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A modified Anderson-Newns model for chemisorption on narrow-gap semiconductors is set up.
We solve it for the case of an n-type degenerate direct-gap system with an adsorbed atom level ly-
ing close to the semiconductor Fermi energy. Changes of local density of states, binding energies,
and charge transfers are calculated in the presence of an adatom as a function of the band gap and
Fermi energy. We argue that since it is the charge transfer that binds the adatom to the crystal,
for the purpose of obtaining trends we can replace the surface Green’s functions by their bulk

counterparts in the above calculation.

I. INTRODUCTION

Adsorption of gases on clean metal and insulator sur-
faces has been studied extensively over the past two de-
cades with a considerable amount of work also done for
reactive gases like O, and CO adsorbing on wide-band-
gap elemental, II-VI, and III-V compound semiconduc-
tors. Similar studies on narrow-band-gap semiconductors
seem to be few. The experimental difficulties involved
and the kind of interesting phenomena one might en-
counter have been discussed recently by Spicer et al.! for
HgCdTe. We are only aware of one theoretical paper’
that calculates chemisorption energies of oxygen on
narrow-band-gap semiconductors. It might be appropri-
ate to briefly recapitulate the main features of narrow-
band-gap semiconductors that introduce novel aspects
into the adsorption of gases.® (i) In ternary alloys like
Hg; _,Cd,Te the band gap varies as a function of concen-
tration x between 1.2 eV and —300 meV, being O at
x =18%. Systematic trends in adsorption characteristics
like heat of adsorption, local density of states, charge
transfer, etc., should develop as a function of x, as
demonstrated in the model calculations presented here.
(i) The bands of narrow-band-gap semiconductors are
nonparabolic with considerable s-p mixing away from the
center of the Brillouin zone affecting the hopping proba-
bilities onto or from like energy levels of the adsorbing
molecule. (iii) Even at low temperature n-type materials
can have an electron concentration in the conduction
band that is typically of the order of 10'* cm~3. Crossing
the Fermi energy with the affinity level of the adsorbing
molecule as a function of doping and alloying should pro-
duce systematic trends in the heat of adsorption and
charge transfer. (iv) Upon adsorption new surface states
for holes or electrons may develop to either enhance or
hinder further adsorption. Surface segregation of one or
the other alloy component may also occur. (v) A sys-
tematic study of the dynamics of the adsorption and
desorption processes will reveal the relative importance of
phonons versus electron-hole pairs in mediating the ener-
gy transfer between solid and adsorbate.* Carrier mobili-
ties towards the surface will determine the efficiency of
charge transfer. (vi) Because narrow-band-gap semicon-
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ductors are efficient infrared absorbers, photodesorption
and photocatalysis via vibrational molecular modes
should be promising.’ This is in addition to the electronic
effects widely observed on wide-band-gap semiconduc-
tors.*~8 We hope to elaborate on points (v) and (vi) in a
future paper.

None of the above properties of narrow-band-gap
semiconductors should produce any surprises for phy-
sisorption, as born out by a recent calculation of the Van
der Waals interaction of rare gases and hydrogen on
some 20 semiconductor surfaces.” However, for chem-
isorption new features should emerge. In this paper we
have therefore set up an Anderson-type model to study
the equilibrium properties of a molecule adsorbed on a
narrow-band-gap semiconductor following similar work
by Newns,' Edwards and Newns,'! Einstein and
Schrieffer,'? and Einstein'? dealing with chemisorption
on metals; for a recent review see Einstein, Hertz, and
Schrieffer.!* In the Anderson-Newns model of chem-
isorption the adsorbing molecule is idealized to a single
relevant electronic energy level of energy E,, while the
substrate is described by a single-band tight-binding
model with the surface being explicitly introduced!?—'*
via the method of Kalkstein and Soven.!*

In this study we shall concentrate on doped n-type
semiconductor material with free carriers in the conduc-
tion band at T =0, and with an adsorbed atom level E,
lying close to the Fermi energy Er. Our many-body
Green’s functions are calculated using the Kane two-band
model'® which describes accurately the free electrons in
the conduction band. The only previous attempt to deal
with adsorption on narrow-band-gap semiconductor sur-
faces was by Davison and Huang? who used an s-p
molecular-orbital model treated in the tight-binding ap-
proximation. It is not clear how this approach could be
used for the doped semiconductor with free carriers
present.

We expect the dominant contribution to the binding
of the adatom to the surface to be due to a net transfer
of charge between the atom and the surface, so that de-
tails of the surface and directionality should not be of
greatest importance.!” In this particular calculation we
are mainly interested in systematic trends as a function
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of the position of the Fermi level relative to the adatom
level E,. The full Kalkstein-Soven method, while tract-
able, is rather unwieldy in this system because of the
large number of orbitals. For these reasons we avoid us-
ing the full Kalkstein-Soven formalism here and approxi-
mate the surface Green’s functions by their bulk coun-
terparts. This means that the trends we see in our re-
sults are due to charge transfer effects. Of course should
surface states or surface reconstruction be observed then
a complete treatment of the surface would be necessary
from the outset.

We treat the adatom level E, as a phenomenological
parameter which should be determined experimentally.!*
One cannot identify E, with the ionization energy of the
isolated atom because of the proximity of the ionic cores
of the substrate atoms.

In Sec. II we formulate our model by specifying the
Hamiltonian for a narrow-band-gap semiconductor in-
teracting with an adatom and calculating the resulting
Green’s functions. In Sec. III we use these Green’s func-
tions to obtain the local density of states, the binding en-
ergy of the adsorbed atom, and the charge transfer for a
range of Fermi energies, band gaps, and hopping
strengths. Section IV contains a brief conclusion.

II. THEORY

In this section we formulate the Anderson-Newns mod-
el to calculate the adsorption characteristics of a molecule
on a narrow-band-gap semiconductor. We first set up the
Hamiltonian in Sec. II A and then calculate the relevant
Green’s functions in Sec. II B.

A. The Hamiltonian

We split the Hamiltonian for the electrons of the cou-
pled gas-solid system into three parts

H=H,+H,+V. (1)

In second quantization the Hamiltonian for the adsorbing
molecule reads

Hy,= 3 E.clocoo+Uclicarcdica, s )

o=1,1

where E, is the energy of the only participating electron
level on the molecule; ¢, creates an electron of spin o =1
or | bound with an energy E, to the molecule far from
the solid; c,, removes an electron. U is the average
strength of the Coulomb repulsion between two electrons
in the state a.

The isolated narrow-band-gap semiconductor is treated
in the Kane two-band model'® for which the Hamiltonian
reads

H= 3

MAo,o' k
Here A=0,...,3 labels the two bands with /=0 and
I =1, respectively, the latter with /,=0,+1. The 8X38
matrix €(k) is given by Kane as a function of the wave
vector k. In the following we work in a basis in which €
is diagonal. It can be generated by a transformation to a
new set of creation and annihilation operators

Erono(K)C ho (K)cirgr(K) (3)

duak)= 3 (na|io)ci,(k) 4)
Ao
so that
Hy=3 En(k)d).(k)d,q(k) . 5)
n,a,k
Here n =1,...,4 enumerates the four twofold degen-

erate (¢ =1,2) bands which can be characterized by their
symmetry properties at the zone center k=0 as I'¢, I'7,
I'4, and T}, where '} refers to a band of heavy holes and
'} to light holes, the latter becoming electrons for a zero-
gap semiconductor; see Fig. 1. The above formulation is
appropriate for a bulk semiconductor. We postpone a dis-
cussion of intrinsic surface states to Secs. II B and III.

We next turn to the interaction V between a molecule
and the solid. It is mediated by electron hopping

1

= 3 [Viokiels (Ko + V1o (Kleaoero (K1,

Ao,k
(6)

where N is the number of elementary cells in the crystal.
Rather than attempting to calculate the hopping integrals
Vio(k) from first principles, we will treat them as phe-
nomenological parameters that account for the couplings
with the various angular momentum states of the semi-

E (k)
\/ lEu?)
r =0
Fl/ _3
rel e, =3 Z L= =g g
O s
/Gio
ci"w% /ri‘ =3

(a) (b)

FIG. 1. (a) Configuration of bands for the open-gap semicon-
ductor. The labels / and j refer to the orbital angular moment
and total angular momentum at k=0. TI'{ refers to a band of
heavy holes and T} to light holes. (b) Configuration of bands for
the zero-gap semiconductor. 'k now refers to the electrons.
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conductor. We note that (6) does not imply that the state
a on the molecule has well-defined / or /,. The hopping
Hamiltonian V is assumed to be diagonal in spin and we
also neglect Coulomb repulsion between an electron on
the molecule and an electron in the solid. Image charge
effects are also omitted. For a discussion of these approx-
imations see, e.g., Einstein et al.'*

B. Green’s functions

We now proceed to calculate the various zero-
temperature Green’s functions. For the isolated molecule

Coo(E)= |8, — =

N ixw
The Green’s function for the isolated semiconductor is

Glhno kK, E)=3 (Mo' |na){na| o )Gk k' ,E

n,a

where

G (kK E) =8y W [E —Ena(k)+in] ™!

described by H, in (2) we get in the Hartree-Fock approx-
imation

1
" E—E,—Ung_o+in "’

Gioo'(Eyng, o) =5 ™

where n,, is the occupation number of state a with spin
o. For the interacting molecule we get

Goool EGaaa (E,n,, _o[L(E)], A, (8)

where I['(E) is a 2 X2 matrix in spin space,

S Vi (K)Goro (KK, EWio (K')Glpo (Esny _o) | - 9

Similarly we find for the Green’s function of the semiconductor interacting with the molecule

G}\crko(k k'.E)= kgxa(kk E)+—

N .=,
o

The change in the density of states caused by the hop-
ping interaction between the molecule and the semicon-
ductor is given by

Ap(E)=Ap,(E)+ Aps(E) . (13)
The projection onto the molecule is

Ap E)=—7""Im (3 GuoolE)— G20 (E) |,  (14)

where Im means ‘“‘imaginary part.” Observing from (7)

that
0 2__ ) 0
[GGUU(E)] - aE Gaao’(E)
we get
1 0
Apq VII N A 19(70 E) |Vio
pa(E)= Nuz"k 25 Gooo (E) | Vio(K)

g,0’

X Gono (K, K EVV g (K)

X[1—-AE)G5 |, (15)

S Glonor K EW (k)G gl EW porgin (K )G (K K, E)

(12)

f

where 1 is the 2 X2 unit matrix and

AvoA E)=— = S Gl (EWi(K)
N AALk

X Grovo' (kKK E)Wig(k) .  (16)

The equivalent expression for the change of the density
of states projected onto the semiconductor is

1 3
Ap(E)=7"'Im | — — Vi, (K)G oo
ps(E)=7"'Im N%JM 10 (K)Goio (k, K, E)
X Vg (k)

X[1—A(E)]55Ga0o(E) |,

(17)
so that (12) can eventually be written

b 9

Ap(E)=7""1 —
p(E)=7""Im 2 |3

Ayol E) '[l—A(E) ,;;l .

(18)
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FIG. 2. Typical plot of the Green’s function for the isolated
semiconductor G(E)=K(E)+iK,(E) for energy gap Ec=0.3
eV and EF=0.3 e¢V. Solid line, K| (E); dashed line, K> (E).
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FIG. 3. Density of states for the adatom p, (E) (solid line) and
— Ap(E) (dashed line), defined in (22). The gap energy E¢=0.3
eV and the adatom level E, is located 0.3 eV above the
conduction-band edge set at E =0. The hopping matrix element
Vo=1.2 eV and the correlation energy U =0.
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FIG. 4. Same as Fig. 3 except for Vy=4.8 eV and U =0.
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We now assume that the level a on the molecule is an s
state so that only the A=/ =0 substrate states are coupled
into it. In this case we can show, using (9), (10), and
(A2), that the s component of the semiconductor Green’s
function Gy, is diagonal in spin indices. Equation (16)
thus simplifies

AvolE) =80y~ S GO0 (E)Woo ()
N k

X Gooos (K, kK, E)Voo (k) . (19)

Let us now assume that electron hopping in (6) is re-
stricted to nearest neighbors so that V. (k) is independent
of k. We then get from (18) and (19)

Ap(E)=7""Im 2aiEln[l—V%,UGBM(E)GOUOG(E)] ,

Q

(20)

? (ev)

E(eV)

FIG. 5. Same as Fig. 3 except for Vo=1.2 eV and U =1.
Cases (a), (b), and (c) correspond to the Fermi energy Er=0.1,
0.3, and 0.5 eV.
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Here  is the volume of the crystal. For the fcc lattice
Q/N =1a 3, where ag is the lattice constant. Gg,g, (E) is
derived in the Appendix for the case of the two-band
Kane model.

For numerical purposes it is useful to remove the §-
function contribution from Ap(FE) by defining

Ap(E)=Ap(E)+28(E —E,;) , (22)
which is given by

AGE)=7""Im |3 aiEln[E —E,+Un, _,+in

g

—V3Gooi(E)]| . (23)

In the absence of magnetic fields n,,=n, _, so that in
(18) and (23) the spin sum simply yields a factor of 2.
Within the Hartree-Fock approximation, n,, must be cal-
culated self-consistently from

E
noo=4 [ dEpa(B), (24)

where Er is the Fermi energy and
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FIG. 6. Same as Fig. 5 except for V9p=4.8 eV and U=1.

pa(E)=—m""Im [2 Guo(E) J
=—2r"'"Im{[E —E, —Ung,—V3,Go10;(E)] '} .

(25)

Lastly we note that the binding energy of the molecule
onto the semiconductor is given by

E,= [ dE(Er—E)Ap(E) . 26)

III. RESULTS AND DISCUSSION

In this section we discuss the implications of the
theory. We will present numerical examples of the densi-
ties of states (23) and (25) and calculate binding energies
and charge transfers for various molecule-semiconductor
systems. The systems are characterized for the molecule
by the electron level E,, and for the semiconductor by the
band parameters and the Fermi energy.

We begin with a discussion of the Green’s function (21)
of the isolated semiconductor. Its real and imaginary
parts are defined by

0.6 ( T T T T T
E_=-0.3eV
L G i
06
S (4)
> 2) 4
2 n
|58}
02 8] 4
(3)
0 E]
08 |- -
(2
-—<|N B 7
(=4
06 | .
(4)
L 3

EF(eV)

FIG. 7. Binding energy E, and spin-up occupation number
for the adatom state n,,, as a function of the Fermi energy Er
for a fixed gap Ec=—0.3 eV. The levels refer to the following
cases: (1) Vp=1.2 eV, U=0; (2) Vo=4.8 eV, U=0; (3)
Vo=12eV,U=1;(4) Vo=4.8eV,U=1.
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60101(E)=K](E)+iK2(E) . 27

A detailed calculation of this Green’s function for
narrow-band-gap semiconductors within the Kane band
model is given in the Appendix.

Using (27) we can reexpress (23) and (25) for the densi-
ty of states as follows:

(1—V3K')K, —(E —E,— V3K )K}
(E—E,— V3K + VK3

’

_ 2 .
A <
p(E)=—V5

(28)

palE)= — 2 V3 K, (29)
‘ 7 *(E—E,~V3K)'+ VK3’
where the prime indicates the derivative with respect to E.

In the present calculation we choose the following
values for the parameters associated with the semicon-
ductor sub§trate:18 the momentum matrix element
P =7.1 eV A, the lattice constant a;=6.46 A, and the
width of both valence and conduction bands Egz=0.9
ev.

Figure 2 shows a typical example of K;(E), in this case
for Eg=0.3 eV and Er=0.3 eV. Note that the negative
values of K (E) within the band gap O<E <0.3 eV can
lead to split-off states just below the conduction band.

In Figs. 3-6 we plot p, and — Ap for different values of
the hopping strength ¥ and the Coulomb repulsion U on

0.6 T T T T T

EG=0.1 eV

Eb(eV)
1

02 |- m

(3

08 - 2 ]

06 - -
(&)

(3)

0 L 1 1 1
01 0.3 05

EF(eV)

FIG. 8. Same as Fig. 7 for a fixed gap Eg=0.1 eV.
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the adatom. Note that for clarity it is — Ag which is plot-
ted. In all these plots the gap energy Eg is fixed at 0.3 eV
and the adatom level E, is located 0.3 eV above the
conduction-band edge. We start our energy scale for
these figures at the bottom edge of the conduction band,
since for the cases presented here p,(E) and —Ap(E) are
very small within the valence band; furthermore the split-
off states occur in the gap in these examples.

Figure 3 is our weak hopping case Vy=1.2 eV with no
Coulomb repulsion U =0 between electrons on the ada-
tom. p,(E) exhibits the expected Lorentzian broadened
shape and Ap(E)=p,(E). This implies that the substrate
density of states is essentially unmodified.

Figure 4 is the strong hopping case V,=4.8 eV, but
with U still kept at 0. The curves are broad and some-
what asymmetric. p,(E) is no longer identical with
Ap(E), and neither curve is centered on the atomic level
E,.
In Figs. 5 and 6 we show the weak and strong hopping
cases with the Coulomb repulsion on the adatom switched
on: U=1.0eV. As expected for the weak coupling case,
when Er is much larger than E, [Fig. 5(c)], the p,(E)
Lorentzian curve is pushed up toward Ef from its origi-
nal position at E,, so that approximately only one elec-
tron sits on the adatom. By the same argument, once Ef
becomes comparable or smaller than E,, we would expect
the Lorentzian to be centered on E, and we see this in

0.6

T T T T T
EG=0.% ()
0.4 - -
>
[
2 L i
s
w2 b (1
- 3)
(2)
0
(1)
0.8 |- .
(2
—fe
=]
S o4t .
’ (%)
(3)
0 1 1 1 1

0 01 03 05
E F(eV)

FIG. 9. Same as Fig. 7 for a fixed gap E¢c=0.6 eV.
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Figs. 5(a) and 5(b). For the strong hopping case in Fig. 6,
pa(E) is again very broad but we still see the tendency for
the peak to shift toward Ef.

In Figs. 7-9 we show the binding energy E, and the
spin-up occupation number for the adatom state n,; as a
function of the Fermi energy for a fixed gap Eg. The
adatom state is fixed at E, =0.3 eV. We note that when
U =0, curves (1) and (2), the binding energy E, exhibits a
minimum as Er passes through E,. Since in our case the
binding is governed mainly by the charge transfer, one
should expect the minimum of the binding energy when
the charge transfer is smallest. For U =1 eV, curves (3)
and (4), electron repulsion on the adatom prevents large
charge transfers, and E, shows no distinct maximum.

In Figs. 10-12 we show E, and n,; as a function of the
band gap Eg for Fermi energy Er fixed with respect to
the bottom of the conduction band. The adatom state E,
is fixed 0.3 eV above the bottom of the conduction band.
In Fig. 10 the Fermi energy Efr is well below the adatom
level E,, and consequently very little charge resides on
the adatom in all cases. In Figs. 11 and 12, curve (1) for
both E, and n,; is almost flat: in this weak hopping case

0.6 T T T T T T T
E_=0.1eV
. F i
(2)
04 (&) 4
>
<
= - .
w
02 (M.(3) 4
0
08 -
—l~
(=] (2)
c
04 -
‘ \_—/’— A
0 L s | " " + 1 (1B3)
-0.4 0.0 0.4 0.8 12

EG(eV)

FIG. 10. Binding energy E, and spin-up occupation number
ng; as a function of the energy gap E¢ for a fixed Fermi energy
Er=0.1 eV. The numerical labels refer to the same (Vy,U)
combinations as in Fig. 7.
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the adatom level is narrow and is not greatly affected by
Eg. Contrast this with curve (2), the strong hopping case,
where we see both E, and n,,; dipping sharply as Es in-
creases. This is due to the change in the effective hopping
coupling caused by the relative increase in s-like com-
ponents in the conduction band as Es increases. Since we
assume an s state for the adatom we only have hopping to
the s-like components in the band. Thus this behavior is a
direct manifestation of the s-p mixing of the semiconduc-
tor bands due to the narrowness of the gap. Finally,
curves (3) and (4) (i.e., U =1 eV) in Figs. 11 and 12 show
a very weak dependence of n,, on E;.

We note in the case of strong coupling V' =4.8 eV and
for wide gaps we obtain a split-off state in the band gap.
These occur at the energy E, whenever the denominator
in (28) and (29) vanishes, i.e., Eg—E, — V3K (Ey)=0 and
K>(Ey)=0. Whether this state is occupied by one or two
electrons depends on the strength of the exchange repul-
sion U between them. For U =0 we get double occupan-
cy. As U increases, Eo moves up until it becomes ener-
getically favorable for one electron to hop into the con-
duction band. This switch-over could be observed in real

0.6 T T | | T T
E_=03eV
_CF i
04 -
=
Y
2 | |
w (2)
02 &) |
(3)
i \/m
0
0.8 - —
-l (2)
o
c
04 - -
/’/Q (&)
- =
- 3)
0 L L 1 1 1 1 1
-0.4 0.0 0.4 0.8 1.2

EG(eV)

FIG. 11. Same as Fig. 10 for a fixed Fermi energy Er=0.3
eV.
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FIG. 12. Same as Fig. 10 for a fixed Fermi energy Er=0.5
eVv.

materials as a function of either the Fermi energy (being
changed by doping) or the band gap (being changed by al-
loying). In our particular cases both split-off states for
U =0 are (of course) doubly occupied while the state for
U =1.0 eV is singly occupied.

IV. SUMMARY AND OUTLOOK

We have in this paper developed an Anderson-Newns
model for chemisorption on narrow-band-gap semicon-
ductors. To describe the semiconductor we use two bands
of different symmetries mixed by the k-p “interaction.”

u,,lk(r)=<r | nl)
En "’EG
2E, —Eg

172
En

E,—Eg

1/2[

Upok= ?unlk .

V73
u2+%l'c\+u4+fc\,u5+7fc\_u6

In numerous numerical examples we demonstrated sys-
tematic trends in the local density of states, the binding
energy, and the charge transfer as a function of Fermi en-
ergy (to be varied experimentally by doping) and as a
function of the band gap (to be changed by alloying).
Split-off states may occur below the conduction band and
even below a narrow valence band. Providing the recon-
struction of the semiconductor surface does not occur, the
corrections to this charge transfer model can be calculated
using the Kalkstein-Soven tight-binding formalism. This
is a tedious but tractable calculation which we are
currently carrying out. Should surface reconstruction be
observed then only a complete ab initio calculation would
suffice.

ACKNOWLEDGMENTS

This work was done while one of us (H.J.K.) was visit-
ing the University of New South Wales. Support through
a Special Projects Grant is gratefully acknowledged. Part
of this work is also supported through a grant by the Nat-
ural Sciences and Engineering Research Council of Cana-
da.

APPENDIX

The purpose of this section is to present a detailed cal-
culation of G,,;,(E), which is the only quantity in the
theory depending on the band structure. We have, using
Egs. (9), (10), and (21),

Groro(E) =~ 3 6ok, k, E)
N k

Q/N [ g3 PnalK)| (Ao | na) |2

=2 E —E,o(k)+in

e (2m)°

’

(A1)

where () is the volume of the crystal, N is the number of
elementary cells. For the fcc lattice Q/N =1a 3, where ag
is the lattice constant. The eight wave functions (r| Ao )
(A=0,1,2,3; o=1,1) are the periodic parts of the Bloch
functions at k=0 for the conduction and valence bands
(s-like and p-type), and are usually denoted by iS;,),
X1 Yy Zyn-

To find the wave functions (r|na) that diagonalize
the crystal Hamiltonian H; for a narrow-band-gap semi-
conductor we will use the Kane model. The periodic
parts of the Bloch functions (r|na) can be written as
(see e.g., Ref. 19)

(n=12),
(A2)
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FIG. 13. Schematic plot of imaginary (a) and real (b) parts of
the Green’s function G for a narrow-band-gap semiconductor.
The shaded horizontal bars refer to the spread of the bands.
Near the band edges InG(E)~E*? and E'/? as indicated. In
the energy range where the Green’s functions are shown as
dashed lines, their detailed behavior depends on the choice of the
lower cutoff for the valence band (see Appendix). (c) Corre-
sponding plot of G(E) for a one-band model of a metal.

Here, A=0 corresponds to the conduction band, A=1 to
the valence band. Since in the approximation used here
(see below) the two remaining bands (I'# and T';) do not
couple to the s-like wave function, we may omit them. In
Eq. (A2), k is the wave vector and fc\iz(kxiiky)/k,
k,=k,/k. Eg is the energy gap, which is negative for
zero-gap materials, E, (n =1,2) are the two solutions of
the quadratic equation

E(E —Eg)=1P%?*, (A3)
where P = —(i#i/m){s | P, | z) characterizes the s-p inter-
band “interaction.” u; to ue are the s-like and p-like
Bloch amplitudes at k=0 in the total angular momentum
representation
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uy=iS,, u;=Tu, ,
172

2 1 . -
us= |3 ZT_‘/—B(X+IY)1) us=Tus , (A4)
1 .
u(,:—‘/—E(X +iY), u3=fu(, .
The operator Tis given by
T=RI=|_, ,|KT, (AS)

where T is the space-inversion operator, R is the time-
reversal operator, and K is the complex-conjugate opera-
tor.

In obtaining (A2) and (A3) two approximations have
been made. First, the spin-orbit splitting A (the energy
distance between I's and I'; bands—see Fig. 1) is large,
and second the “influence” of all other bands on the con-
duction and valence bands is neglected.

We now proceed with the calculation of G,,;,(E)
[Eq. (A1)]. For symmetry reasons only two functions
are independent: A=0 (S), o=1 and A=1 (X), o=1.
We need to calculate only the former. Using (A2) and
(A4), we have

|<0T [na) |2=|<uz|u,,ak)|2

E, (k)

IE, (k) _Eg "=L2

(A6)

At T =0 and for n-type degenerate material (A1) then be-
comes

Q/N
(2m)?

E . /(RE,—Eg)
E—E . +in

E,/(2E,—Eg)

E—E,+in

_ k
K =Go,0,(E)= 47 fOFkde

k
+ [ k2dkf (k)

(A7)

where kr is the Fermi cnergy and kjp is the boundary at
the Brillouin zone (Fig. 13).

The integral over the conduction band is well defined,
since Er ~ Eg. However, the spectrum for E,(k) given by
Eq. (A3) is unrealistic for E, > E;. We introduce a
cutoff factor f(k) which forces the width of the conduc-
tion band to be Ejp,

f(K)=[(E,(k)—E,(0)+Eg)/Eg]'"? . (A8)

This procedure does not affect the imaginary part of
K (E) in the conduction band, but the real part of K (E) is
changed by an amount which is approximately constant
provided that Ep is large enough.
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