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The optical properties of strongly absorbing orthorhombic (and higher-symmetry, uniaxia1) crystals
are considered. Expressions for the amplitude reflection and transmission coefticients of crystal
plates with smooth surfaces parallel to principal planes are presented. Equations for the reflectance
and transmittance of crystal layers with rough surfaces are also derived. The expressions are present-
ed in a form that facilitates their computational implementation and their ready comparison with the
known formulas corresponding to films of isotropic media. A quantitative description of the contri-
bution to the TM-polarized, off-axis infrared absorption spectrum of anisotropic crystal plates due to
polar longitudinal-optic modes will be given. The practical interest of the derived equations for their
applications in absorption spectroscopy of solids is emphasized.

I. INTRODUCTION

Linear optics of nonmagnetic absorbing crystals is
determined by the knowledge of the complex dielectric
tensor e(to) over the spectral range of interest. Converse-
ly, the values of this tensor can be deduced from spectro-
scopic experiments, namely from measurements of the
reflectance and transmittance of crystal samples. The be-
havior of the dielectric function e(co) with frequency, in
turn, conveys information about the electronic and vibra-
tional structure of the solid.

The phenomena of reflection and refraction of light at
the plane boundary of nontransparent isotropic media and
the corresponding reflectance and transmittance of films
of these materials are discussed in a number of places. '

From the transmittance of very thin films of cubic crys-
tals, Berreman demonstrated the potentiality of infrared
(ir) absorption spectroscopy for the detection of polar
longitudinal-optic (LO) modes. These modes also appear
in the reflectance spectrum of films deposited on thick
dielectric or metallic substrates. The bands only occur for
off-normal incidence and for the transverse-magnetic
(TM) component of the radiation.

The crystal optics of weakly absorbing anisotropic
media is treated in Ref. 2. A study on the reflection and
refraction of plane electromagnetic waves at a single basal
plane of strongly absorbing uniaxial crystals is given in
Ref. 6, and an extention of this study to the case of in-
cidence on a principal face of orthorhombic crystals is in-
cluded in Refs. 7 and 8. In these latter references it is
shown that for anisotropic crystals of symmetry as high
or higher than orthorhombic, TM-polarized, off-axis ir
reflection spectroscopy on principal plane surfaces of thick
crystals can be employed for the determination of the lon-
gitudinal frequency of those optic modes polarized per-
pendicularly to the surface.

In spite of its practical importance there appears to be
no readily available general analysis dealing with the
reflection and transmission of strongly absorbing aniso-
tropic crystal plates. This will be the main subject of the
present work.

We shall review in this section the propagation of plane
electromagnetic waves of a single frequency in absorbing
crystals, following closely the treatment given by Landau
and Lifshitz for transparent anisotropic media.

For media containing no free charges or currents,
Maxwell's equations for the electric field E, electric induc-
tion D, magnetic field H, and magnetic induction B can
be written (in Gaussian units) as

1 (3BVxE= ——
c Bt

1 0DVXH=-
c Bt

(la)

(lb)

For the sake of completeness we shall briefly review in
Sec. II the optics of unbounded absorbing crystals. The
results of Sec. II will be particularized in Sec. III to the
case of light propagation along principal planes of non-
transparent crystals with symmetry as high or higher than
orth orhombic.

In Sec. IV we shall examine the boundary conditions
for plane electromagnetic waves at the plane interface be-
tween an absorbing crystal and an optically isotropic
medium.

In Sec. V we shall calculate the amplitude reflection
and transmission coe%cients corresponding to principal
faces of absorbing crystals. These coefficients will be em-

ployed in Sec. VI to derive the expressions for the
reflectance and transmittance of absorbing crystal plates.
This section also includes a detailed quantitative descrip-
tion of the absorption bands due to LO modes polarized
perpendicularly to the plate which occur in the corre-
sponding TM-polarized, off-axis transmission spectrum.
It is shown that the intensity of these bands is enhanced
by cooperative resonant effects due to selective reflection
at the front surface and true absorption in the bulk of the
sample. In the final Sec. VII we will summarize the main
results of this work and discuss some of their applications
to ir spectroscopy of solids.

II. CRYSTAL OPTICS
OF ABSORBING MEDIA
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V D=V B=O (lc) where

where e is a tensoria1 linear integral operator.
For a plane electromagnetic wave of frequency co

propagating in an absorbing crystal, all field vectors
can be expressed in a form proportional to
exp[i [(cole)n r c.ot—]], where n=n'+in" (n' and n",
real vectors) is the (in general complex) wave-normal
vector. From Eqs. (1) it follows that the corresponding
n, D, and H vectors are mutually perpendicular, while E
is normal to H; hence the three vectors n, E, and D
must be coplanar. Moreover, for monochromatic plane
waves, Maxwell's equations (1) lead to the relation'

D=n E—(n.E)n, (3)

where n, the complex magnitude of the wave-normal vec-
tor n, is the refractive index.

In absence of spacial dispersion, the Cartesian com-
ponents of relation (2) become

(4)

We shall consider nonmagnetic (B=H) linear crystals;
consequently, the relation between D and E is

D=e E,

D, =PE;, i =xyz . (5)

Substitution of these relations in Eq. (3) yields the com-
plex Fresnel equation '

«7 (~)=«t (~)+«a (~)

are the i, k elements of the dielectric tensor W=e'+is".
The real (E') and imaginary (e") parts of F are symmetri-
cal tensors ' and therefore both can be diagonalized into2, 3

their principal values by an orthogonal transformation to
their respective dielectric axes. In crystals of orthorhorn-
bic or higher symmetry, e' and e" have a common system
of principal axes. For rhombohedral, tetragonal, and hex-
agonal (uniaxial) crystals, one of these axes is coincident
with the crystallographic axis of symmetry of the third,
fourth, or sixth order, respectively, (optical axis). The
direction of the other two axes, in a plane perpendicular
to the optic axis, is arbitrary and the corresponding pair
of principal values for e' and e" are, respectively, equal.
In an orthorhombic crystal all three dielectric axes are
coincident with the crystallographic ones.

In the system of principal dielectric axes of crystals
with symmetry as high or higher than orthorhombic, re-
lations (4) reduce to

n (F n +eyny+e n ) —[n e (Fy+e )+nyty(e +e )+n e (F +ay)]+a rye =0 (6)

For a given frequency, Eq. (6) is a fourth-order complex
wave-vector surface in the coordinates n, ny, n, which
determines the values of the complex refractive index n as
a function of direction. Being the complex Fresnel equa-
tion (6) of second order in n there will be, in general, two
different complex values of n corresponding to each
direction of propagation.

Some general properties of the complex wave-vector
surface (6) can be studied by introducing the complex ray
vector s. The direction of s is parallel to that of the
Poynting vector S=c(E&&H)/4~, and its magnitude is
such that n s=1. The locus of the points s generate in

the coordinates s sy sz a complex ray surface.
The complex wave vector and ray surfaces are in a cer-

tain dual relationship. Since the Poynting vector is per-
pendicular to the complex wave-vector surface, " the same
is true of s. Hence the ray vector s of a wave with a given
wave-normal n vector is perpendicular at the correspond-
ing point of the wave-vector surface. As in the case of
transparent crystals, the reverse is also valid: the normal
to the complex ray surface gives the direction of the corre-
sponding complex wave vectors.

The location of the ray vector relative to the field vec-
tors in the wave is given by

s (F F,s„+@„F,s~+F F~s, ) —[s (F~+F, )+s~(F„+8,)+s, (F +a~)]+1=0,

which determines the (fourth-order) complex ray surface.
When the direction of s is given, Eq. (7) is a quadratic
equation for s which in general has two difterent complex
roots. This implies that two rays with different complex
wave vectors can propagate in any direction through the
crystal.

For an arbitrary direction of propagation, the two com-
plex refractive indexes n solutions of Eq. (6) are, respec-
tively, associated with the propagation of two waves
whose corresponding D vectors are perpendicular to each
other and, in general, elliptically polarized. If the wave-
normaI vector n lies on any of the three principal planes
determined by the principal dielectric axes, then both

modes of propagation are linearly polarized: one with
D~~E perpendicular to this plane and the other mode with
D (and the corresponding E vector) laying on it. A simi-
lar dual consideration can be done regarding the linear
polarization of the E vector in the two ray modes associ-
ated with a given direction of the ray vector s.

III. PROPAGATION OF ELECTROMAGNETIC
WAVES ALONG PRINCIPAL PLANES

For simplicity we shall consider the propagation of
monochromatic plane waves along principal planes in
crystals of symmetry as high or higher than orthorhom-
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-2 -2
nx nz+
~z ~x

(9)

associated with a wave whose E vector lies on the (x,z)
plane of propagation [transverse-magnetic (TM) mode].

From Eq. (7) we obtain the corresponding pair of com-
plex ray surfaces:

s =1/F~ (TE mode), (10)

F,s, +F„s,=1 (TM mode) . (1 1)
In the case of uniaxial crystals (i.e., for noncubic crystals
of symmetry higher than orthorhombic), the TE and TM
modes correspond to ordinary and extraordinary waves,
respectively.

For TE waves, the complex refractive index 50 and the
complex magnitude of the ray vector so, given by Eqs. (8)
and (9), are independent of the direction of propagation.
From these equations and the condition no so ——1, it fol-
lows that no~~so and hence Do~~Eo. Therefore the TE
mode propagates as a wave in an isotropic medium.

For TM waves, the corresponding n, and s, values are
given by Eqs. (9) and (11) and depend on the direction of
propagation. Introducing in these equations the (in gen-
eral complex) angles 8, and 8,' that n, and s„respective-
ly, subtend with the z axis, we obtain

sin 0, cos i9,'+
n,

~z Sin Oe +~x COS Oe (12b)
se

Taking into account that n, and s, are, respectively, per-
pendicular to the ray surface (11) and wave-vector surface
(9), the following relation between 8, and 8,' is obtained:

bic. For a wave propagating along the (x,z) principal
plane, n~ =0 and the Fresnel equation (6) gives the fol-
lowing solutions:

-2Il =Fy )

corresponding to a wave whose electric field E vector is
perpendicular to the (x,z) plane [transverse-electric (TE)
mode], and

-(i) -(r) -(t)
Ilx =nx =ax (14)

Case (A). Equation (14) leads to the complex Snell's law
of refraction

(15)

where 9; is the angle of incidence.
From Eqs. (8), (9), and (15) it follows that

n,'"= (F~ —sin 8; )' (TE mode),

,"=(F„/P, )'~ (e, —sin 8;)' (TM mode) .

(16)

(17)

Case (B). In this case Eq. (14) becomes

n =n„=n =n sinO;,-(i) -(r) -(t) — ~

(18)

where now the "angle of incidence" 0; may be a complex
number, and the complex refractive index n of the crystal
is given by Eq. (8) for TE polarization and by Eq. (12a)
with 8, =8; for TM waves. From Eqs. (8), (12a), and (18)
it follows that

n, = (Fb F~ sin 8—; ) (TE mode), (19)

media. '

For incident (i), reflected (r), and transmitted (t) mono-
chromatic plane waves, the complete homogeneity of the
electromagnetic field at the plane interface implies that the
components of the wave-normal vectors n", n", and n'"
along the plane must be equal.

We shall examine now the following situations: case
( A) where medium 1, from which the wave is incident, is
air and medium 2 is an absorbing crystal, and case (B)
where medium 1 is an absorbing crystal and medium 2 is
assumed to be isotropic (which could eventually be air or
an absorbing body).

Let us consider a crystal of symmetry as high or higher
than orthorhombic whose dielectric axes are labeled x, y,
and z and whose limiting face is parallel to the principal
(x,y) plane. For incident waves laying on the (x,z) plane,
the rejected and refracted beams also lay on this plane
(see Fig. 1) and the boundary condition that applies to the
corresponding wave-normal vectors becomes

sx &x Iix= tane,'=
n,

~X
tano, .

Ez
(13)

For TM polarization, all n„s„D„and E, vectors lie on
the principal (x,z) plane but, in general, neither n, and s,
[see Eq. (13)]nor are D, and E, parallel to each other.

IV. BOUNDARY CONDITIONS

In Secs. II and III we considered the propagation of
light through unlimited crystals. We shall now study the
reAection and refraction of plane electromagnetic waves at
the plane interface between an absorbing crystal and a iso-
tropic medium.

When light passes from one medium into another the
electromagnetic field vectors must satisfy certain bound-
ary conditions which derive from Maxwell's equations (1),
namely the conditions of continuity of the tangential com-
ponents of E and H at the interface between the two

edium 2

)'
fA 8 d I U%

FIG. 1. Wave-normal n=n'+in" vectors for the incident,
reflected, and refracted beams at the interface between an isotro-
pic medium and an absorbing crystal cleaved along a principal
plane. Because of the boundary conditions that apply to the sit-
uations considered in this work, the field vectors of these beams
are in general described by inhomogeneous plane waves propor-
tional to exp[i(cole)(n'+in") r] with n" perpendicular to the
interface.
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-(t)
Ilz — ~b

F, +8, cot 0;

1/2

(TM mode), (20)

where Fb is the dielectric constant of the isotropic medi-
um.

V. REFLECTION AND TRANSMISSION
AT PRINCIPAL FACES OF ABSORBING CRYSTALS

A. Case (I): TE polarization

The boundary condition for the tangential component
ofEis

Ey", +Ey',"'——Ey'," . (21)

The condition of continuity of the tangential component
of H can be expressed in terms of the corresponding vec-
tor E by

(22)

We can now procede to calculate the components of the
reflected and transmitted waves in terms of those of the
incident beam. Since an arbitrary incident wave can be
resolved into their TE and TM components, we shall con-
sider separately these two cases, (I) and (II), employing a
subscript s for the TE mode and p to refer to the TM
mode. We shall identify medium 1 with air (of dielectric
constant e~ = 1), medium 2 with the absorbing crystal
(@2=A), and medium 3 with an isotropic body (e3 —Eb),
and will be interested in the reflection and refraction at
the interfaces 1-2 and 2-3.

-( )(H( ) H( )) -( )~( ) (26)

Defining the amplitude reflection and transmission
coefficients F' ' and t' ' by

H'"'
H(i)

~(t)

Hyp

we obtain from Eqs. (25) and (26) the relations

—( t') —( t)Sz —Sz(p) z z

—(i), —(t)Sz ~sz
-(i)

( ) ztp= - (I ) - (t)Sz +Sz

(27a)

(27b)

(28a)

(28b)

Expressions for r~2, F2i, F23, ti2, t2~, and t23 in terms of
the angle of incidence and the dielectric constants can
easily be obtained from Eqs. (24) and (28) and the results
of Secs. III and IV. To this purpose, for TE waves, we
must replace in Eqs. (24) the values of the z component of
the wave-normal vectors given by Eqs. (16) and (19); for
TM waves, we must introduce in Eqs. (28) the values of
the z components of the ray vectors obtained employing
Eqs. (12), (13), (15), and (16).

For thick samples, the refracted wave at the interface
1-2 is completely absorbed by the crystal. The ratio of the
reflected and incident intensities (reIIectancel correspond-
ing to the s- and p-polarized components are given by the
well-known formulas:

Defining the amplitude reflection and transmission
coefficients f" and t "by

cosO; —Jy

cosO; +Jy
(29a)

E(r)
-(s)r

E (I)

E(t)
(s) ys

1 + &
(s)

E (1)

there results from Eqs. (21) and (22) that

—(i) —(t)n, —n,
F —(i), —(t)

—(i)
( )

2Ilzs
—(i) (

—(t)

B. Case (II): TM polarization

(23a)

(23b)

(24a)

(24b)

=/r'p
/

e cosO; —J,
FcosO;+ J,

(29b)

where J~ =(t~ —sin 0; )'~2, J, =(e, —sin~0;)'~~, and
e=(e e, )'~.

The equation (29a) for the TE reilectance W, and the
similar equations that apply to the other two principal
planes allow the determination of the complex dielectric
tensor F, and thus the optical properties of the crystal,
from experimental reflectance. This can be performed, for
example, by measurements of A, at a given frequency and
at two (or more) angles of incidence' ' or employing the
Kramers-Kronig' ' dispersion relations on reflectance
data at a fixed angle of incidence but covering a range as
wide as possible of frequencies. ' '

Equation (29b) rewritten in the form

In this case the electric field E lies on the plane of in-
cidence (x,z) and it is more convenient to carry out the
calculations for the magnetic field, which is along the y
axis and satisfies the boundary condition

A~(co) =
1/2F,'~ (co) coso; —[1—(sin 8;)/e, (co)]'

(co) cos0;+ [1—(sin 0; )/e, (co)]'

(30)
H'p'+ Hy"' ——Hyp' . (25)

Relating the electric field for the three waves to their asso-
ciated magnetic fields, the boundary condition that applies
to the tangential component of E becomes

shows that if F, (co) presents a resonance in a frequency re-
gion where the behavior of F (co) is smooth, then the TM
reflectance will exhibit a maximum in the spectral range
where F, (co) is small', that is for the longitudinal frequency
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iSO
me

tion. The values of Oo and 0, are expressed in terms of
the angle of incidence 0; through

sin 0;
sin Oo —— (32a)

Cf

sa sin 9;

~z sin L9i

(32b)

ai These relations allow us to express the amplitude
reflection and transmission coefficients at the interface 2-3
as a function of 0;:

FIG. 2. Multiple reAections and refractions of a plane wave
in a plane parallel crystal plate.

of the associated optic mode polarized along the z axis.
Hence the frequency of LO modes can be determined
from TM, off-axis reflectance measurements in thick crys-
tals."

VI. REFLECTANCE AND TRANSMITTANCE
OF ABSORBING CRYSTAL PLATES

—(s)r23=-
Jy+ Jb

(,)
2Jy

t 2'3=
Jy+ J,

( )
FbJ, —FJb

~ (g)

Fb J, +FJb

( )
2FbJztB=

Fb J, +FJb

(33a)

(33b)

(34a)

(34b)

n sinO= sinO;, (31)

where n=no:E'y and 0=0O for TE polarization, and
n=n, [given by Eq. (12a) with 8=8, ] for TM polariza-

Because of its practical interest is spectroscopy of solids
we shall consider here the reflectance and transmittance of
absorbing crystal plates with faces parallel to principal
planes. The situation is schematically depicted in Fig. 2,
where the optical properties of the three media are as de-
scribed at the beginning of Sec. V. Both limits of smooth
and rough boundary surfaces of the crystal layer will be
considered.

For thin crystal plates, the multiple reflection-
transmission processes at the 1-2 and 2-3 interfaces can-
not be neglected. To deal with this case we shall
recourse to the usual procedure of multiple-beam in-
terference employed in optics. '

From the complex Snell's law (15), we obtain for the
complex angle of refraction at the interface 1-2:

where Jl, = (Fl, —sin 0; )'
The values of Fq~ and t2~ for both TE and TM polariza-

tions can be obtained as the particular cases of Eqs. (33)
and (34) corresponding to Fl, =1. We can easily verify the
following relationships:

&2i = —&&2 (35)

t)pt2] ——1 —F )2 , (36)

which generalize to the case of anisotropic crystals the
corresponding relations among the amplitude reflection
and transmission coefficients that apply in the case of two
adjacent isotropic media. '

For smooth crystal faces (within the scale of a wave-
length of the radiation), the amplitude A„of the reflected
wave (either the electric field for TE polarization or the
magnetic field for TM polarization) is given by a series
that takes into account multiple-beam interference effects
(see Fig. 2):

A„= Al[&12+(tl2t21)~23e +(tl2t21)~21r 23e +(f12421)r 211 23e
'~"+ ]

Jy (TE mode)
C

(38a)

(F„/8, )' —J, (TM mode) .
C

(38b)

where A; is the amplitude of the incident beam and Ph is
the complex phase acquired by the wave over the thick-
ness h of the layer. The factor l)(l in the exponents is given
by

A, = A;[(t12t21)e' +(t12t21)t 21e
' "

+ (f12421)ale + ' ' ] (39)

Introducing into Eqs. (37) and (39) the relations (35) and
(36) and summing the series there, results in the following
expressions for the amplitude reflection and transmission
coefficients:

The amplitude 2, of the wave transmitted by a crystal
plate in air is

Rg ——
r]pe ' "+r/3e' "

e ' "+F)2rp3e'
(4Oa)
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(40b)
1 —F(22

iPh g 2 i$h

The corresponding reflectance (R) and transmittance (T)
are given by R =

I
R&

I
and T

Replacing into Eqs. (40) the values for 1')2 [see Eqs.
(29)], F23 [Eqs. (33a) and (34a)], and P [Eqs. (38)), we ob-
tain for the amplitude reflectance of absorbing crystal
plates deposited on thick isotropic substrates:

E(r)
(Rg), = cos(5J» )(1—Jb / cos8; ) i si—n(5J» )(Jb /J» —J» / cos8; )

cos(5J» )(1+Jb / cos8; ) i s—in(5J» )(Jb /J» + J» / cos8; )

(41a)

H(r)
(Rg )~ =

~X
cos 5 J,

X
cos 6 J,

rz

Jb

Fb cos8;

J
1+

Fb cos8;

~X—i sin 5 J,

X—i sin 5 J,

Fcos8;

J,

FJb

FbJ,

FJb
+

Fb J, Fcos8;

(41b)

—1

Jy cos8;
cos(5J») —— + sin(5J» )

2 cos8; J
1/2

Jz E COS8 '

J —— +
E cos8; J,

E(t)
(Tg ), = (,.)

——

~(t)
~X(T~)~= . = cos 5H(i)

and for the amplitude transmittance of a crystal layer in air:

~X
sin 6

Fz

1/2 —]

(42a)

(42b)

In Eqs. (41) and (42) 5=bc@/c=27rh/A. o is 2n times the thickness of the layer measured in vacuum wavelengths of the
incident radiation.

The amplitude reflectance and transmittance formulas (41) and (42) are generalizations to the case of anisotropic crys-
tal plates of the corresponding formulas for films of isotropic media. '

For layers thin enough such that
I
5J»

I
«1 for TE waves, or

I
5(e /F, )' J,

I
«1 for TM modes, there results from

Eqs. (41) the following approximate expressions for the reflectivity of very thin crystal films deposited on a transparent
substrate of

I
Eb

I
) 1:

'2
2 Jb COS8

R, = I(Rg),
I

Jb + cos8;
cos8;

1+45Ey' (43a)

R» ——
I
(R„)

2
Jb Eb cos8i

Jb+Eb cos8,

46 cos8;
1+ Jb Ex Eb

(eb —I)(eb cos 8; —sin 8; )

Ez
sin 8;

Ez +Ez
(43b)

In these and other expressions that follow, the principal
components of the complex dielectric tensor are given by
8 =E'+iE"; a=x,y, z. The TE-polarized reflectance R„
as in the similar case of very thin cubic crystal films dis-
cussed by Berreman, shows peaks at the maxima of
e» (co ), that is for the transversal frequencies of optic
modes polarized along the y axis. On the other hand, the
TM reflectance' Rz will exhibit maxima at the transver-
sal frequencies of optic modes polarized along the x axis
and, for OA'-axis incidence, minima at the frequencies
where

I

I (1m/F, )
I

=e,"/[(e,') +(e,") ]

is maximum, i.e., at the longitudinal frequencies of optic
modes polarized along the z axis.

If the substrate is a good conductor, so that
I

eb
I

is
very large, Eqs. (43) reduce to

Rp ——1 —46
Ez sin 8;

(g,')2+(e,")2 cos8;
(44b)

As discussed in Ref. 5 for the case of very thin cubic crys-
tal films deposited on a metal substrate, because of the
large value of

I
eb

I
almost no electric field can exist

parallel and adjacent to the crystal-metal interface (which
now constitutes a nodal plane of the electromagnetic
wave). Hence transverse modes polarized along the plane
cannot be stimulated in a very thin crystal film on a metal
and absorption peaks only appear at the longitudinal fre-
quency of optic modes polarized perpendicularly to the
crystal plate in the TM-polarized component at nonzero
angle of incidence.

From a first-order expansion of Eqs. (42) in powers of
5, we obtain the following approximate expressions for the
transmittance of very thin crystal films in air:

R, =1, (44a) T, =
I
(Tq ),

I

=1—5e»/cos8;, (4Sa)
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sin 0;
T~= i(Tq)~ i

=1—|i e,"cos8;+,
2 „2+g cosO;

(45b)

We note that T, will exhibit minima at the transverse fre-
quencies of optic modes polarized along the y axis. For
off-axis transmission, T~ will present minima at both the
transversal frequency of x-polarized optic modes and at
the longitudinal frequency of active modes polarized per-

pendicularly to the crystal plate.
We now turn to the case when the crystal sample is

rough, i.e., the reflection-transmission processes at both
surfaces of the sample add incoherently (see Fig. 2). In
this case, the multiple-beam interference effects disappear
and are the intensities of the various reflected and
transmitted beams rather than their amplitudes which
should be added. The intensity I„ofthe wave reflected by
a crystal plate deposited on a thick substrate when il-
luminated with a beam of intensity I; is

I =I [ ~
~»

I

'+
I
~»

I

'( I —
I
~»

I

')'e ""(I+ 1~231' ~»
I

'e ""+ 1~231'
I
~i21'e "'+ (46)

P"=P,"= Im(P, )=—Im(J») (TE mode),
C

(47a)

P"=Pz' ——Im(gz)= —Im[( „elF, )'~ J, ] (TM mode) .
C

where the relationship (35) has been used and P", which is
one-half of the linear-absorption coefficient, is the imagi-
nary part of P given by Eqs. (38):

mula for the transmittance of a layer of isotropic material
at normal incidence:

(1 ~)2 —ah
T=

cq 2 —2ah
(53)

where o; is the isotropic linear-absorption coefficient, to
the case of absorbing crystal plates and arbitrary angle of
incidence. For TM waves, we obtain the result

(47b)

The intensity I, of the wave transmitted by the sample in
air is

lt

(1—A )e
—4&5 h

(54)

)([1+ /F)2/ e + /Fi2/ e + ' ] . (48)

The corresponding reflectance R and transmittance T are

I,
R ———l~»l'+ I~» I'(I —21~»l')e ""

I —
[
r

[

2
~

r
~

2e -44 "h

l4 4~"
( 1 ~ )2 —24 "h

~ 2 —4P"h

(49a)

(49b)

%[1+(1—2%)e ~ "]
cq 2 —+"h

(50)

If the crystal plate is deposited on a very good conduc-
tor, then

~
F23

~

=1 and Eq. (49a) adopts the form:

A+(1 —2A )eR= —44t"h
(51)

which, as expected, takes the value R = 1 for transparent
crystals (P"=0).

For TE waves, the transmittance (49b) becomes

where in the last equation we have introduced the
reflectance JR=

~
Ti2

~

of a thick absorbing crystal [Eqs.
(29)]. For a crystal sample in air ( ~F23

~

=
~
fi2

~

), the
reflectance (49a) becomes

where %z is given by Eq. (30) and Pz' by Eq. (47b).
Rewriting this latter equation, we can express the aniso-
tropic absorption coefficient 2''(co) in the form:

1/2
sin 0;

2$~(co)= Im 1 — F (co)
c p~ (m)

(55)

Equation (55) shows that for resonances of F, (co) separat-
ed enough from the strong resonances of F (co) in the
spectrum and for radiation not incident normal to the
crystal slab, the absorption coefficient will exhibit a max-
imum in the spectral range where F, (co) is small, i.e., for
longitudinal frequencies of optic modes polarized along
the z axis. We have already commented at the end of Sec.
V that because the same dependence with the function
[1—sin 8;/e, (co)] which appears in Eq. (55), the off-axis
reflectance %~(co) on a thick crystal [Eq. (30)] will present
a maximum at the same longitudinal frequencies as above.
These will appear as minima in the transmittance spec-
trum of the crystal plate. As can be appreciated from
Eqs. (54) and (55) the intensity of these peaks will be
enhanced by the resonant absorption of the sample at the
same frequencies. As expected, this effect is also present
in the limiting case of crystal layers with smooth surfaces.
In this case, however, the analysis has to be carried out
numerically on the more complex expression that results
from the absolute square of the TM amplitude transmit-
tance (42b).

Ts—
—2$, h

—4P, h
S

(52) VII. SUMMARY AND CONCLUDING REMARKS

where A, is given by Eq. (29a) and P,
"

by Eq. (47a).
Equation (52) is a generalization of the well-known for-

The main results of the present work are the derivation
of the expressions for the amplitude reflection coefficients
[Eqs. (41)] and amplitude transmission coefficients [Eqs.
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FIG. 3. Computed TM transmittance of a 15-pm-thick
Ba[Fe(CN)sNO] 3HzO crystal plate parallel to (100) in the NO
stretching region for an incident ir beam subtending and angle of
5' with the a axis and with E parallel either to the (a, b) plane,
solid line, or to the (a,c) plane, dashed line.

(42)] of orthorhombic (and higher symmetric) crystal
plates with smooth surfaces and for the reflectance [Eq.
(49a)] and transmittance [Eqs. (52) and (54)] of samples
with rough surfaces.

The situation corresponding to the limiting reflectance
of very thin anisotropic crystal films deposited on trans-
parent dielectric [Eqs. (43)] or metallic [Eqs. (44)] sub-
strates could not be easy to realize in practice because the
difhculties in obtaining samples of very small thickness.
In particular, however, Eq. (44b) still provides a qualita-
tive explanation for the observation of peaks at only the
LO-mode frequencies in the TM-polarized, off-axis ir
reflectance spectrum from layers of anisotropic polycrys-
talline substances evaporated or mechanically deposited
on a metallic substrate. On the other hand, very thin
films of isotropic materials are often obtained in multi-
phase stratified systems of physical interest. Studies on
the reflection spectroscopy of these systems based upon
the counterparts of Eqs. (43) and (44) that apply to the
case of isotropic media can be found in Refs. 5 and 21.

Similar considerations as above apply to the limiting

values of Eqs. (45) for the transmittance of very thin crys-
tal films. In particular, the simple expressions (45) can be
used to describe qualitatively the absorptions due to TO
and LO vibrations in the transmittance spectrum of aniso-
tropic crystal plates. For a full quantitative account of
these absorptions we must recourse to the complete ex-
pressions (42), (52), and (54).

It is an usual practice in polarized ir spectroscopy of
solids to measure LO mode frequencies by TM, off-axis
transmittance of thin crystal plates (see, for example, Ref.
22). Berremans has given a complete discussion regarding
the coupling of LO modes to ir radiation in the case of
very thin cubic crystal films. As discussed at the end of
Sec. VI of the present work, the expressions (42b), (54),
and (55) provide a quantitative description of the
phenomenon in anisotropic crystal plates. These expres-
sions have been employed to study the vibrational be-
havior of barium nitroprusside trihydrate (BNP),
Ba[Fe(CN) sNO] 3HqO [orthorhombic, space group C q,

(Pca2~)] in an spectral region including the strongly polar
NO stretching mode. Figure 3 shows the computed po-
larized transmission spectra of a BNP crystal plate
bounded by rough surfaces parallel to the (bc) plane in the
range 1890—2030 cm ', calculated using Eqs. (54) and
(55). The components of the dielectric tensor e(&a) of
BNP in the above range were derived from reflection ex-
periments and crystallographic information. The theoreti-
cal spectra are in good agreement with spectroscopic data
(reported in Ref. 23) and show a sharp absorption band at
about 1980 cm ' (misassigned in Ref. 23) which is due to
the NO longitudinal optic mode of factor-group symmetry
species B~ (polarized along the crystal a axis). The peak
at about 1936 cm ' corresponds to the NO transversal
optic mode B2 (polarized along b). A fuller account of
these results will be published elsewhere.
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