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Renormalization method for the resistive transition in Josephson networks
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By calculating the resistance of small Josephson
transition of granular superconductors.

networks we deduce the nature of the resistive

I, =J sin(b, P) (2)

and the resistor describes the normal currents. The junc-
tion voltage is related to the phase by the second Joseph-
son equation

b, V =(A'/2e)d (b,P)/dt .

The temperature is modeled by a Johnson noise voltage
f (t) contained in the resistor with characteristics

tf (t) ) =0, (f (t)f (t') ) =2Rktt T5(t —t') . (4)

The parameters J and R are implicitly temperature depen-
dent; this does not affect our results, but may complicate
comparison with experiments. In what follows we will
tend to regard J as an independent variable, and study the
effects of varying it at constant T. The proper thermo-

According to a number of experiments, ' two transi-
tions are observed in a granular superconductor as the
temperature is lowered. The first occurs at a temperature
T,o which is close to the bulk transition temperature and
evidently is the superconductor transition of the grains
themselves; here the resistance rapidly decreases but
remains finite. The second, at a lower temperature T„
corresponds to the long-range phase ordered state and
gives zero resistance in the system. Despite the great in-
terest that has been shown in this phenomenon, there
lacks a good theory to describe the behavior of the con-
ductivity at the superconducting threshold. We will intro-
duce a new method for attacking this problem based on a
real-space renormalization method.

In this paper we will consider a three-dimensional lat-
tice of superconducting grains embedded in a normal
host, forming a Josephson junction array. This differs
from a bulk granular superconductor in that it lacks dis-
order; disorder is not believed to alter the critical behavior
at T, . We assume that the Josephson coupling between
the grains is weak enough that the temperature T, at
which the grains become phase locked is well separated
from the bulk transition temperature T,o. This allows us
to ignore the BC S order-parameter fluctuations which
would be important when T, is very close to T,o. We
will write the order parameter in polar form

g= A exp(i(t ) .

The junction between two grains will be modeled as an
ideal Josephson junction in parallel with a resistor R. The
junction carries a supercurrent

dynamic variable is J/T; thus our results can be simply
restated in the alternate language of varying T with J
fixed.

Finally we neglect the intergrain capacitance C, which
would introduce terms involving the second time deriva-
tive of P. These may be neglected if the system is over-
damped, which requires C«A/2eJR . There is also a
lower bound on the capacitance: if the capacitance is very
small the zero-point phase oscillations will destroy the
Josephson coupling. This requires that the charging ener-

gy E, =e /2C be less than 10E&, where Ez ——6J/2e is the
Josephson coupling energy. Therefore in order for our
model to work, the intergrain capacitances must satisfy
the relation e /10AJ&C« fi/2eJR . In practice these
inequalities can be achieved in granular materials.

The I-V characteristics of a single junction have been
determined by Ambegaokar and Halperin' by solving the
Smoluchowski equation for the time evolution of the
probability distribution of the phase difference. In the
limit of small measuring current they find

R,tt(T) =(A'/2eI)(dg/dt )

=R [Io(fiJ/2ektt T)]—:R~H(T/J),

where Io is the modified Bessel function.
The essential feature of the real-space renormalization

method we shall employ is the ability to represent a gen-
eral two-terminal Josephson network as a single
equivalent junction with parameters J and R '. This may
be done by means of two calculations: (i) the time-
averaged current at constant infinitesimal hP determines
J' through Eq. (2); (ii) the time-averaged voltage at con-
stant infinitesimal measuring current determines R,ff,
which we equate to Rt,H(J'/T) to determine the
equivalent parallel resistance R'. Thus performing these
calculations for a small cluster of length b defines a map-
ping from the original parameters J and R to the set J'
and R'; repeating the transformation many times relates
the microscopic parameters to the bulk behavior.

The simplest cluster to study is the Wheatstone bridge,
or its generalizations with many parallel paths. We have
studied these, but there is some ambiguity in assigning
dimensionality and length scale b to them. We found it
better to use a b &b &&b cube as the renormalization cell.
The boundaries were handled by connecting together the
faces of the cube, so that current leaving the cube from a
grain on one face reentered to the corresponding site on
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the opposite side. We imposed a phase offset between a
site and its periodic images (otherwise there would never
be a net current through a cube face), which is equivalent
to changing the Hamiltonian to

H = —(fiJ/2e) g g cos(P; —P, +s —b, s/b),

for J/T are in reasonable agreement with each other and
with other estimates of the critical temperature (Table I).
The correlation exponent is determined by

b 1/v

BJ

where i +5 is the (periodically defined) neighbor of site i
in direction 5, and b, s are the components (A.,p, v) of the
phase gradient.

The calculation of J' is independent of R because it is
an equilibrium property (the ratio J /J is the helicity
modulus defined by Fisher et al. "). This part of the
problem reduces to a study of the underlying planar rotor
model. The average supercurrent through a face is given
by

I~ ——b ' J sin; —;+&—A~/b =J'sink~
1

where ( ) is the usual thermodynamic average calculated
by over all combinations of the phases P; using the weight
function e ~. Taking a derivative with respect to A~
gives

J'= Jb g cos(~t; —P;+s)

with results that agree with other estimates (Table I).
(ii) The calculation of R' is more difficult. The current

carried from grain i to a neighboring grain j =i +5 is

I; =(A/2eR)d(P; —P —As/b)/dt +f~ /R +Fz, (10)

j neighbor of i

I =0.lj (12)

There is also a condition that the net current along the
three coordinate axes be fixed, which has the form

where f~
is the Johnson noise associated with the resistor

and

F~ =J sin(P; P~
——As/b)

is the Josephson supercurrent. The condition that the net
current into each site be zero gives rise to a set of b
equations

—I%1/2ekBT) +sin(p, —p +z)
'

)
(8)

i, h

I
Is ———g I, , + (13)

sz'
2 eke
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FICx. I. The relationship between J'/T and J/T, for cubes of
edge b. The four curves for b=2, 3, 4, and 6 are successively
more rapidly rising. The dashed line is J'=J, which is the locus
of the fixed points of the renormalization transformation. The
curves for b=3, 4, and 6 intersect this locus at the same point,
showing that they agree that the critical point is
2ek, T, gal =2.2.

We evaluated the thermodynamic average by use of the
Metropolis Monte Carlo algorithm for various values of b.
Figure 1 shows the results, based on 15&10 Monte Car-
lo steps per site (each Monte Carlo step consists of six at-
tempts to change the phase angle of a randomly chosen
site by a randomly chosen fraction of a radian). We ob-
serve that in each case there is an unstable fixed point,
where J'=J; for b& 2 these estimates of the critical value

We may use the overall gauge invariance to fix one of the
P; to zero (and remove its equation of motion from the
set); the remaining b + 2 equations may be solved to give
each dP;/dt and db, s/dt as a linear combination of all the
fv and F~ of general form

dP; =pa; (F +f /R), (14)
dt a

where the sum is over all neighbor pairs. The weighting
coefFicients a; depend only on b, and were determined by
numerically inverting the matrix of coefFicients appearing
in Eqs. (12) and (13). Thus these equations give rise to a
set of Langevin equations for P; and b,s.

Since 6& is the average phase difference across a cell, its
time deviative corresponds to a voltage drop which we
identify with I&R,ff. We have found two approaches to
solving these equations.

(1) Generalization of the method of Ambegaokar and
Halperin. The time evolution of the joint probability
distribution for the site phases is given by a Fokker-
Planck equation, which can be derived from the
Langevin equations by standard methods. ' This is a
multidimensional partial differential equation for which
we were unable to find a general solution. However, for
the special case that no current is applied, the system is
at equilibrium and the probability distribution has the
usual Boltzmann form exp( PH). Then for s—mall ap-
plied currents, we can find the steady-state behavior by
using perturbation methods. This method is not practi-
cal for larger networks, because the larger number of
phase variables gives rise to an enormous set of coupling
terms.

(2) Numerical integration of the Langevin equations



3558 MAO CAI AND JOSEPH P. STRALEY 36

The time evolution of a particular configuration of the
phase variables can be followed by directly integrating Eq.
(14). For sufficiently small b, t we have

hP;=At+a; F + ga; u

where the v are uncorrelated Gaussian random variables
with variance (8e Rkii Tb, t/fi )' . Accuracy of this
equation requires that At be small enough that the
changes in the P; give little change in the F We c.hose
b, t =O.OM/(2eJR). By following many realizations for a
suSciently long time, the time evolution of the ensemble
can be deduced. In the presence of a current, the ensem-
ble average of A& shows a linear time dependence for large
times

which is also the scale change of resistivity produced by
the renormalization.

The results of the calculations (i) and (ii) for any small
network defines a transformation ( JR)~( J', R') which
may be regarded as the effect of a length rescaling; per-
forming the transformation several times gives the two-
terminal characteristics of the family of networks that can
be formed by repeatedly replacing bonds by the elemental
network. We then assume that the parameters (J'"',R'"')
reasonably characterize the properties of a piece of
Josephson junction lattice of edge b ", where 6 is the
length ratio between the elemental network and a single
junction. (This is an approximation, since the lattice can-
not actually be decomposed into nesting networks. ) The
bulk resistivity can be calculated as

(b,&) =(2eIs/A)R, st (16) p( T/J) =pP ( T/J)S ( T/J')S ( T/J" ) (20)

from which the I-V characteristic can be deduced. The
resistance at small current is better evaluated by studying
the mean-square phase gradient in the absence of a
current, for which

(b,s) =(2e/fi) 2R,fikliTt .

This method is adaptable to networks of arbitrary size.
Its drawback is that it requires a lot of computation: we
followed a hundred realization s for 5000 times steps,
where each realization entailed the integration of b + 2
equations. The greatest source of inaccuracy in our re-
sults was the failure to completely average out statistical
fluctuations.

It should be noted that these two methods use different
boundary conditions for the ensemble distribution func-
tion. The distribution function o. studied in the Smolu-
chowski approach is time independent and periodic in the
phase variables. The average phase appears to have no
time dependence, because the only ensemble members
that are considered are those having all phase variables in
the interval 0—2~. Nonetheless, the ensemble average of
dP;/dt is not zero; as a member of the ensemble leaves
the interval, a periodic image of it enters. In contrast, the
Langevin approach does not attempt to restrict the range
of the phase variables, and indeed it is essential to the ac-
curacy of the results that runs be long enough that the
phase has moved more than 2~: Only then can the phase
diffusion be treated as a random walk from one minimum
energy configuration to another.

Once R,s has been determined, we use Eq. (5) to
represent the network as a single junction having helicity
modulus J' and internal resistance R'

where p[] is the infinite-temperature resistivity.
There are two basic cases: below T„ the sequence

J,J',J", . . . is nondecreasing, and p=0 because all factors
are less than unity; above T, the J'"' decrease to zero, and
the bulk resistivity is finite. Slightly above the critical
temperature many of the factors S are less than unity and

p is small; well above T, the sequence of J(n) decrease
rapidly and the bulk resistivity is well approximated by
the first two terms of Eq. (20). The usual argument'
shows that near T„

p=(T —T, )',
where

(21)

s/v= —lnS(T, /J) . (22)

R
0.5—

R~

Figure 2 shows the results of our simulations. The
dashed curve is Eq. (21) with the prefactor chosen to join
S(T/J) at T =46'/2ekii. Our results are summarized in
Table I. We see that the results for larger cells are con-
sistent and agree well with previous determinations of T,
and v.

R =R a[Ip(flJ'/2ekii T)] (18)

S ( T /J) =bR '/R = b [Ir,(fiJ'/2ekii T) ] R,ir/R (19)

The ratio R'/R is small for low temperatures because
phase diffusion is an activated process. In the high-
temperature, or J~O, limit the supercurrents play no role
and R,z can be computed from Kirchhoff's rules; the
R'/R approaches (1/b), which is the transformation law
for pure resistors. Thus it is convenient to define a trans-
formation function

2
2 eI ~T

FICz. 2. Resistivity as a function of temperature. The curve
farthest to the left is the resistance RAH(J/T) of a single junc-
tion, as given by Eq. (5). The next three curves give the temper-
ature dependence of the resistivity for cubes of edge 2, 3, and 4.
The dashed curve is the bulk resistivity.
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TABLE I. Results of renormalization study.

2ekI, T, /w

s/v

2.4
0.93
0.40+0.01

2.2
0.72
0.52+0.04

b

4

2.2
0.71
0.57+0.04

2.2
0.69

Series'

2.203+0.006
0.675+0.015

Monte Carlo

2.1+0.1

'Reference 14.
"Reference 15.

Our result for s /v is 0.57+0.04 and thus
s =0.38+0.03. We may compare our results to the ones
obtained by Halperin et a/. for the viscosity exponent of
superAuid He by using an e-expansion method. ' We be-
lieve that our Josephson junction lattice model belongs to
the same universality class as their model E for which
they find s/v=(4 —d)/2 in lowest order.

The behavior of the critical current near T, can be de-
duced from a scaling argument. For a system of size L,
the critical current density is

' =L '" "S,[L ' '(T, —T)], (23)

where the prefactor is the reciprocal of the cross-sectional
area. For low temperatures this should be independent of
L, so S(x)=x '" 'I; then for systems large enough that
L )(,j, =(T, —T)"'

The application of our renormalization method in two
dimensions yields no transition. The Kosterlitz-
Thouless' transition which does occur is due to the
long-range interactions between vortices. To record the
presence of a vortex in a cell requires a different set of
variables than our choice (R,J). This difficulty in con-
structing a real-space renormalization method for the
two-dimensional planar rotor model has been noted previ-
ously. ' To find there is no transition is very nearly the
right answer; indeed, there is no long-range order in two
dimensions. '
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