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Zero-current persistent potential drop across small-capacitance Josephson junctions
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Quantum effects in a small-capacitance Josephson junction coupled capacitively to an external cir-
cuit are investigated. Capacitive coupling permits one to control the charge on the junction and to
hold the junction in an equilibrium state. The equilibrium state is characterized by a persistent volt-

age drop without an accompanying dc current. The persistent voltage is a periodic function of the
control charge with period 2e if Cooper pairs only are present and with period e if quasiparticles are
included. In the capacitively coupled junction, Bloch oscillations are induced by increasing the con-
trol charge linearly in time. The presence of a persistent voltage drop is reflected in the small-signal
impedance of the circuit which describes the response of the junction to an oscillating control charge
superimposed on a static control charge. The impedance reveals features which seem closely related
to experimental observations by Lambe and Jaklevic [Phys. Rev. Lett. 22, 1371 (1969)] on a normal
array of capacitively coupled junctions.

I. INTRODUCTION

In 1969 Lambe and Jaklevic' reported an experiment
on small normal tunnel junctions with a capacitance so
small that the charging energy e /2C exceeds kz T. In re-
cent years such systems have found renewed interest,
stimulated by the prediction of new quantum effects in
small-capacitance Josephson junctions and small nor-
mal tunnel junctions. " This work ' envisions a junc-
tion connected to a current source. However, the basic
features of a small capacitance junction become only ap-
parent if it is possible to externally control the charge on
the junction. A possible circuit which achieves that is
shown in Fig. 1 ~ This is also the circuit which models the
experiments of Ref. 1. Tunneling occurs only through the
junction capacitor C but not through the external capaci-
tor Co. The external circuit can be used to bring a charge
go(Ue) on the electrodes of the junction. This system, as
we show below, behaves like a quantum particle in a
periodic potential. A quantum particle in a periodic po-
tential has two states of principal interest. The particle
can be in a Bloch state and travel with constant velocity
through the periodic lattice. If a constant force is exerted
on the particle, the carrier executes, in the absence of
Zener tunneling, Bloch oscillations. A small Josephson
junction can be brought into a Bloch state if a time-
independent control charge go is externally induced
across the electrodes. In Fig. 1 such a charge difference is
induced by applying a constant voltage at the battery. A
small junction responds by developing a constant voltage,
but without carrying a dc current. The two superconduc-
tors have differing chemical potentials despite tunneling of
Cooper pairs and quasiparticles through the barrier. The
small intrinsic capacitance of the Junction blocks the
equilibration of the two superconductors. The voltage
drop across the junction is a periodic function of the in-
duced charge with period 2e (or period 2e /Co in the bat-
tery voltage), if only Cooper pairs are present and with
period e (or e/Co), if quasiparticles are included. This se-
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FICs. 1. Capacitively coupled Josephson junction. Qo is an
externally induced charge difference. Q is a charge imbalance
between the two superconductors.

quence of equilibrium states is the analog of the persistent
currents in a superconducting loop with a large-
capacitance Josephson junction. ' In the small-
capacitance junction the externally induced charge plays
the role of the Aharonov-Bohm Aux in the large-
capacitance junction. The key point is thus that capaci-
tive coupling allows "parking" of the system in an equilib-
rium state. Changing the induced charge quasistatically
brings the junction through the whole sequence of equilib-
rium states. The authors of Ref. 3 also discuss the equi-
librium properties of small-capacitance junctions, but do
not specify the circuit which allows the junction to be
brought into these states. If the junction is coupled to a
current source ' the presence of the equilibrium states
manifests itself only through the fact that for I =0, in the
absence of a shunting resistor, the voltage is not deter-
mined, but can take any value in a limited range. " The
main subject of Refs. 3 —14 is the Bloch oscillations which
occur if a constant current is fed into the junction. In the
circuit of Fig. 1 Bloch oscillations are induced by increas-
ing the control charge Qo linearly in time, i.e., by increas-
ing the voltage at the battery linearly in time. A small-
capacitance junction responds with an oscillating voltage
and an accompanying dc current. ' In the presence of in-
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elastic events the Bloch oscillations are accompanied by a
dissipative current and give rise to a dissipative current-
voltage branch in addition to the nondissipative equilibri-
um branch discussed above. In Ref. 1 a small-signal
capacitive measurement was performed on an array of
small normal tunnel junctions. It is therefore of interest
to investigate the small-signal response of the circuit of
Fig. 1. We find results which closely resemble the
features seen in the experiment and argue that the experi-
ments indeed provide evidence for the existence of the
equilibrium states discussed above.

We have already mentioned the duality of the quan-
tum effects in the small-capacitance junction and the
large-capacitance junction. Such a duality also exists be-
tween the small-capacitance junction and a disordered
normal-metal ring' with electron phase coherence ex-
tending around the whole loop. A comparison of these
two systems has been the subject of a recent conference
paper.

THE HAMILTONIAN SYSTEM

Consider first two pieces of superconductors separated
by a small insulating barrier. To perturb the system we
couple the system capacitively to an external circuit with
a battery at a voltage Uz as shown in Fig. 1. Suppose for
a moment that carriers cannot tunnel between the super-
conductors. If the two superconductors are in equilibri-
um for Uz ——0, i.e., neutral, application of a voltage will
induce a charge Qo across the capacitors. The energy of
the circuit is then determined by

Qo/2Cp+ Qo /2C —Qo Us

where Co is the capacitance of the external circuit. If
there is now in addition a carrier imbalance Q between
the two superconductors the total energy of the system is

Qo/2CO+(Q —Qo) /2C —QoUa .

Below we want to treat Qo as an external parameter and
only treat the charge imbalance Q as a dynamical vari-
able. To achieve this we have to take the external ca-
pacitance Co small compared to the junction capacitance
C. In the steady state

go/Co —(Q —Qo)/C = Ua,

q = —Qomod2e . (2)

q therefore measures the deviation of the induced charge
from an integral multiple of 2e, —e &q &e. The charge
Qo is not quantized, but charge can be transferred only in
multiples of 2e. Subsequently, we will cease to make a
distinction between q and Qo. Note that the eigenfunc-
tions u„q are single valued, in contrast to the eigenfunc-
tions + of H&, which are multivalued when considered on
the interval 0 to 2~.

The Bloch bands corresponding to Eq. (1) are shown
in Fig. 2(a). Since we consider a junction of very small
capacitance the Josephson coupling energy represents
only a small perturbation and the gap in Fig. 2(a) is
given by EJ ——AI, /2e, where I, is the maximum Joseph-
son current of the junction. For a given q the possible
states of the system correspond to a ladder of Bloch
states, E„(q). At zero temperature the system is in the
lowest band, E&(q). Below we invoke only this band and
for convenience we drop the index 1 and denote the en-
ergy of this band by E(q). In the presence of a time-
independent induced charge difference, q, a constant

H =(Q —Qo) /2C+EJ(1 —cosP) .

In this Hamiltonian Q is a quantum operator and Qo is
treated as a classical parameter.

Quantization of the Hamiltonian equation (1) can be
accomplished either in the number representation, where
Q is considered a pair-number difference operator, or in
the more familiar definite phase representation, where Q
is replaced by (2e/i)(B/BP). We use the latter. Q then
plays the role of the momentum, P takes the role of the
spatial dimension, and Qo plays the role of a (scalar) vec-
tor potential. The eigenfunction of H in Eq. (1) with ei-
genvalue E„(q) is the periodic function u„~(P)
=u„(/+2m) of the Bloch state %„~(P)
=e'&~~ 'g„(P), which is an eigenfunction of the Hamil-
tonian

H
&

——Q /2C +EJ [1—cos( P) ]
with an eigenvalue E„(q). The eigenvalues of Eq. (1) are,
therefore, Bloch bands with periodicity 2e,
E„(q+2e)=E„(q). A term-by-term comparison of H,
Eq. (1), and H, , yields the relation

a small change b, g of the carrier imbalance changes Qo by

ag, = [c,/(c, +c)]ag =(c,/c)ag .

E(q)

2e II

(b)

E(q+e) E(q)
The variation Ag gives rise to a change (Uo —Uz)Ago in
the energy of the external circuit (capacitive energy and
battery work), where Uo=go/Co. Since Uo —Us is in-
dependent of Co, and b, go is proportional to Co, the ener-

gy variation of the external circuit is negligible in the limit
of a small external capacitance. In this limit we can,
therefore, consider Qo(U&) as a control parameter. The
charge imbalance Q, on the other hand, is a dynamical
variable governed by the tunneling processes across the
barrier of the junction. The total energy of the junction
alone consists of the charging energy and the Josephson
coupling energy,
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FIG. 2. (a) Energy bands of the Josephson junction as a func-
tion of the induced charge. Weak Josephson coupling opens a
gap EJ ——fiI, /2e between the first and second bands. The arrow
indicates a quasiparticle transition. (b) The lowest band E(q)
and E(q+e) of (a). The quasiparticle transition of (a) can be
represented as a vertical q-conserving transition.



3550 M. BUTTIKER 36

time-independent voltage,

dE (q)Uq=
dq

(3)

develops across the junction. Equation (3) is analogous to
the expression for the group velocity of an electron mov-
ing in a periodic lattice. U is thus a periodic function of
the induced charge difference q with period 2e. Since q
and hence Qo is time independent no current fiows in the
circuit of Fig. 1. The junction thus develops a constant
voltage without an accompanying current. This effect is
the analog of the persistent current in a superconducting
loop with a (large) Josephson junction. It is the key
feature of a low-capacitance junction; the Coulomb energy
blocks the fiow of current, despite the Josephson coupling
of the two conductors.

The total voltage drop across the sample is

Uii ——Qo/Co+ U(QO), where the function U is the poten-
tial drop across the junction and given by Eq. (3). This
equation must now be used to find Qo(Uii). For each bat-
tery voltage Us the function Uii —Qo/Co intersects
U(QO) only once, since Co «C. Thus Qo(Uii) is single
valued and allows one to determine the junction voltage
as a function of the battery voltage, U(U~). Since U is
periodic with period 2e in Qo, U is periodic with period
2e/Co in the battery voltage. Thus U can be expressed as
a Fourier series,

Co
U =g u„sin 2trn Uii

2e
(4)

Cp
U =g u„sin 2irn (Uit —Up)

2e

where the "phase shift" Up is determined by
Up =Qp /Co. This phase shift plays an important role in
the experiments of Ref. 1: it leads to the observed
memory effects. Below we discuss other physical quanti-
ties which also depend on this phase shift.

In the circuit of Fig. 1 a dc current is set up by increas-
ing the voltage Uz linearly in time. The relation
dQO/dt = dt /dt = I is equivalen—t t—o Bloch's law
Adk/dt = —eE, for carriers in a periodic lattice subject to
an electric field E. The induced charge q =It increases

Until now we have assumed that for Uz ——0 the chemical
potentials of the superconductors forming the tunnel
junction are equal. Then Qo is zero for Us =0. But if
the conductors are not shunted, neither directly nor via
the external circuit, this need not be the case. ' For
Uz ——0 the circuit of Fig. 1 can support a potential drop
Up =Qp /Cp over the external capacitor Co compensated
by a potential drop of equal magnitude and opposite sign
over the capacitor C. Classically, we have
Uo ———U=(QO —Qp)/C, where Q =Qp is the excess
charge on the superconductor between the two capaci-
tors. Quantum mechanically, we can describe such a po-
tential drop by modifying Eq. (2). In general, we have
q =(Qp —Qo ) mod 2e, where Qp is determined such that
Qo /Co = U ( Qp

—Qo ) at Ug =O. The junction voltage U
as a function of the battery voltage becomes

linearly in time. Hence in the presence of an external
current the system is driven with constant velocity
through the Brillouin zone, Fig. 2(a). The voltage, Eq.
(3), oscillates as a function of time with a Bloch frequen-
cy,

~=2~I/2e .

This effect is the analog of the ac Josephson effect in a su-
perconducting loop with a (large) Josephson junction.
Bloch oscillations occur as long as we can neglect Zener
transitions through the gap AI, /2e into higher-lying
states. Zener tunneling is small as long as Ace is small
compared to the gap, i.e., as long as I & I, .

A Hamiltonian similar to Eq. (1) but with Qo replaced
by It was proposed in Ref. 7. The authors of Ref. 7 ar-
rived at Eq. (1) not by analyzing a specific circuit, but by
arguing that the Hamiltonian of the junction should be
invariant if the phase $ is increased by 2ir. This argu-
ment has gained some acceptance, ' but has also been cri-
ticized in Ref. 5. Since the authors of Refs. 7 and 14 en-
vision a current source, i.e., an open system, the invari-
ance argument is dubious and does not, in any way, speci-
fy the Hamiltonian completely. The authors of Refs. 4—7,
9, and 11 use the adiabatic coupling IP of current and
phase and thus treat a Hamiltonian which is not invariant
if the phase is increased by 2~. Our derivation of Eq. (1),
which is specific for the circuit of Fig. 1, suggests that the
correct coupling of the current to the phase might well de-
pend on the coupling of the junction to the external cir-
cuit. These questions do certainly warrant further efforts.

In the presence of a static induced charge difference q
the voltage U is a time-independent constant. No dc
current Bows, I =dq/dt =0. The system produces no
Joule heat. In the presence of a linearly increasing q,
where we have a dc current dq /dt =I across the barrier,
the voltage oscillates. Thus the Joule heat IU, when aver-
aged over a time T =2e/I, is again zero. Even if we al-
low for Zener tunneling, we can expect that no net Joule
heat is produced. ' The Hamiltonian system (1) can store
energy, but cannot dissipate it. To obtain a resistance we
have to allow for inelastic events. This is the subject of
the following section, where we present an approach
which closely follows Refs. 17 and 19.

THE DISSIPATIVE SYSTEM

We assume that we are dealing with an ideal junction
and that the inelastic events which have to be taken into
account are those that occur intrinsically in superconduc-
tors. As the temperature is raised, Cooper pairs are bro-
ken and there is, in addition to the condensate, a density
of electronlike and holelike excitations in the supercon-
ductors to the left and right of the barrier. Charge
transfer between the left and right superconductors occurs
now not only in multiples of 2e, but single-particle tunnel-
ing can also occur. Consider now what happens in the
presence of a constant induced charge difference q.
Single-particle tunneling transitions to states with q +ne
occur. Figure 2(a) shows a transition from q to q +e.
Due to quasiparticle tunneling the system has now a prob-
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p(q +e)—exp[ E(q +—e)/k& T],
we immediately find

p(q) = 1/[ 1+exp[ —b,E (q) /kz T]],
with

5 E( q)=E(q +e) E(q) . —

Therefore, in the presence of a time-independent q the
voltage across the junction is given by

dE (q) dE (q + e)U= pq+
dq dq

p q+e) . (9)

Let us now first discuss Eq. (9) at T =0. The equilibrium
distribution, Eq. (7), at T =0 is given by p(q) =1 if q is in
the interval from —e/2 to e/2, and p(q) =0 if q is in the
intervals —e &q & —e/2 and e/2&q &e. This has the
consequence that the system is always in the state with
lower energy, and by considering Fig. 2(b) it is obvious
that this implies that U(q) is periodic with period e as
shown in Fig. 3. The discontinuities of the voltage at
e/2+ne, are given by 2dE/dq

q /2 i.e., they arise be-
cause E(q) and E(q+e) cross e/2+ne with a finite
slope. For EJ «2e /C the band E(q) is parabolic, ex-
cept near the boundary of the Brillouin zone. The max-
imum (minimum) voltage in Fig. 3 is thus +(e/2C). As
the temperature increases these discontinuities disappear
and p(q) is nonzero, even in the intervals —e &q & —e /2
and e/2 &q &e. Further, since the voltages dE(q)/dq

u(q)

FIG. 3. The junction voltage as a function of the induced
charge q in the zero-temperature limit {solid line) and for a small
nonzero temperature {dashed line).

ability p(q) to be in the state with energy E(q) and a
probability p(q +e) to be in the state with energy
E(q+e). Figure 2(b) shows both E(q) and E(q+e).
The transition in Fig. 2(a) from q to q + e can be
represented as vertical transition in Fig. 2(b). We could,
in fact, restrict q to the interval from —e/2 to e/2 and
consider two new e periodic bands as in Ref. 12. That,
however, complicates the investigation of the Bloch oscil-
lations since in the absence of a gap at +(e /2) carriers are
not confined to these bands but rather follow the bands
E(q) and E(q +e). But let us first return to the static
case where the system is parked at a fixed q. Clearly, if
only the states E(q) and E (q +e) are occupied, we must
have p(q)+p(q +e) =1. Since

p(q) —exp[ E(q)/ki—i T]

and

Bh(q) =w (q, q +e)h (q +e) —w (q +e, q)h (q),

Bh (q +e)
at

(10a)

= —w (q, q +e)h (q +e)+ w (q +e, q)h (q) .

(lob)

Using h (q)+ h (q +e) = 1 and detailed balance,

w (q +e, q)p(q) =w (q, q +e)p(q +e),
we find

and dE(q+e)/dq are of opposite sign, the maximum
voltage decreases with increasing temperature. Since we
consider only the two lowest possible states of the junc-
tion, the approach presented here is strictly valid only for
temperatures small compared to EJ. It should also be
noted that our result does not in an explicit way depend
on the quasiparticle densities or the ability of the quasi-
particles to tunnel through the barrier. This, however, is
due to our assumption that the inelastic processes leave
the bands in Fig. 2 unchanged. In the presence of strong
inelastic processes this is not a correct assumption: In-
elastic events not only change the shape of the bands' but
also lead to a broadening of the energy levels. The
discontinuity of the voltage as a function of q is also relat-
ed to results of Ref. 12 for the dissipation-renormalized
energy spectra of the junction.

That the currentless state in the presence of a finite po-
tential drop persists even when quasiparticle tunneling is
included can be seen in the following way: Consider the
transition indicated in Fig. 2. In the state with energy
E(q) the voltage across the junction is negative. The su-
perconductor to the right has a higher potential then the
superconductor to the left. A quasiparticle transition
from right to left brings the junction into a state with en-
ergy E (q +e) with a positive voltage drop across the junc-
tion. Thus a quasiparticle transition reverses the voltage
across the junction and the system is eventually driven
back to the state with lower energy.

The junction voltage U is now a periodic function of
the battery voltage with a period AU& ——e/Co instead of
2e/Co as in Eqs. (4) and (5). Even in the presence of
quasiparticle tunneling the chemical potentials of the su-
perconductors forming the tunnel junction need not line
up for Uz ——0. Thus the Fourier transform of Eq. (9) also
contains a phase shift Uz. We reemphasize that the equi-
librium eff'ect, Eq. (9), can be observed only if the two su-
perconductors in Fig. 1(a) are not shunted. If the two
conductors are shunted, either directly or via the external
circuit, the potentials of the two superconductors will
equilibrate. Indeed, in a real junction small leakage
currents might always give rise to an equilibration.
Nevertheless, we can hope that the time scale for equili-
bration is so long that the potential drop can still be ob-
served. ' We return to this question in the last section of
this paper.

Suppose that the system has, through the action of
some force, been driven away from equilibrium. The
nonequilibrium probabilities h (q) and h (q +e) for the
system to have energy E(q) and E(q +e), respectively,
are time dependent and must obey a master equation,
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Bh (q +e)
clt

= —[w (q +e, q)+ w (q, q +e)]

(1 la)

Bh (q)
at

= —[w (q + e, q)+ w (q, q +e)][h (q) —p(q)], 2(a) into a Fourier series,

E (q) =g b,„cos(2rtnq /2e) .

Since dh /dt =I dh /dq, Eq. (12a)
Ir dh (q)/dq = —[h (q) —p(q)], which gives

becomes

X[h(q+e) —p(q+e)] . (1 lb) h (q)= —,'+ .=odd 1+n'~'~'

which we take to be independent of both q and kz T. ~ is
related to the sum of the transition rates. Whereas the
transition rate from the state with lower energy to the
state with higher energy vanishes as the temperature tends
to zero and is thus strongly temperature dependent, the
rate from the state with higher energy to the state with
lower energy is nonzero even at zero temperature. This
latter transition rate eA'ectively determines the relaxation
rate. Thus the dynamics of the system is characterized by
relaxation of the actual distribution functions h (q) and
h (q + e) towards the instantaneous equilibrium distribu-
tion functions p(q) and p(q +e),

ah(q)
at [h (q) —p(q)], (12a)

Bh (q+e)
Bt

= —r [h (q +e) —p(q +e)] . (12b)

To obtain the voltage in a nonequilibrium situation we
have to replace the equilibrium distribution functions in
Eq. (9) by the actual distribution functions,

Thus we obtain two equations which describe the relaxa-
tion of the actual distribution functions h (q), h (q +e) to-
ward the equilibrium distribution functions p(q), p(q +e).
The transition rates are, in general, functions of both q
and k&T. Below we approximate the transition rates by a
relaxation time

'=w(q+e, q)+w(q, q+e),

X [cos(2~nq /2e ) + n cur sin( 2nnq /2e )],
(17)

(U) = ——g &„p„ 1+n & (18)

Equation (18) determines the current-voltage characteris-
tic I-U in the presence of a linearly increasing q. This
branch is shown in Fig. 4 together with the constant-
voltage, zero-current branch, obtained in the presence of a
constant q. As shown in Fig. 4, the voltage increases for

with q =It. Here we have used the Bloch frequency
co=2~I/2e. Consider for a moment the actual nonaver-
aged voltage equation (13). In addition to the harmonics
of 2e, a Fourier analysis of Eq. (13) using Eq. (17) also
contains the period e and its harmonics. Equation (12)
contains, for instance, a term

sin(2nq /2e)cos(2~q /2e) —sin(2~q /e),
which has the period e. In addition to these sinusoidal
voltage oscillations, quasiparticle tunneling gives rise to a
time-independent voltage (n =0 Fourier coefficient).
When averaged over an oscillation period, Eq. (14) using
Eq. (17) gives

(13)

p(q) = —,
' + g p„cos(2vrnq /2e) .

tl = OCiCl

(15)

Here we have taken into account that since
p(q)+p(q +e)= 1 we must have po= —,

' and, further, only
the odd harmonics can occur in the expansion. Similar-
ly, we can expand the energy of the lowest band in Fig.

Consider now the case where the voltage of the battery in
Fig. 1 is increased linearly in time, giving rise to a charge
which increases linearly in time, q =It. The equilibrium
distribution function towards which the system is driven
is now a periodic function of time, p(q) =p(It), with
period T =2e!I. Thus h must be periodic with the same
period. We are interested in the voltage

( U) =—f dt U= —f dq h (q), (14)
1 T/2 1 e dE(q)
T —T/2 e —e dq

averaged over an oscillation period T =2e /I. We
proceed as in Ref. 17 and expand the equilibrium distri-
bution function in a Fourier series,

h
H
OJ

00 0.2
~Z=O BRANCH

I I

0.4 0.6 0.8
2CU/e

I I

I.O

FIG. 4. Current-voltage characteristic of the small-
capacitance Josephson junction. The zero-current branch is
obtained by varying the induced charge quasistatically. The
maximum (minimum) voltage is obtained for q =e /2+ ne

(q = —e/2+ne). The nonzero-current-voltage branch given by
Eq. (18) represents the dc current and dc voltage which accom-
pany the Bloch oscillations when the induced charge is in-
creased linearly with time at a rate dq!dt =I.
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=I~ dq p q
d'F. (q) (19)

where we have used partial integration. We can now use
either Eq. (17) or (19) to calculate the slope of the I U-
characteristic near the origin, i.e., the resistance of such a
small junction. We obtain

with an effective capacitance

d E 2

C '= — dq pq= n b„p„. 21
dq e

The inverse effective capacitance C, is, therefore, a
weighted average, over the whole Brillouin zone, of the in-
verse capacitance d E(q)/dq . We can also introduce an
effective temperature and current-dependent capacitance,
expressing Eq. (18) in the form (U) =rI/C, (I). This
current-dependent effectiv capacitance increases mono-
tonically with increasing current.

In Eq. (19) we have expanded h (q) only to linear or-
der in I~. Formally, we can carry this expansion to
higher order in Ir. This procedure assumes that h (q) is
analytic in I~ at the origin. That is not correct as the
following simple example shows. Consider the ease
T~O, where p(q) is piecewise constant. Further, we ap-
proximate the lowest band in Fig. 2(a) by
E (q) =(q —2en) /2C for q in the interval
(n —1)e & q & (n + 1)e. This is a good approximation to
the lowest band, except in the vicinity of the gap EJ at
q =e+2ne. Using the variation of constants to obtain
h (q) from Eq. (12a) yields, for the average voltage, Eq.
(14),

2C( U) /e =y [cosh(1/y) —1]/cosh(1/y)

with y =2I~/e. This result is depicted in Fig. 4.
Whereas the first derivative d ( U ) /dy

~ ~ o
——e /2C exists,

higher-order derivatives taken at y =0, i.e., I~=0,
diverge. This nonanalytic behavior is typical for the
zero-temperature limit only. In this limit the derivatives

small currents linearly with the current, reaches a max-
imum for intermediate currents, and is inversely propor-
tional to the current for large currents. If the sum in Eq.
(18) is dominated by the low-order Fourier coefficients, we
can expect a maximum voltage for a current I-2e/2m~.
The shape of the current-voltage characteristic is typical
for systems in which Bloch oscillations provide the micro-
scopic mode of transport, except that in these systems the
role of the voltage and the current are reversed. Exam-
ples are superlattices ' and ultrasmall normal
oops. ' ' '

Instead of expanding the actual probability h (q) in a
Fourier series, we can also express h (q) in terms of
derivatives of the equilibrium function. From Eq. (12a)
we find h (q)=p(q) I rdp—(q) /dq to lowest order in Ir.
Here we have again used that dh /dt =I dh /dq. Inserting
h (q) into Eq. (14) yields

1 e dE (q) dp(q)U = —— dq I~
e —e dq dq

of the equilibrium distribution function with respect to q
are not bounded. Consequently, a perturbation approach
which expands in powers of I~ can give the correct
answer for the resistance, Eq. (20), but will fail to find the
correct nonlinear part of the I-U characteristic.

The dc I-U characteristic shown in Fig. 4 is qualitative-
ly similar to that found in Ref. 11, but not identical. The
authors of Ref. 11 find at small voltages (in the absence of
a shunting resistance) a resistance which is proportional to
the square of the voltage, I- U /~ and, therefore, a resis-
tance which diverges as U tends to zero. Equation (20),
in contrast, yields a finite resistance as long as the relaxa-
tion time w is finite. For currents which are comparable
or larger than I„Zener transitions through the gap of
Fig. 2 can no longer be neglected and determine the shape
of the I-U characteristic. 26'27

IMPEDANCE OF THE JUNCTION

Next, let us follow Ref. 1 and consider the case where
the battery voltage consists of an ac voltage U2 cosset su-
perimposed on a static voltage U&. In our circuit this
implies that the induced charge is given by
q =q&+q2 cosset, where q~ and q2 are time-independent
constants. We assume that q2 &e such that the system
executes only small oscillations away from the static
value q&. We also assume that the frequency Q is small,
such that resonant transitions to the higher-lying bands
of Fig. 2(a) do not occur. The actual probability of the
system to be in the state E(q) or in the state E(q+e)
can then also be obtained from Eq. (12) with q as given
above. It is sufficient to study the response of the system
to a perturbation of the form q =qi+q2 exp(iQt) We.
solve Eq. (12) to first order in qz and use Eq. (13) to
determine the voltage response. This yields an im-
pedance Z (q&, Q) =Z'+iZ" =5U/oI with a real part

Z'—:8 =r/C, s

and an imaginary part

(22)

Z 0
d E d E 1+ 2 P
dq q, dq q&+e Cuf

(23)

1

C,s(qi, Q)
1

1+02~2 q =q&

4 1
X

cosh (b,E/2k& T)2 (24)

The impedance Z is a periodic function of the static com-
ponent of the induced charge q ] with period e. The
effective small-signal capacitance shown in Fig. 5 deter-
mines both the real and imaginary parts of the impedance:
The first two terms in Eq. (23) are of the order 1/C,
where C is the bare junction capacitance. The inverse
effective capacitance, the third term in Eq. (23), is of the
order e /C k~T&&1/C, for k&T&&e /C. The effective

Here we have introduced an effective small signal capaci-
tance

2
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1

Ctot

1

Co

j.

Ceo
(25)

where Co is the external capacitance. In the limit
Co ~~C,z, the effective capacitance gives rise to a small
modulation AC on top of the external capacitance Co.

2"

'o I

-e/2 0 e/2

FIG. 5. Effective small-signal capacitance, Eq. (23), as a func-
tion of q for the case of a strictly sinusoidal band E(q) with am-
plitude 6 and a temperature k&T =0.16. The capacitance is

given in units of 10 e /A.

capacitance (24) is periodic with period e in q, . At low
temperatures the last factor in Eq. (24) peaks sharply at
e/2+n and is exponentially small away from these values
of q. The factor [d b,E(q)/dq] is zero at q =ne and
reaches a maximum near q =e /2+ n. The inverse
effective capacitance, as shown in Fig. 5, exhibits, there-
fore, very sharp peaks near q =e/2+ne and is exponen-
tially small away from these values of q. As a function of
the applied static voltage U& the effective capacitance is
periodic with period AU& ——e/Co and, in general, exhibits
a phase shift Up.

The reactive part of the junction impedance is thus
dominated by the effective capacitance and given by
Z"=1/(flC, ~) in the temperature range of interest. Note
that the effective capacitance enters Eq. (23) with a nega-
tive sign. It is furthermore of interest that the effective ca-
pacitance and the resistance determined by Eq. (22) occur
in series. This differs from the conventional resistively-
shunted-junction (RSJ) model which describes the im-
pedance of a junction in terms of a capacitor and a resis-
tor in parallel. In the case considered here, resistance is
due to quasiparticle tunneling subject to the Coulomb
forces as described by the junction capacitance C. The
RSJ model, on the other hand, describes a shunting resis-
tor which permits the carriers to circumvent the Coulomb
barrier. The total reactive impedance of the circuit of Fig.
1 is Z"= —1/(SIC„, ) with

Using Eq. (25) we find, for the modulation of the total ca-
pacitance Ct t Cp+ AC,

AC =Co/C g (26)

Since C,z is a periodic function of the induced charge, or
a periodic function of the applied voltage U&, the capaci-
tance given by Eq. (26) exhibits an oscillatory behavior
with a period AU& ——e/Co and a phase shift Uz if the
junction supports a finite voltage at Uz ——0. Therefore,
the measurement of the effective capacitance with a small
signal ac voltage superimposed on a static voltage is sensi-
tive to the potential drop given by Eq. (3), and respective-
ly, Eq. (9), and provides a technique to detect such poten-
tial differences. This behavior of the effective capacitance
in the presence of a small ac voltage superimposed on a
static voltage has possibly already been seen in the experi-
ments on normal junctions, ' as we will argue below.

DISCUSSION

We have emphasized here that a small capacitance
Josephson junction, coupled to an appropriate external
circuit, exhibits tuo key phenomena. At equilibrium such
a junction can maintain a potential difference between two
conductors without an accompanying dc current. In the

. state where the junction undergoes Bloch oscillations the
time lag between the actual distribution function and the
instantaneous equilibrium distribution function' gives
rise to the appearance of a dissipative current-voltage
branch. We would like to point out that the approach
presented in this paper can also be used to treat normal
tunnel junctions. While the dissipative branch of the nor-
mal junction I- U characteristic" differs significantly from
that of the superconducting junction (see Fig. 4), the equi-
librium properties, i.e., the persistent voltage states and
the small-signal impedance can be expected to be qualita-
tively the same. Neither of these properties relies on
coherence, i.e., on Josephson coupling between the super-
conductors, but are even in the case of a Josephson junc-
tion determined by quasiparticle tunneling. Furthermore,
for the equilibrium effects, the fact that the Josephson
junction has a gap (see Fig. 2) and the normal junction has
none is irrelevant. On a phenomenological level a discus-
sion of the equilibrium effects of a normal junction can be
given by taking the limit I, =0 in the results presented
above, i.e. , by replacing the energy bands of Fig. 2 by
E(q) =q /2C reduced to a Brillouin zone of width e. The
small-signal impedance is then also a periodic function of
q or the applied battery voltage Uz. Thus the impedance
of a normal tunnel junction is also characterized by small
periodic variations as given by Eq. (26) on top of a back-
ground capacitance. Lambe and Jacklevic' have possibly
observed the effects described here. They investigated an
array of normal tunnel junctions formed by evaporating
small metallic droplets on an insulating layer covering a
metallic electrode. The other electrode was formed by ox-
idizing the metallic particles and covering them with a
second metallic film. A measurement of the effective ca-
pacitance in the presence of a sinusoidally varying voltage
superimposed on a static voltage exhibited two sharp
peaks as function of the static component of the voltage.
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Thus the measured effective capacitance of such an array
is not periodic in the external voltage, in contrast to our
result (26). We must, however, bear in mind that the re-
sult of Ref. 1 represents only the average behavior of
many tunnel junctions. The self-capacitance C and the ca-
pacitance Co with which a metallic particle is coupled to
the external circuit vary from particle to particle. Thus
each particle exhibits an effective capacitance which is
periodic in the applied voltage with a period which differs
from particle to particle. If Co varies not too strongly
from particle to particle the contributions of all these
junctions will give rise to a AC which exhibits a fine num-
ber of peaks. Thus for such an array of junctions AC is an
oscillatory function of the static component U& with an
amplitude which decreases rapidly with increasing magni-
tude of the voltage. Precisely such a capacitance variation
has been observed by Lambe and Jaklevic. ' They ob-
served a strong double-peak structure in AC centered
around U& ——0. Another aspect of this experiment is high-
ly interesting. The experiment described above corre-
sponds to Uz ——0. The particles have the same chemical
potential as the electrodes. This is achieved by keeping
the sample at zero battery voltage for a time long com-
pared to the charge-redistribution relaxation time before
the experiment is performed. A nonvanishing phase shift
Up is introduced by subjecting the sample to a time-
independent voltage over a period of time comparable to
the charge relaxation time of the sample. Small leakage
currents cause the Fermi level of the particles to adjust
with the upper electrode. Then the battery voltage is set

to zero and the experiment is quickly repeated. The
characteristic double-peak structure described above was
found again, but now at a diAerent voltage. Thus the pos-
sibility of shifting the phase in AC ( U~ ) has also been ob-
served. This demonstrates, as mentioned in Ref. 1, that
the chemical potentials of the metallic particles remain for
a long time (of the order of the charge-redistribution re-
laxation time) at the values which they obtained in the
presence of the long-term voltage. This raises our hope
that the persistence of chemical-potential differences
across single normal or superconducting junctions is an
observable physical effect.

)Vote added in proof. Capacitively induced oscillations
with period e/Co have recently been seen in a "single
grain" experiment by Fulton and Dolan. In their experi-
ment a central electrode (connected to three junctions) is
capacitively coupled to the substrate with a capacitance
Co. Instead of the capacitive measurement of Ref. 1 Ful-
ton and Dolan observe oscillations of the Giaver and Zell-
er Coulomb gap (see Ref. 1) in the I Ucharacte-ristic of
two of the small tunnel junctions connected to the central
electrode.
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