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Nonlocal Kohn-Sham exchange corrections to Si band gaps and binding energy
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We compare the binding energy and energy band gaps of Si calculated with the local-density ap-
proximation to the Kohn-Sham exchange potential and with the correction to that potential which is
exact to first order in p(K)/po. Although the correction is not small, running between 1 eV and
—3.5 eV in the unit cell, its eA'ect on both the band gaps and binding energy is very small. Thus we
conclude that the discrepancy between calculated energy band gaps and experiment must be almost
entirely due to the discontinuity in the zeroth Fourier component of the exchange-correlation poten-
tial.

A few years ago Perdew and Levy' and Sham and
Schluter demonstrated that there is a finite correction
to the band gap of a semiconductor obtained from the
exact eigenvalues of the Kohn-Sham equation due to a
discontinuity 6 in the zeroth Fourier transform of the
exchange-correlation potential. Kohn-Sham calculations
in the local-density approximation (LDA) are known to
result in large energy-gap errors. For both Si (this pa-
per) and Ge (Ref. 4) the calculated gap is about 0.75 eV
too small, which results in Ge becoming a zero-gap semi-
conductor. One-dimensional model calculations ' indi-
cated that 5 is large enough to account for the gap er-
ror. Because for kinetic energy one and three dimen-
sions are essentially equivalent and because everything
could be calculated analytically, we found it pedagogi-
cally useful to calculate the discontinuity in the kinetic
potential 6T, /6n. In the same paper we speculated that
the discontinuity in the exchange-correlation potential in
real crystals might be smaller than originally thought
and that a large part of the gap error might arise from
using the LDA. Because the Hartree-Fock gap in Si is
about three times larger than the experimental gap, it is
obvious that the discontinuity in the Kohn-Sham (KS)
exchange potential is very large and that the discontinui-
ty in the KS correlation potential cancels a large fraction
of it. The only question is, is that fraction closer to 95%%uo

or to 75%7 There does not appear to be any direct way
to calculate the exchange-correlation potential discon-
tinuity in a real three-dimensional semiconductor.
Therefore the only way (other than from one-
dimensional models) to estimate b, is to systematically
improve the KS potential beyond the LDA until one is
confident that the only remaining gap error is the
neglect of A. There have been many attempts to im-
prove upon the LDA. Levine and Louie constructed
the dielectric function for a free-electron gas with an en-
ergy gap whence, in the manner of Singwi, ' they con-
structed a Vxc. This resulted in an increase in the ex-
change part" of Vxc with increasing gap which we con-
sider to be unphysical within their model. Since ex-
change is a one-electron property, the introduction of a
gap while keeping single-plane-wave wave functions
should have no effect. Also a gap per se should reduce
the correlation potential. Thus the small increases they

obtain in Si energy gaps, we believe, are fortuitous. Hy-
bertsen and Louie' performed weighted-density-
approximation' (WDA) calculations. The WDA uses
an ad hoc exchange-correlation (XC) hole which is con-
trained to yield the desired XC potential and contain
one electron in the homogeneous limit only. Still, the
approximation seems physically reasonable and one
might suspect that the 0.15-eV increase they obtained in
the Si indirect gap is about as large as can be obtained
with nonlocal corrections to the LDA. A previous
WDA calculation by Kerker ' had resulted in much
larger energy-gap corrections, but he had made an
unjustified approximation' in Vx& ——6Exc /6n which
made his Vxc equivalent to a Slater potential rather
than a KS potential. It has been known for a long
time' that the Slater potential yields better energy gaps
than the KS in the LDA. von Barth and Car' found no
improvement in Si energy gaps using the Langreth-
Mehl' gradient correction to the KS XC potential.
There have been many calculations of energy-dependent
self-energies culminating in the most impressive work of
Hybertsen and Louie, ' all of whose calculated Si energy
gaps were in excellent agreement with experiment.
These self-energy calculations are, however, beyond the
realm of density-functional theory.

It is best in density-functional theory to define the ex-
change energy to be the Fock energy of a ground-state
configuration consisting of an antisymmetrized product of
the N lowest Kohn-Sham eigenfunctions. This energy is
of order e /r, and contains no higher-order corrections.
Correlation energy may be obtained in principle by in-
cluding the interaction with all other configurations made
up of KS eigenfunctions. The correlation energy contains
all terms of order (e r, )"e Ir, with n & 1. All the correc-
tions to the LDA we have discussed contain correlation
terms of order e /r, . These (presumed) errors arise from
either constructing an ad hoc XC hole or calculating one
but making certain approximations such as static rather
than dynamic screening. It has been suggested ' that
singularities in the correlation energy could, in fact, cause
it to have terms with the dimensionality of exchange. We
do not believe this can ever be the case; for semiconduc-
tors, where there are no singularities, this is certainly not
the case. For Si with r, =2 correlation is only 14% of
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TABLE III ~ Contributions to the total valence-electron ener-

gy of Si (in Ry per atom) without and with the exchange correc-
tion.

LDA

TABLE IV. Nonrelativistic Hartree-Fock and all-electron
LDA valence-electron binding energies (in Ry) obtained from
the difFerence between Si atomic and Si + ionic binding ener-
gies compared with the scalar relativistic LDA pseudopotential
binding energy and experiment.
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7.346 8
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with the additional potential 6V„and in Fig. 1 the self-
consistent 5V is plotted along the [111]axis; it is seen to
range between +1 and —3.5 eV. In Table I are listed
the values of F (G IkF ) ——', and p(G) which contribute to
6V for the first few sets of plane waves. Plane waves out
to (14,6,4) were used in the actual calculation.

In Table II energy levels at I, X, and I are listed rela-
tive to I qq. The inclusion of 5V is seen to improve the
indirect gap by only 0.10 eV and to worsen the direct gap
by 0.06 eV. It is at first surprising that the large 6V of
Fig. 1 yields such small corrections to the energy gaps.
What seems to be happening is that the higher-wave-
number corrections are canceling the G=(2n/a)(1, 1, 1)
correction. For example, the I q5 matrix element between
(111) and (200) symmetrized combinations of plane waves
is 2( Vi i i

—V3 i i ). This matrix element is large because
V~~~ is negative and V3~~ positive and is responsible for
I zq lying below I 2 and I iq. From Eq. (3) and Table I it
is found that 5V„(111)= —0. 138 eV and 5V„(311)
= —0.033 eV and thus they tend to cancel in this matrix
element. The total drop in I qq due to 6V is 0.066 eV,
which is even less than would be expected from this ma-
trix element due to canceling contributions from other
matrix elements.

In Table III are listed contributions to the total energy
of Si with and without exchange corrections calculated
in the usual variational manner. 6E is given by the
second term of Eq. (1) with F replaced by F——,'. We
note that because the p(G) in Table I are of order 10
e /bohr and 5E„ is quadratic in the p(G), its contribu-
tion to E„„iis an order of magnitude smaller than (and
of opposite sign to) the second-order effects of 5V, .
(Note that the first term in the table, the sum of one-
electron eigenvalues minus the potential due to the
valence electrons times their charge density, contains no
first-order contributions from the valence-electron poten-
tial. ) The net effect of the exchange corrections to the

LDA is to reduce the binding energy ( —E„„i) by a negli-
gible 7.4 meV. We have not calculated the cohesive ener-

gy in Table III because our exchange correction is not
readily applicable to atoms. Within the LDA if we add
the zero-point energy of 0.005 Ry to E&,t, ~

and subtract
our calculated spin-polarized atomic energy of
—7.622716 Ry we obtain a cohesive energy of 4.999 eV
to compare with the experimental value of 4.63 eV and
the nonrelativistic 4.83 eV calculated by Yin and Cohen.

Thus we have demonstrated that a rather large correc-
tion to the LDA exchange potential has a very small effect
on Si energy gaps and a negligible effect on its binding en-
ergy. In closing, we would like to suggest that core-
valence exchange corrections which we have ignored
might be more significant than the valence-valence correc-
tions considered here. In Table IV we compare nonrela-
tivistic atomic all-electron Hartree-Fock and LDA
valence binding energies with our relativistic LDA pseu-
dopotential result and the experimental Si fourfold ioniza-
tion energy. Note that the HF exchange makes a larger
contribution to the binding of both the Si atom and Si"+
ion than the LDA exchange plus correlation but that the
LDA valence electrons are more bound by 3.68 eV. This
may be attributed to better screening by the more com-
pact HF cores and to a larger core orthogonalization ki-
netic energy of the HF valence electrons. Thus if a pseu-
dopotential were constructed which was based on an HF
core, the effects on the Si binding energy (and perhaps
cohesive energy also) would be non-negligible. The effects
on the band gaps are much harder to estimate but we
would guess that they are small since the HF and LDA
atomic 3s-3p splittings are nearly identical.
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