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The high-pressure properties of carbon in eight different structures are calculated using an

ab initio pseudopotential local-orbital method. In particular, the structural properties of hexago-
nal diamond and variation of its fundamental band gap with pressure are calculated for the first

time. The variation of the fundamental gap in hexagonal diamond is found to have the opposite
sign to that in cubic diamond, although the cubic and hexagonal forms have almost identical
structural properties. Among the structures examined, diamond is found to transform under hy-

drostatic pressure first to the fourfold coordinated bc-8 (or Si-III) structure. The bc-8 form is

favored at pressures greater than 11.1 Mbar. This is a slightly lower transformation pressure than

that recently calculated using the pseudopotential plane-wave method. The sixfold coordinated
structures, simple cubic and P-tin, are found at low pressure to be kinetically unstable, transform-

ing spontaneously, without an energy barrier, into the cubic diamond structure. This result sug-

gests that sixfold coordination of liquid carbon will be unlikely to occur at moderate pressure and

temperature. Similarly, sixfold coordination is not expected in carbon clusters. A method of fully

utilizing crystal symmetry to reduce the amount of computation in evaluating two- and three-
center integrals needed in the local-orbital method is developed for the present calculations.

I. INTRODUCTION

The high-pressure properties of carbon are of great
theoretical interest at this time because of the enormous
importance of the diamond anvil cell in high-pressure
physics' and also in the context of structural stability and
general high-pressure behavior of all semiconductors and
insulators. %ith present techniques using the dia-
mond anvil cell, the stability of diamond effectively im-
poses an upper bound on the pressures which can be stati-
cally generated in the laboratory. Thus it is of great im-
portance to calculate as accurately as possible the general
high-pressure properties of carbon. 7-13

The combination of local-density-functional theory, '

ab initio pseudopotential, ' and the self-consistent local-
orbital technique' ' is exceptionally well suited to the
study of this problem. Local-density-functional theory
has been shown in the past to be capable of calculating
with considerable accuracy the structural properties of a
broad range of solid-state systems. Carbon, with its small
core consisting only of the 1s state, is a good candidate for
the ab initio pseudopotential approach because the core
wave functions do not overlap significantly with the
valence wave functions, and, moreover, the core eigenval-
ues are well separated from the valence eigenvalues. Al-
though the resulting pseudopotentials are much deeper
than is the case with, for instance, silicon or germanium,
this does not pose serious problems in the present ap-
proach because we do not represent the pseudopotential in
Fourier space. Finally, turning to the question of repre-
sentation of the eigenstates in the Kohn-Sham equa-
tions, ' a relatively small local-orbital basis (12 orbitals
per atom) can be used to represent with great accuracy the
highly localized valence states in carbon.

In this paper we study fourfold, sixfold, eightfold, and
twelvefold coordinated structures of carbon. The fourfold
coordinated structures are cubic diamond, hexagonal dia-
mond, and the bc-8 or Si-III structure. ' Simple-cubic
and the P-tin structure are the sixfold coordinated struc-
tures, body-centered cubic the eightfold coordinated struc-
ture, and hexagonal close-packed and face-centered cubic
the twelvefold coordinated structures. As in silicon and
germanium, the minimum energy of each structure (i.e.,
the equilibrium energy at zero pressure) increases with
coordination number. (See Fig. 1.) The three fourfold
coordinated structures are found to lie within 0.7
eV/atom of each other at zero pressure, the sixfold coor-
dinated structures approximately 2.5 eV/atom higher, and
the eight and twelvefold coordinated structures approxi-
mately 5 eV/atom above the fourfold coordinated struc-
tures.

Of the above structures, the only ones which have been
observed experimentally for carbon are the cubic and hex-
agonal diamond forms. Cubic diamond is the common
form of diamond ' but the hexagonal variety has been ob-
served to occur naturally in craters formed by meteor-
ites and has also been synthesized artificially from
graphite. Crystalline carbon also occurs in the hexago-
nal graphite (the most stable form at zero pressure) and
rhombohedral graphite structures. ' Because of their low
density we have not included the graphitic structures in
the present study since we are concerned with very-high-
pressure properties.

The calculated structural properties of cubic diamond
and hexagonal diamond are almost identical, and are in
excellent agreement with experiment and with previous
calculations ' ' for cubic diamond. The difference in
their equilibrium energies is only 0.03 eV/atom, hexago-
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FIG. 2. One cubic unit cell of the cubic diamond structure.
The dashed lines show the directions of the cubic axes. The ori-

gin of the text description lies half-wave between the two atoms
at the lower left corner.

ly leads us to consideration of the hexagonal diamond
structure, by analogy with the relationship which exists
between the two close-packed structures, face-centered cu-
bic, and hexagonal close packed. Recall that in the fcc
structure trigonal planes of atoms are stacked in the [111]
direction in [ABC] . sequence, while the hcp
structure consists of trigonal planes stacked in the c direc-
tion in [AB] . . sequence. Both structures have the
same arrangement of twelve nearest neighbors and only
dift'er in the arrangement of third-nearest neighbors. The
hexagonal diamond structure is related to the hcp struc-
ture in exactly the same way as cubic diamond is related
to the fcc structure; each atom in the hcp structure is re-
placed by a pair of atoms with the line joining the pair ly-
ing in the c direction and of length equal to —,

' the inter-
layer separation of the hcp structure. In this way perfect
tetrahedral coordination of nearest neighbors can be
achieved, just as in the cubic diamond structure (see Fig.
3). Again we have layers of buckled hexagonal rings of
atoms, but now the stacking is in [ AB] . sequence
in the c direction. The unit cell is hexagonal with four
atoms in the basis at positions +[—,'a~+ —,'aq+zc] and
+ [ —,'at+ —,'a2+( —,

' —z)c], where the angle between the hex-

agonal basis vectors a~ and a~ in the basal plane equals
~/3 and c is normal to the basal plane. The space group

is Dsq. Both c/a and z are free parameters from the
point of view of crystallographic symmetry. However,
perfect tetrahedral coordination is achieved only when
c/a =&8/3, the ideal ratio for the hcp structure, and
z'=

—,', . Cubic and hexagonal diamond are the homopolar
analogs of the zinc-blende and wurtzite structures, respec-
tively.

Unlike the two diamond structures, the bc-8 structure
does not have perfect tetrahedral coordination; although
each atom has four near neighbors, it is connected to one
by an A-type bond and to the others by three B-type
bonds which may be of slightly different length from the
3-type bond. The bond angles are distorted from the
ideal tetrahedral angle 109.47' by approximately 10'
(Oq ~ =99' and 0~ ~ =117 ). At a given density, the
average bond length in the bc-8 structure is greater than
in the two diamond structures. Silicon has been syn-
thesized in this structure by releasing pressure from the
P-tin structure. ' The crystallographic description of the
structure is as follows: The Bravais lattice is body-
centered cubic with eight atoms in the primitive unit cell
(hence the notation bc-8) with positions +a(x, —x,x),
+a ( —x, —

—,'+x,x), +a ( —,
' —x, —x, —x), and +a (x,x, —,

'

—x) in Cartesian coordinates. The side of the cube has
length a and x is a free parameter which is approximately
equal to —,', for quasitetrahedral coordination. The space
group is T7. The ratio r~ /r~ of the bond lengths and the
bond angles are determined by displacement parameter x.
The distortion of the angles from tetrahedral is an increas-
ing function of x, while r~ &r~ for x&0.1036 and rq ~rq
for x~0.1036. As with the two forms of diamond, this
structure can also be viewed as layers of buckled hexago-
nal rings, although in this case the rings are not regular
hexagons. The layers are stacked in [AB] se-
quence in the direction of the cubic axes. A view of two
such layers projected down one of the cubic axes is shown
in Fig. 4. The numbers in the atoms denote the height
above the xy plane in units of a/10 for x =

—,
' .

[o I 0]

B

:[Ioo]

FIG. 3. Three double layers of the hexagonal diamond struc-
ture. The primitive basis vectors are the dashed lines. The c
direction is vertical and the double-layer stacking is

~ ~ ~ [ AB] in that direction.

FIG. 4. A projection of two double layers of the bc-8 struc-
ture down the [001] axis. The [100] and [010] axes are shown as
dashed lines. The numbers in the atoms indicate the height of
the atoms above the (001) plane in units of a/10 for a value of
the internal displacement parameter x equal to —,'„. There are
two inequivalent types of bond, labeled A and 8.
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Turning now to the sixfold coordinated structures, we
firstly consider the simple cubic structure. The structure
itself is trivial and needs no description here. However,
there is a simple geometrical connection between the sim-
ple cubic and cubic diamond structures. Both structures
can be described as fcc lattices with a basis of two atoms.
The difference between the two is that while the diamond
structure has the atoms at +a( —,', —,', —,'), in simple cubic
they are at +a( —,', —,', —,'). When described in this fashion,
simple cubic is seen as the homopolar analogue of the
rocksalt structure. Thus we can transform simple cubic
into the diamond structure through a sequence of fcc lat-
tices with the two atoms in the basis at +a (x,x,x). We
will calculate the variation of the total energy along this
transformation path for one particular atomic volume
close to the equilibrium atomic volume for diamond.

The /3-tin structure can be obtained from the cubic dia-
mond structure by a simple scaling of all lengths along
one of the cubic axes. ' For the ideal /3-tin structure (i.e. ,
for perfect sixfold coordination), the scaling factor is such
that the nearest atoms along the direction of the scaled
cubic axis lie the same distance from an atom as the four
nearest neighbors of the diamond structure (see Fig. 2).
The standard crystallographic description of the structure
is ' body-centered tetragonal, two atoms in the primitive
unit cell at positions +(0, —,', —', ) referred to the tetragonal
axes, and space group D4h. The diamond structure then
appears as the special case of this structure for which
c /a =V2 and perfect sixfold coordination occurs for
c/a =2/&15=0.516. We shall see that, unlike the other
group-IV elements, silicon, germanium, and tin, no local
minimum of the structural energy as a function of c/a
occurs near sixfold coordination for carbon at densities
near the equilibrium density of diamond; i.e., we obtain
no metastable sixfold coordinated structure for carbon.

We will not describe here the higher coordinated struc-
tures bcc, hcp, and fcc considered in this study. In the
case of the hcp structure we have used the ideal c/a ratio,
so that we have perfect twelvefold coordination.

III. CALCULATION

The total energy is calculated within local-density-
functional theory' ' using the formalism of Ihm et al.
The electron-ion interaction is determined using ab initio
pseudopotentials generated by the scheme of Hamann,
Schluter, and Chiang' and the exchange-correlation ener-

gy is evaluated with the function of Hedin and
Lundqvist. %'e express the total energy as a sum of
terms:

Etot Ec -c +Ekin +Ee -c +Ee -e

where E, , is the core-core Coulomb interaction (Ewald
term), Ek;„ is the kinetic energy of the electrons, E, , is
the electron-core interaction (determined using the ion
pseudopotential), and E, , is the electron-electron interac-
tion (Hartree and exchange correlation)

We determine Ek;„+E, , +E, , as follows: The
Kohn-Sham equations, '

V + V;,„(r)+VH(r)+p„, (r) g;(r)=e;g;(r)
2pal

E~ln+Ee-c+Ee-e = e; ——,
' V~ rprdr

(e; &EF)

+ f [e„,(r) —p„,(r)]p(r)dr,

where e„,(r)p(r) is the exchange-correlation energy densi-
ty. Equation (4) correctly accounts for overcounting of
the Coulomb interaction between the electrons in the sum
of eigenvalues.

The wave functions are expanded in a linear combina-
tion of localized orbitals with s and p symmetry centered
on the atomic sites' of the form

—arf ( (r) = A ) e " K( (r), (5)

where 3 ~ are normalization constants and K~ are cu-
bic harmonics. Twelve orbitals per atom (i.e., three values
of a) are used and the values of the radial Gaussian de-
cays a are chosen to minimize the total energy. The po-
tential is made fully self-consistent using the scheme of
Chan et a/. ' with plane-wave components up to an ener-
gy of 64 Ry.

For the cubic diamond structure ten special k points in
the irreducible Brillouin zone were used in the calculation
of integrations over the Brillouin zone. We have used
uniform grids of 21, 11, 56, 59, 47, 50, and 47 k points in
the irreducible zone for the hexagona1 diamond, bc-8,
simple cubic, p-tin, bcc, hcp, and fcc structures, respec-
tively. In the transition from simple cubic to cubic dia-
mond a uniform grid of 44 k points in the irreducible
zone was used.

IV. STRUCTURAL PROPERTIES

In this section we will present the results obtained for
the structural total energies for the various structures out-
lined in Sec. II. The energy as a function of atomic
volume for the eight structures is shown in Fig. 1. Each
curve is a cubic spline fit through calculated points.
Three groups of structures clearly emerge well separated
in energy from one another at low pressure: the fourfold
coordinated structures, cubic and hexagonal diamond,
and the bc-8 structure; the sixfold coordinated structures,
simple cubic, and ideal P-tin; and the highly coordinated
structures bcc, hcp, and fcc.

Firstly we discuss the fourfold coordinated structures.

are solved self-consistently. Here, V;,„ is the sum of the
ion pseudopotentials, V~ is the Hartree potential due to
the valence charge density,

p(r) =e g ~
f;(r)

~

',
1

(e, (FF)

where EF is the Fermi level, and p„,(r) is the exchange-
correlation potential for the charge density p(r). The sum
of the electron kinetic, electron-core, and electron-electron
energies is given by
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TABLE I. Calculated lattice constants, bulk modulus, its pressure derivative, and cohesive energy for
cubic diamond, hexagonal diamond, and bc-8.

ao (A) co (A) Bo (GPa) Bo E,oh (eV/atom)

Present calc.
Expt.

3.548
3.567'

Cubic diamond
444
443

3.24
4c

8.17
7 37'

Present calc.
Expt. '
Expt. '

2.50
2.52
2.51

Hexagonal diamond
4.14 440
4.12
4.12

3.5 8.14

Present calc. 4.436 411 3.7 7.48

'Reference 21.
Reference 29.

'Estimated value from Ref. 30.
Reference 31.

'Reference 32.
'Reference 22.

The equilibrium lattice constants, bulk rnoduli, and pres-
sure derivative of the bulk moduli are given in Table I.
These were calculated by fitting the total energy curve for
each structure to the Murnagahn equation of state near
the equilibrium atomic volume. From the structural point
of view, cubic and hexagonal diamond are almost identi-
cal. Their calculated equilibrium volumes differ by only
0.2% and their bulk moduli by 1%—within the theoreti-
cal uncertainty for these quantities. The calculated
structural properties are in extremely good agreement
with experiment ' ' for both cubic and hexagonal
diamond.

We find cubic diamond more stable than hexagonal dia-
mond at zero pressure by 0.03 eV/atom. This difference
has not been measured experimentally. The energy of cu-
bic diamond remains lower than hexagonal diamond at all
volumes calculated in this study. The binding energy of
cubic diamond includes a zero-point motion energy of
0.18 eV/atom, estimated from the experimental Debye
temperature of diamond. ' We have assumed that the
zero-point energies of the hexagonal diamond and bc-8
structures are the same as that of cubic diamond and have
included them in the binding energies of those structures.
As is usually the case, local-density-functional theory

Pressure (Mbar) Initial volume Final volume

Present calc.
Reference 8
Reference 9

11.1
12
12

0.492
a

0.468

0.471

0.456

'The volume change given in Ref. 8 is 0.011 of the equilibrium
diamond volume, but the initial and final volumes are not given.

TABLE II. Transition pressure and initial (diamond) and
final (bc-8) volumes for the transition from cubic diamond to bc-
8. The volumes are given as ratios to the measured equilibrium
diamond volume.

overestimates the binding energy of the crystal. ' '

For hexagonal diamond the total energy was minimized
with respect to c /a and the internal displacement parame-

0
ter z at fixed atomic volume for volumes for 3 and 5 A .

0 3At atomic volume equal to 3 A, the energy minimum
occurs at c/a=1. 690 and z=0.066; for volume 5 A, the
minimum is at c/a=1. 665 and z=0.063. (For perfect
tetrahedral coordination, c /a = 1.633 and z=0.0625.) At
other volumes c/a and z were linearly interpolated with
respect to volume between these values.

We have also calculated the phonon frequency of the
I i optical phonon mode for hexagonal diamond (associ-
ated with variation of the z internal displacement param-
eter) at the equilibrium volume using the frozen phonon
method. ' We obtain a value of 42.2 THz or 1407
cm '. This is somewhat higher than the value of 40. 1

THz calculated' ' for the corresponding I -point opti-
cal phonon mode in cubic diamond. Nielsen" calculated
a value of 38.9 THz for this phonon frequency in cubic
diamond. The experimental value for cubic diamond is
39.96 THz. To our knowledge, this phonon frequency in
hexagonal diamond has not been measured.

Turning now to the bc-8 structure, we find that while
the enthalpy of this structure is 0.69 eV/atom higher than
cubic diamond at zero pressure, as the pressure is in-
creased the difference in the enthalpies becomes smaller,
and the bc-8 structure eventually becomes more stable
than the cubic diamond at pressures higher than 11.1
Mbar. The transition pressure is equal to minus the slope
of the common tangent to the cubic diamond and bc-8
curves in Fig. 1. The initial (diamond) atomic volume at
the transition is 0.492 and the final (bc-8) volume is 0.471
of the equilibrium volume for diamond (see Table II).
Two earlier pseudopotential plane-wave calculations '

found a value of 12 Mbar for this transition pressure. We
believe the small discrepancy between these results and
the present calculation is due to inadequate convergence
with respect to Brillouin zone sampling and also (more
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important) basis size in the earlier calculations. The local
orbital basis used in the present calculation is approxi-
mately equivalent for structural properties to a plane-wave

asis with plane waves up to a kinetic energy of 60 R
In

o y.
n calculating the energy as a function of volume for

bc-8, the value of x, the internal displacement parameter,
was chosen to minimize the energy at atomic volumes 2.5
and 4 A and linearly interpolated with respect to volo voume
or the other volumes. For atomic volume 2.5 A,

+=0.1038 minimizes the energy, and for volume 4 A
x=0.0991. By varying x about the equilibrium value for
these volumes we can calculate the frequency of the I

&

optical phonon. We obtain in this way phonon frequen-
cies of 61.8 and 49.4 THz for atomic volumes 2.5 and 4
A, respectively.

The question naturally arises as to whether the charge
density of these three tetrahedrally coordinated structures

b
all display the usual characteristics of strongly covalentln y

This
onded crystals, especially at highly compressed volvo umes.

is question occurs particularly in the case of the hexag-
onal diamond and bc-8 structures where the fundamental

gap decreases with pressure, causing them eventually to
become semimetallic. One might expect that this behavior
in the electronic structure would be accompanied by a
weakening of the bond charge —in accordance with the
traditional picture of metallicity being associated with a
more uniform charge density. The charge densities in

planes containing the bond chains for the three structures
are shown in Fig. 5 for atomic volumes equal to approxi-
mately —,

' the equilibrium volume of diamond. For cubic
diamond all the bonds are equivalent and for hexagonal
diamond and bc-8 the two inequivalent types of bond are
shown. The most amenable to direct comparison are cu-
bic and hexagonal diamond since the arrangement of
atoms is the same locally for both structures. Hexagonal
diamond is semimetallic at the volume shown but never-
theless shows virtually no sign of weakening of the co-

valent bonds compared with cubic diamond which is insu-
lating with a large gap. The bc-8 structure displays some
weakening of the bond and a somewh t h hw a ig er interstitial
charge density but the effect is small.

The simple cubic and ideal /3-tin curve in Fig. l are
shown dashed because we find them t bem o e not metastable
at moderate pressures. The simple cubic and cubic dia-
mond structures can both be included as special cases of a
more general structure with a fcc Bravais lattice and two
atoms in the unit cell at positions +a (x,x,x), as described
n ec. . n ig. we present the total energy as a func-

tion of x for an atomic volume of 5.0 A Th e curve is
symmetrical about x=0.5, the simple cubic structure.

e simple-cubic structure is a local maximum, not a lo-
cal minimum as would be required for metastability.

We show in Fig. 7 the total energy of the P-tin struc-

coordinated P-tin. The origin of the stability of P-tin itself
for the observed c /a ratio of 0.546

'

his a very sharp
minimum in the Ewald term of the structure as a function

to the electrostatic energy of the point ions in a uniform
negative background. Clearly the physical relevance of
such a term is small in a system in which the electronic
c arge density favors the highly nonuniform distribution
associated with the formation of a strong covalent bond
charge, as is the case in carbon.

This marked instability of the sixfold coordinated crys-
talline structures suggests that stable or metastable carbon
c usters with atomic coordination number greater than
our will be unlikely to occur, in contrast to the situation

in silicon. Indeed, the great differences between the
bulk phase diagram presented in Fig. 1 and the corre-
sponding diagram for silicon indicate that in general the
ormation of clusters for carbon will be very different

from their formation for silicon. The existence of the very

(b)

FIG. 5. Charge densities (in at('n atomic units) in planes containing the bond chains for a
(c) bc-8 at atomic volume 2.5 A . The

' f
e on c ains or (a) cubic diamond, (b) hexagonal diamond and

~ . e positions of the atoms are indicated by solid circles.
t
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structure at low pressure. As can be seen by inspection of
Fig. 4, the bc-8 structure can be transformed into the
graphite structure by breaking only one bond per pair of
atoms, keeping the bonds in the (001) double layers un-
broken throughout the transformation. We further note
that it has been shown that the breaking of the
tetrahedral sp bonds in the diamond structure and subse-
quent formation of the planar sp bonds of the graphite
structure can be achieved with an energy barrier of only
0.33 eV per atom. Since the energy of the equilibrium
bc-8 structure is 0.7 eV per atom higher than graphite, it
seems likely that the transformation of the bc-8 structure
into the graphite structure in the manner just mentioned
would proceed without an inhibiting energy barrier. This
argument suggests that the bc-8 structure would not be
metastable for carbon at low pressure, in the contrast to
the case for silicon. '
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stable threefold coordinated graphite structure for carbon
should also be important for the formation of carbon clus-
ters. For the same reasons, we would not expect to ob-
serve sixfold coordination in liquid carbon at moderate
temperatures and pressures.

We close this section about structural properties with a
qualitative remark about the metastability of the bc-8
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FIG. 6. Calculated total energy vs internal displacement x for
the transition from simple cubic to cubic diamond discussed in

0 3
the text. The atomic volume equals 5.0 A . The curve is a cubic
spline fit through calculated points.

V. ELECTRONIC PROPERTIES

In this section we will present results for some of the
electronic properties of the fourfold coordinated structures
and discuss the qualitative features of these properties. In
particular, we will be mainly concerned with understand-
ing, in terms of a simple tight-binding picture of the elec-
tronic states, the striking di6'erences of behavior in the
variation of the fundamental band gap with pressure
among these three structures. Although the calculated
structural properties of cubic and hexagonal diamond are
almost identical, their calculated electronic properties
dift'er in one important respect; viz. , in cubic diamond the
fundamental gap increases with pressure while in hexago-
nal diamond it decreases with pressure. At volume
compression of 50% from equilibrium, the gap for cubic
diamond is approximately 6.5 eV but in hexagonal dia-
mond there is a band overlap of about 2 eV. The band
gap of the bc-8 structure also decreases with pressure,
eventually leading to semimetallic behavior.

In cubic diamond the fundamental band gap is from I
to 0.76X with a value of 4.3 eV at zero pressure and a
pressure derivative of 0.6 meV/kbar in the present calcu-
lation. Experimentally, the fundamental band gap is
from I to 0.78X with a vafue of 5.47 eV (Ref. 40) and a
pressure derivative of 0.5 meV/kbar (Ref. 41) (see Table
III). As is the case in many materials, the band gap is
substantially underestimated in local-density-functional

TABLE III. The fundamental band gap Eg at equilibrium
and its pressure derivative dEg /dP for cubic diamond, hexagonal
diamond, and bc-8.

-156.0
0.3 0,7

c/a ratio

FICi. 7. Calculated total energy for the P-tin structure vs the
0 3c/a ratio. The atomic volume equals 5.0 A . The curve is a

cubic spline fit through calculated points.

Cubic diamond
Present calc.
Expt.

Hexagonal diamond
bc-8

'Reference 40.
Reference 41.

Eg (eV)

4.3
5 47'
3.3
2.5

dEg /dP (meV/kbar)

0.6
0.5

—1.2
—0.9
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theory compared with experiment but the pressure deriva-
tive is approximately correct. '" In hexagonal diamond
the fundamental band gap is from I to It with a value of
3.3 eV and a pressure derivative of —1.2 meV/kbar in the
present calculation. To our knowledge, the band gap of
hexagonal diamond has not been measured experimental-
ly. The fundamental gap is direct at H in the bc-8 struc-
ture and has a value of 2.5 eV at equilibrium volume and
a pressure derivative of —0.9 meV/kbar. At the transi-
tion pressure of cubic diamond to bc-8 the latter structure
has a band overlap of 2.5 eV.

The top of the valence band (at I ) which is triply de-
generate in cubic diamond splits into a singly degenerate
state and a doubly degenerate manifold when we go to
hexagonal diamond. This splitting is caused by the ine-
quivalence of the bond along the c direction to the bonds
in the (0001) double layers and is not very large ( =1
eV). In bc-8 the top of the valence band (at H) is triply
degenerate. (Recall that the H point has the full symme-
try of the crystal in the bcc bravais lattice. ) The ex-
istence of such triply degenerate states at the top of the
valence band for general tetrahedrally coordinated net-
works has been discussed by Ziman. We will discuss
the reason for the valence band maximum being at II
rather than I for the bc-8 structure in Appendix C.

When considered as tetrahed rally coordinated net-
works, the difference between the valence band properties
of the three structures are not great. This is hardly
surprising since their structural properties are very simi-
lar, especially for the two diamond structures. However,
the conduction bands differ significantly among the three
structures. It is the differences in the conduction bands
which are largely responsible for the different behavior of
the band gaps. In what follows we will provide a simple
qualitative understanding of states at the bottom of the
conduction band in the hexagonal diamond and bc-8
structures and see why their behavior is different from the
states at the bottom of the conduction band in cubic dia-
mond.

If we think in terms of a very crude tight-binding
analysis and consider the conduction bands as composed
mainly of sp antibonding orbitals (one for each bond of
the structure) concentrated largely in the region behind
each bond with a node in the center of the bond, the fol-
lowing qualitative picture emerges of the low-lying con-
duction states: If we wish the energy of the state to be as
low as possible we would like ideally to satisfy the follow-
ing two conditions.

(1) The state should have mainly p character near each
atom (because the bonding-antibonding splitting is much
greater for s states than for p states). This means that the
sum of the amplitudes of the sp orbitals centered on each
atom should equal zero if we wish the energy of the state
to be as low as possible. Let us call this condition "the
atomic condition" on the wave function for a minimum of
the conduction band.

(2) It is intuitively clear that the kinetic energy in the
interstitial region of the crystal wi11 be smallest if the anti-
bonding orbitals which interact there combine in phase
with one another and with equal amplitudes. (We consid-
er the antibonding orbitals associated with two bonds to

interact in the sense of this condition if the lines pointing
in the opposite direction to the bond from each atom are
direct at the same point in the interstitial region. ) Viewed
from the center of the interstitial region, this condition
reduces both the angular and radial variation of the wave
function and so reduces its kinetic energy. This condition
we may call "the interstitial condition" on the wave func-
tion for a minimum of the conduction band.

With these two simple conditions in mind, we may then
analyze the geometries of the three tetrahedrally coordi-
nated structures and ask which states will satisfy both.
As is shown in Appendix 8, it is not possible to satisfy
both these conditions simultaneously in cubic diamond.
I"

~5 satisfies the right conditions near the atoms but not in
the interstitial region, while for I 2 the opposite is true.
L~ achieves a compromise for both conditions, satisfying
each partially but not entirely. Thus in the case of the cu-
bic diamond structure these two qualitative conditions are
indeterminate in identifying the symmetry of the 1owest
conduction-band state. However, we might expect that a
tetrahedrally coordinated structure which can successfully
accommodate both conditions for some state would have
a smaller band gap.

In the hexagonal diamond structure it does prove possi-
ble to satisfy exactly both the "atomic" and "interstitial"
conditions simultaneously at the K point. A projection
onto the a plane of the state which does so is shown
schematically in Fig. 8; the numbers on each bond line
give the amplitude of the associated antibonding orbital in
the tight binding expansion of the state at the bottom of
the conduction band. One layer of bonds is shown in the
figure —all other layers have the same projection. The
solid circles denote atoms below the plane and the open
circles atoms above the plane. Thus if the antibonding or-
bitals are thought of as being diametrically opposite to the

FIG. 8. A projection down the c axis in hexagonal diamond
of one double layer of the tight-binding expansion of the state at
the conduction band minimum. (See text for details. ) The solid
circles denote atoms below the (OOOI) plane and the open circles
atoms above the plane. The labels on the bond lines indicate the
amplitude of the corresponding antibond in the tight-binding ex-
pansion.
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bonds on each atom, every second antibond directed into
each hexagonal ring points above the plane of the ring and
interacts strongly with the other two antibonds pointing
above the ring but does not interact strongly with the
three antibonds which point below the plane of the ring.
The antibonds pointing below the plane of each ring in-
teract with the corresponding antibonds pointing up from
the next layer below (see Fig. 3). The eigenstate has the
translational symmetry of the K point and even parity
with respect to reAection in the horizontal plane which
bisects the bonds in the c direction (see Fig. 3). Rotation
by 2~/3 about any one of the bonds in the c direction
multiplies the state by co=e "' . Thus the state has no
weight on the vertical antibond but has amplitudes l,cu, co

on the other three sp antibonds for each atom. (This
prescription uniquely determines the state within our sim-
ple tight-binding expansion. ) Since 1+co+co =0, the
state has entirely p character near all the atoms so that
the atomic condition is perfectly satisfied. Furthermore,
as can be seen from Figs. 8 and 3, the antibonding orbit-
als add perfectly in phase in each interstitial region, and
so the interstitial condition is also satisfied.

At the H point in the bc-8 structure it is also possible to
create an antibonding state which satisfies the interstitial
condition exactly and the atomic condition almost exactly.
The nature of this state is discussed in detail in Appendix
C. Thus we see qualitatively how the band gap in both
hexagonal diamond and bc-8 is substantially smaller than
in cubic diamond. The frustration in the cubic diamond
structure of the atomic and interstitial conditions for the
conduction-band minimum leads to a larger gap. As the
structures are compressed, and all the interactions be-
tween the antibonds increase in magnitude, the effect of
this frustration increases the difference in the conduction-
band minimum between the cubic diamond structure and
the hexagonal diamond and bc-8 structures, where the
frustration is avoided. These arguments do not unambi-
guously determine the signs of the pressure derivative of
the fundamental gap in the three tetrahedrally coordinat-
ed phases but only indicate that we can expect a deriva-
tive for cubic diamond greater than for the other two
structures. The most important point to be made from
this discussion is that the conduction band energies de-
pend critically on antibond interaction in the interstitial
region.

Finally, we caution that the above analysis is only ap-
propriate for carbon and should not be applied to silicon
or germanium where atomic d states play an important
role in the conduction bands. However, with minor
modification the arguments should be applicable to the
tetrahedrally coordinated phases of boron nitride. Thus
we expect the same differences to occur between BN in
the zinc-blende and wurtzite structures.

VI. CONCLUSIONS

In conclusion we have studied the structural properties
of eight phases of carbon and also in detail the electronic
properties of three fourfold coordinated phases at high
pressure, using the pseudopotential local-orbital total en-
ergy technique. At pressures below 10 Mbar the fourfold
coordinated structures are well removed in enthalpy from

the sixfold coordinated structures which are in turn well
removed from the eight and twelvefold coordinated struc-
tures. The structural properties of cubic and hexagonal
diamond are almost identical, with cubic diamond lying
very slightly below hexagonal diamond in energy over the
entire range of volumes studied here. At pressures greater
than 11.1 Mbar bc-8 is more stable than cubic diamond.
This transition pressure is slightly lower than earlier cal-
culations have found. At moderate pressures we find the
sixfold coordinated structures to be not metastable, trans-
forming spontaneously without an inhibiting energy bar-
rier into the cubic diamond structure. We also suggest
that the bc-8 structure for carbon would not be metastable
at low pressures, unlike the situation for silicon where it
can be obtained by the unloading of Si-II (silicon in the
P-tin structure).

Although the structural properties of cubic and hexago-
nal diamond are almost identical, their electronic behavior
under pressure is found to differ significantly. The funda-
mental band gap in cubic diamorid is found to increase
under pressure, in agreement with experiment, while that
of hexagonal diamond is predicted to decrease. Cubic di-
amond remains insulating with a large band gap at very
high pressure while hexagonal diamond eventually be-
comes semimetallic. The bc-8 structure also exhibits this
semimetallic behavior under pressure. We have proposed
two simple conditions within a tight-binding picture for
an ideal conduction-band minimum in quasitetrahedrally
coordinated carbon which provide qualitative understand-
ing of the surprising differences in behavior between cubic
diamond and the other two fourfold coordinated struc-
tures.
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APPENDIX A

In this appendix we outline a method of utilizing the
crystal space-group symmetry to the full in reducing the
computational effort involved in evaluating two- and
three-center integrals in the Hamiltonian and overlap ma-
trix elements. Smith, Gay, and Arlinghaus have used
crystal symmetry in essentially the same way to evaluate
two-center integrals for the special case of the Cu(100)
surface. Here we will present the formulation of the ap-
proach for crystals with arbitrary space groups (sym-
morphic or nonsymmorphic). Furthermore, we will see
that substantial further saving in computation can be
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T:r~ Tr —x, (A 1)

where T is an orthogonal transformation (the rotational
part of 'T) and w is a vector (the translational part of T).
Each T induces an action, 6 T, on the space of wave func-
tions in the usual manner; viz. , in coordinate representa-
tion

achieved by making use of the special form of the initial
(non-self-consistent) crystal potential as a sum of spheri-
cally symmetric potentials centered on the ion sites' (viz. ,
in evaluating three-center integrals). The evaluation of
two- and three-center integrals is a very computationally
intensive aspect of the local-orbital approach and so the
optimum utilization of the crystal symmetry in reducing
this effort is clearly of considerable practical importance.

Let
I

aim ro ) denote the local-orbital basis function
—a(r —r, )-

which has coordinate representation 3 i e
&;K] (r —ro), where K]~ are the cubic harmonics and

are normalization constants. ' Let 'T be any Eu-
clidean transformation defined by

It follows directly from the angular form of the cubic
harmonics that

e r
I
almro) = g A' ~ (T)

I
aim'ro),

m'
(A3)

&a]1]m]r]
I

O
I a~12m2rz) (A4)

where 0 is the identity operator or the Hamiltonian, re-
spectively. We now observe that, for any operator 0 and
any Y',

( a]1]m ] r] I
O

I
a,l, m, r2 )

= (a]l]m]r]
I

e~'0 e~
I
a212m2r), (A5)

where ro= 'Tro, and A is a (21+ 1))&(21+ 1) matrix
which depends only on T, the rotational part of T, not
the translational part. For l=O, A=1 for all T, and for
1=1, A is simply the usual matrix representation of T
with respect to the Cartesian axes.

The overlap and Hamiltonian matrix elements we need
to evaluate (i.e. , the two-center integrals) are of the form,

e fr(r) ~f (T 'r) . (A2)
where 0'=e~e&'. Since e is a unitary representation
of the Euclidean group, then e~'=6~. Therefore,

(a, l]m]r]
I

e~'0'e'T
I
a,l,m, r, & =

I (a]l, m]r]
I
e&IO'[e']

I
a212m2r2& )

g (a]l]m]r']
)

A '
~ (T)* 0' g A ' (T)

I
a212m2r2)

I I
ml m2

I
m l, m2

A ' (T)*(a]l]m]r]
I

O'
I
a212mqr2)A '

~ (T), (A6)

where r~ ——'ir] and r2 ——Tr2. Thus we see that the matrix
elements for the operator 0 between the sites r~ and r2 are
simple linear combinations of the matrix elements for 0'
between sites r] and r2. Combining Eqs. (A5) and (A6)
and writing the result in the obvious matrix notation, we
obtain

0 (a]l]r]', a212r2)

= [A '( T))*0'(a]l]r|,a~l~r~)A '( T), (A7)

or conversely,

0'(a]l]rI, aqlqrq)=A '(T)0(a]l]r],a2lqrq)A '(T)* . (A8)

We can now apply Eq. (AS) to the particular case when
0 is the Hamiltonian and 'T belongs to the crystal space
group. In that case 0'=0, since O~ commutes with 0,
and we see that the Hamiltonian matrix elements between
the sites r~ and r2 are simple linear combinations of those
between r] and r2. The same is true of the overlap matrix
elements. Usually one makes use only of the pure
translation group of the crystal in Eq. (AS) —a trivial ap-
plication of the result, since A=1 in that case. In this
way r~ is restricted to be in one unit cell while r2 varies
over all the neighbors of r~. However, if we go further
and use the full space group of the crystal, we can
generate H (a]1 ] r'],'a2lqrq) from Eq. (A8) for

G(r], r2)
I

pairs, (r'], rq), from every
H(a]l]r], a212r2) calculated [Here G . is the point group

( a ]1]m ] r ]
I

H
I
a 21/m p rp )

= y (a]l]m]r]
I

VR+ .
I
apl2mpr2)

R, i

g2
a)l)rn]r) V' e2l2m2r2

2 pter

(Ala)

I

of the crystal and G(r], r2) is the subgroup of G which
leaves r] and rq fixed.

I

G
I

is the number of elements in
the group G. ] Since the computation involved in generat-
ing H(a]l]r],'a212r2) from Eq. (A8) is negligible compared
to that in evaluating H (a]l]r],'a212r2), we save a factor of
approximately

I
G

I
/I G I(r], r2)

I by utilizing the full
space group symmetry rather than translational symmetry
only.

When
I
G(r], r2)

I

is greater than one, it is possible to
reduce the amount of computation involved in calculating
H(a]l]r;a212r2) itself. To do so we consider the particu-
lar form of the crystal Hamiltonian,

H=gV'R+, + (A9)
R,i

Here R are the crystal lattice vectors, r; are the positions
of the ions within the unit cell, and Vr' is the total poten-
tial (local and nonlocal) due to the ion (of type i) at posi-
tion r. Thus H is expressed as a sum of spherically syrn-
metric potentials at the ion sites, plus the kinetic energy
term. In evaluating the matrix elements of H, we use the
form
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For each individual r, (a, lim, r,
1

V',
1
a~l~mzr~) is

evaluated, and then the total crystal potential matrix ele-
ment is obtained from the sum in Eq. (A10). (The kinet-
ic energy matrix element is evaluated separately. ) The
major computational effort is involved in the evaluation
of the three-center integrals- (a&l, m, r,

1

V',
1
a~l~mzrz),

since there are many values of r to be summed for each
pair (ri, rq). Now we can consider Eq. (A8) when
leaves both r] and r2 fixed and let 0 = V', . Then, since
V' is spherically symmetric,

antibonds interact at each interstitial site.
Let a;, i=1,2,3,4, be the amplitudes of the antibonds

associated with the bonds which point from the atom at
( —', , —,', —,') in the directions [1 1 1],[1 11],[111],and [111],
respectively. We define the crystal momentum of the
Bloch state as follows: Translation by [0—,

'
—,'] multiplies

the state by Hq, translation by [—,'0 —,'] multiplies the state
by 03', translation by [—,

'
—,'0] multiplies the state by 84, for

notational convenience we define OI—= 1. Qbviously, for a
Bloch state,

10;1=1 for i =1,2, 3,4 . (81)
where r'= 5'. Thus Eq. (A8) becomes

V', (ail&ri, aqlqrq) =A '(T) V', (ail iri, aqlzrq)[A '(T)]* .

(A12)

Making use of Eq. (A12), we can generate all the three-
center integrals for 1G (ri, rq) 1/1 G(ri, rq, r)

1
values of r'

given those for r. [G(ri, rq, r) is the subgroup of G which
leaves ri, rq, and r fixed].

Thus we save a factor of G(ri, rq)1/1G(ri, rq, r)1 in
evaluating the three-center integrals. Since 1G(ri, r~, r)

1

is very rarely greater than one and since most of the com-
putation of the Hamiltonian and overlap matrix elements
is involved in evaluating these three-center integrals, an
overall reduction factor in computation equal to 1G 1,
the size of the point group, is achieved by using the full
crystal space group instead of just the pure translations.

APPENDIX B

In this appendix we show that it is not possible to satis-
fy simultaneously both conditions outlined in Sec. V for
an ideal conduction band minimum in the cubic diamond
structure. As we shall see, the main reason this is not
possible in the cubic diamond structure while it is possible
in the very similar hexagonal diamond structure is be-
cause all four of the antibonds in cubic diamond interact
both at the atoms and also in the interstitial region (at the
center of the "adainantine cage"). This imposes too many
algebraic conditions for a solution to exist. In hexagonal
diamond the antibond in the c direction is inequivalent to
the other three on the atom and interacts in the interstitial
region only with the similar antibond on the neighboring
layer (see Fig. 3).

In the cubic diamond structure there are four bonds per
unit cell and so we have four antibond amplitudes for any
conduction band state within the tight-binding picture. In
each primitive unit cell there are two atomic positions and
two "tetrahedral" interstitial positions. The interstitial
positions are located relative to each atom in positions di-
ametrically opposite the neighboring atoms. Thus each
atom is at the body center of a cube which has neighbor-
ing atoms at four corners and interstitial sites at the other
four diametrically opposite corners. In the description of
the cubic diamond lattice in Sec. II, the two atoms in the
primitive unit cell are at positions +( —, , —,', —,') and the two
interstitial sites are at +(—,', —', , —', ) (see Fig. 2). (We use
Cartesian coordinates throughout this appendix and as-
sume that the cubic cell has sides of unit length. ) Four

The atomic condition for the atom at ( —,', —,', —,
'

) is then

(82)

If we think of the a; as vectors in the complex plane, Eq.
(82) amounts to the geometric condition that they form
the sides of a directed closed quadrilateral. Similarly, the
atomic condition for the atom at ( ——,', —

—,', —
—,
'

) is

CX4 =0
6I4

The interstitial condition at ( —,', —,', —,') is

a ]0] ——(X2L92 ——a 303 ——O.'404,

and the condition at ( ——,——', , ——', ) is

(83)

(84)

A] O.'2 CX3 Ag

g2 g2 g2 6)2
(85)

Combining Eqs. (81) and (84) gives that

(86)

Now the geometric interpretation of Eq. (82) is
strengthened to the statement that the a; form the sides of
a rhombus, and so we must have the o., = —n], for one of
i=2, 3, or 4. Without loss of generality we can assume
that aq= —ai. The first part of Eq. (84) then gives us
that

02 ———1 . (87)

On the other hand, dividing Eq. (84) by Eq. (85) we ob-
tain

0; =1 for i =2,3,4 . (88)

Clearly, Eq. (87) contradicts Eq. (88) and so we cannot
construct a Bloch state which simultaneously satisfies
both the atomic and the interstitial condition in the cubic
diamond structure.

APPENDIX C

In this appendix we discuss the nature of the state at
the bottom of the conduction band in the bc-8 structure.
The state has the translational symmetry of the H point
for the following reason: The 3-type antibond from
( —x,x, —x) to (x, —x,x) has a very strong interaction
with the corresponding bond at the center of the cubic
cell, from ( —,

' —x, ——,'+x, —,
' —x) to ( —,'+x, —

—,
' —x, —,'+x)
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(see Fig. 4). [The four atoms at ( —x,x —x), (x, —x,x),
( —,

' —x, ——,'+x, —,
' —x), and ( —,'+x, ——,

' —x, —,'+x) lie in a
straight line and the distance from (x, —x,x) to
( —,

' —x, ——,'+x, —,
' —x) is only approximately —,

' times the
A-bond length. j For the antibond from ( —x,x, —x) to
(x, —x,x) to add in phase in the interstitial region with
the antibond from ( —,

' —x, —
—,
' +x, —,

' —x) to ( —,
' +x,

—
—,
' —x, —,'+x), the state must be multiplied by a factor of

—1 when translated by the lattice vector ( —,', ——,', —,
' ).

Similarly, the A-type antibonds from ( —x, —
—,
' —x,x)

to (x, ——,'+x, —x) and from ( —,
' —x, —x, —

—,'+x)
to ( —,'+x, x, ——,

' —x) add in phase in the interstitial region
only if the state is multiplied by —1 when translated by
( —,', —,', —

—,
' ), and the A-type antibonds from

( —,'+x, —x, —x) to ( —,
' —x,x,x) and from (x, —,

' —x, —,
' —x) to

( —x, —,'+x, —,'+x) add in phase only if the state is multi-

plied by —1 when translated by ( ——,', —,', —,'). This unique-

ly determines the translational symmetry of the state as
being that of the H point in the Brillouin zone.

Further inspection of the detailed geometry of the bc-
8 structure shows that the B-type antibonds have much
smaller interaction with each other in the interstitial re-
gion (as indicated by their spatial overlap) or with the
3-type antibonds than the 3-type with other A-type.
(The largest overlap is between the 8-type antibond from
( —,'+x, —

—,'+x, x) to (1 —x, ——,
' —x,x) and the A-type an-

tibond from ( —,'+x, ——,
' —x, —,'+x) to ( —,

' —x, —
—,'-+x,

—,
' —x), but this is quite small. It transpires that the state

which satisfies the atomic condition as well as optimiz-
ing the interstitial interaction between the 3-type
antibonds —in the manner discussed below —also gives
the correct (i.e., positive) relative phase between these B
and 3-type antibonds for reducing the kinetic energy of
a conduction state. )

Because the distance between the atoms at (x, —x,x)
and ( —,

' —x, ——,'+x, —,
' —x) is quite small, the combined

ionic potential in the region between them is deep. Thus
to minimize the energy of the conduction band state at H,
we want the amplitude of the antibonds directed at that
region (i.e., the A-type antibonds) to be large. In this way

we reduce the potential energy of the state.
We now turn to the atomic condition. The best way

to satisfy this (given the requirement that the A-type an-
tibond amplitude be large) is to have the amplitudes on
each of the B-type antibonds equal to the others and
equal to ——,

' the amplitude on the A-type antibond. The
symmetry group of the H point ensures that two states
of the form

&+&[I&i &+ I» &+ I» &1

must exist. (Here
~

X & denotes the antibond corre-
sponding to bond X. ) If we assume that the A Bant-i-
bond interaction at the atomic site is approximately the
same as the B-B antibond interaction, then the two solu-
tions are ct=/3 and a= —313. The first of these is s-like
near the atoms while the second is p-like and is the bot-
tom of the conduction band. Because of the strong in-
teraction between the antibond from ( —x,x, —x) to
(x, —x,x) and the antibond from ( —,

' —x, —
—,'+x, —,

' —x) to
( —,'+x, —

—,
' —x, —,'+x), we have a large dispersion near the

bottom of the conduction band; i.e., the conduction band
mass is small.

Finally, we remark that the valence band maximum in
bc-8 occurs at the H point for essentially the same
reason as the conduction band minimum occurs there;
viz. , the 3-type bond in one cell interacts strongly with
the corresponding bond in the next cell. At the H point
there is a nodal surface on the perpendicular bisector of
the line between (x, —x,x) and ( —,

' —x, ——,'+x, —,
' —x) for

the Bloch sum of the A-type bond from ( —x,x, —x) to
(x, —x,x), thus raising its kinetic energy. The states at
the top of the valence band transform under the point
group like the functions yz, zx, and xy. Each one of
these states has exactly zero amplitude on one of the B-
type bonds of each atom. The amplitudes on the other
two B-type bonds of each atom are approximately equal
to one another and equal to ——,

' the amplitude on the
3-type bond. For states of this kind it is the higher en-
ergy of the Bloch sum of the 3-type bonds which raises
the energy of these states above those at the I point.
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