bare charge e to
an external field. In view of this fact, it would seem nat-
ural, and has indeed been common, " to interpret the
Landau distribution function n (k, r) semiclassically as
describing QPWP's of mean momentum k, mean posi-
tion r, and charge e. The definition of the single quasi-
particle states, Pi„used in this paper, is identical to that
of NL. Nevertheless the natural wave packet,

0

formed from these states, does not carry a localized
charge e. The distribution function n(k, r), must there-
fore not be simply interpreted in terms of the wave pack-
ets 4k, without mutual interactions.

0
The fact that particle-particle interactions can displace

localized charge to infinity may be seen in a different sys-
tem, analyzed by Landau- Fermi-liquid theory. Consider
a weak external localized potential v (r) varying slowly
compared to kF '. Without interactions the eigenfunc-
tions can be described by the BWK approximation and
the localized charge density, 5n0(r), obtained in the
Thomas-Fermi approximation:

3 no
5no(r) = —— v(r), (85)E

where EF =kF'/2 and no(r) is the unperturbed density.
When the interaction is turned on the effective potential is
given by v(r)+D(eF)Fon(r), where D(eF) is the density-
of-states at the Fermi surface and D(eF)FO is the l =0
component of the Landau interaction function. Hence the
dressed localized charge is given by

5no(r)
5n(r) =m* (86)

Fo
The difference is, of course, displaced to infinity. Note,
however, that here the fractional charge displaced to
infinity by the interaction is given, to first order in V(r),
by

k f, [V(0)—V(k' —k )]dA„2ir' q. (k' —ko)
" 4~

(88)

where
~

k'
~

= kF
An interesting question is what direct experimental

consequences the work presented in this paper has. The
simplest case in which the theory presented here would be
applicable would be in a one-dimensional conductor at
very low temperature. Injecting a single electron at the
Fermi level would then lead to delocalization of some of
its charge and the occurrence of a "solenoidal" current, as
explained in Sec. IV. We hope that these effects can be
experimentally realized.
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APPENDIX A

In this Appendix, we wi11 consider the effect of switch-
ing on the interaction at a finite rate s. We will show that
in this case the delocalized charge will be spread over a
finite vo1ume of dimension R', where R' depends on s.
However, by using quasiparticles sufficiently close to the
Fermi surface, R' can be made arbitrarily much larger
than the spread R of the remaining localized charge.
Thus the effect of the delocalization of charge is physical-
ly observable.

The decay rate of a quasiparticle state P„ is proportion-
al to ( k

~

—kF), so the condition that s must be much
greater than the quasiparticle decay rate becomes

s) A(5k) (A 1)

R ) (5k) (A2)

By describing the switching on explicitly by a factor e",
one finds that the discontinuity in n(q), due to the vanish-
ing energy denominator in Eq. (35), is eliminated and the
displaced charge spreads over a volume of radius

UFR'= (5k) (A3j

where 5k =ko —kF and 3 is a constant characteristic of
the Fermi liquid and of dimension L T '. The nonin-
teracting wave packet can be localized over a sphere of ra-
dius
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R'/R ))1, (A4)

Because of the different powers in (A2) and (A3), it is
clear that, for sufficiently small 5k,

i.e., in the sense of physics, and possible observability, the
delocalized charge goes "infinity" before the quasiparticles
decay. The same argument can readily be applied to the
current density.

AppENDIx B

In this appendix, we will prove that fp (0 and that go & 0. To show that fo &0, we start with

q k'5(k' —kF)
f(8 }=—g, [V(0)—V(k' —ko)]q. (k' —ko)

kF cosOqk~

, f ' [V(0)—V(k, k' —ko)) sinOk dO&.dpk
(2~) cosOqk —(ko/kF cosOqg

(B1)

The integral is even under inversion, so we integrate over the upper hemisphere 0(Oq (n/2 and multiply by 2. The in-

tegral over Pz can be done in the complex plane or by straightforward integration, and gives

P 2 P kp
2~ COS Oq+ 2

COS Oq COS OqCOSOko 2
S Oko (B3)

kp
sgn 1 — cosOk

o

where Oqk is the angle between q and k', and Oqk is the angle between q and kp. To expand in Legendre polynomials,
p

we have to multiply by [(21+I )/4m]P~(cosO~) and integrate over dQ~. We can reverse the order of integration and do
the dAq integral first, with k as preferred direction. This integral is then

cosO~P~ (cosO~)sinO~d O~d P~ (B2}
0 o cosO~ —(ko/kF)[sinO~ sinO& cos(P~ —Pk )+cosO~cosOq ]

for

kpsin Ok

Xp= (cos Oq ( 1
kF +k p

—2k pkFcosOk
(B4)

and zero otherwise.
Note that kF +k o —2kokFcosOg ) (kF ko) )0 and that

kos» O

1—
k p+ kF —2kpkF cosOko

(kF —kocosOk )

)0
kF +k p

—2kpkF cosOk
(B5)

so that the limits of integration over Oq are well defined.
The integral over Oq is then

xPi(x)dx

kp kp kp
x 1+ 2

2 cosOk. —
2

sin'Oko
kF kF kF

1/2

kp
1 — cosOg

kF o

ko ko
1 + —2 cosOk

kF F

1

kp kp
1 + —2 cosOg

kF kF

(B6)PI'(x)(x xo )
'—

Xp

For l =0, we then have when we let kp approach kF from above

kF
fo —— f [V(0)—V(kFk' —kFz)]dQg

16~

Since V(0) & V(q) for q&0 it then follows that fo &0. From these results it is easy to show that go &0. We have

(B7)
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kF2 cosOqk
go ———

3 f f cosset, [V(0)—V(kFk' —ko]dA„dAq4'(2') cosOqt —ko /kF cosHqj

kF2

3 f cosOk'[V(0) —V(kt;k' —kFz)]dBt,
2( 2sr )

Since V(kFk' —kFz) is a function only of
~

kFk' —kFz =2kF(l —cos8k ), Eq. (B8) is

kF2

gP ——
2

xV 2kF 1 —x dx
8~

(89)

We have assumed that V(q) is a monotonically decreasing function of q. The absolute value of the integrand is then
larger for x ~0 than for x &0 and we have gp ~0.

Time dependence of n is not explicitly shown.
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