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New formalism of the Kronig-Penney model with application to superlattices
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A new formalism of the Kronig-Penney model has been developed which is considerably simpler

than the conventional one. It gives not only the carrier energy bands but also the wave functions at
the edges of each band. Although it is formulated to be applied to superlattices, it is also applicable

to bulk materials.

I. INTRODUCTION

The Kronig-Penney model' is an idealized method of
calculating the energy bands in crystalline solids with
periodically varying potentials. It has been applied pri-
marily to bulk semiconductors ' to study the qualitative
nature of band structures. Recently, it has also been ap-
plied to semiconductor superlattices to calculate quan-
turn confined energy subbands. Here, because of
conduction- and valence-band discontinuities,
smaller —energy-gap layers act as potential wells between
larger —energy-gap layers. Though the effective mass of
carriers is the same throughout bulk materials, it is
different in the well and barrier layers of superlattice
structures. This effective mass difference must be taken
into account by the appropriate boundary condition at the
well/barrier interface. The conventional formalism of the
Kronig-Penney model for bulk materials must therefore
be modified for superlattices.

Mukherji and Nag considered the efFective-mass
difference in formulating the Kronig-Penney model, but
assumed that the wave function and its first derivative
were continuous at the interface. Bastard' replaced the
assumption of continuity of the first derivative of wave
function with an envelope function approximation. He
showed that the first derivative of the wave function divid-
ed by effective mass, or the probability current, is continu-
ous at the interface under certain conditions. Although
several other boundary conditions have been pro-
posed, ' Bastard's is the simplest and most intuitively
appealing. The results of particle energy calculations
based on Bastard's boundary condition are consistent with
the experimental data. " Recently, the Kronig-Penney
model with Bastard's boundary condition was also used
to calculate the band offset of GaAs/Al Ga~ „As super-
lattices. '

The purpose of this paper is to present a new formalism
of the Kronig-Penney model developed using Bastard's
boundary condition. This formalism is based on the ob-
servation that wave functions corresponding to maximum

l

and minimum energies of each band have definite parities.
Since this formalism is simpler and easier to manipulate
than the conventional formalism, it can be used to find
energy bands and wave functions in superlattices and bulk
materials by simple numerical analysis. In the following
section, both the conventional formalism, and the new
formalism of the Kronig-Penney model with Bastard's
boundary condition, will be developed and compared. In
Sec. III application of the new formalism will be illustrat-
ed by finding the energy subbands and envelope wave
functions of a GaAs/Al Ga~ „As superlattice. This ap-
plication will then be discussed.

II. FORM UI.ATION

The periodic potential in a superlattice is not a real
atomic potential, but a periodic repetition of different en-
ergy gap layers, the thickness of which is usually many
times larger than the period of the atomic potential. As a
consequence, the actual wave function of a superlattice is
a bulk atomic wave function modulated by the envelope
wave function of the superlattice potential. The energy
bands of a superlattice are composed of a discrete series of
subbands induced by the superlattice potential inside a
bulk band.

In this section, we will formulate the energy subbands
and envelope wave functions induced by the superlattice
potential, using a new formalism of the Kronig-Penney
model and applying Bastard's boundary condition. Be-
fore developing the new formalism, the conventional for-
malism is first developed for comparison.

A. Conventional formalism

Figure 1 shows the periodic square potential of a super-
lattice with well thickness a, barrier thickness b, and bar-
rier height V. Particle effective mass is m, at the well and
mb at the barrier. From the solution of the Schrodinger
equation, the envelope wave function in two adjacent
periods, —b &z &a and a &z &d+a, can be written as

d &z&d+a
a —z —d

ia(z —a/2)+g —ia(z —a/2) @ ~ ~ O &
Q z

4(z)= .
Ceip(z+b/2)+De —ip(z+b 2) /)I/ (Z) b && &O

iver ~ ia(z —a/2 —d), ~ —ia(z —a/2 —d)~
C

iver ip(z+b/2 —d), ~ —ip(z+b/2 —d)i .z.+De j=~d(z)~
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where d =a +b is the period of the superlattice, 3, B, C, and D are complex numbers, e' is the phase factor, and z is
the axis perpendicular to the superlattice layers. a and P are defined as

a—:—(2m, E)'~1

P=——[2m„(E —V)]'",1

where E is the particle energy. 0'„+b, 'k„and %~ are defined only inside a well or a barrier. We note

~

(Ii, (0)
~

=
~

)II, (a)
~

and
~

%b( b)
~

—=
~

)pb(0)
~

from the symmetry of the wells and barriers, and also note

~

)p(z +d)
~

=
~

4'(z)
~

from the periodicity of superlattice potential. Using Bastard s boundary condition at z =0 and
z =a, 1e)

1 [)p,' (z) ],
ma

1
[)I)g (z)].

where )I),'(z) and )I'b(z) are the first derivatives of )Ii, (z) and )I)b(z), respectively, and applying the condition that A, B, C,
and D should not be zero simultaneously, we obtain
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e
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ma

e i (rI) —bi3)

P i (&P —bj3)

mb

m,
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Note that by Bloch's theorem )I)(z) =e' 'u (z), where k is the wave number of the envelope function in the z axis and
u(z) is a periodic potential satisfying u (z)=u (z+d). It is obvious that )p(z+d)=e' e' 'u (z+d) is e'" )p(z). Thus &I)

is equal to kd. By simplifying the above determinant and replacing + by A:d, we obtain

cos(kd)=cos —(2m, E)' cosh —[Zmb(V —E)]'

m,
1/2

ma
1/2

mb
1/2

mb

2&E( V E)—sin —(2m, E)' sinh —[2mb( V —E)]" for V ~ E,

cos(kd) =cos —(2m, E) ' cos —[2mb (E —V) ]'

ma
' 1/2

ma
1/2

2&E (E —V)

mb
1/2

E
sin —(2m, E)' sin —[2mb(E —V)] for V (E, (4)

where R= h /2w and h is the Planck's constant.
Similar equations have been derived by Bastard, who

also included the effect of momentum in the direction
parallel to the layers. If continuity of dO(z)/dz is adopt-
ed instead of (I/m)d)I)(z)/dz, (m, /mb)'~ is replaced by
(mb/m, )' and vice versa, and the overall energy bands
shift upward. '' From Eqs. (3) and (4) the E kdispersion-
relations can be readily obtained.

B. New formalism

Even though the conventional formalism yields the en-
ergy bands of superlattices or bulk materials, it is quite
complicated and cannot yield the envelope wave func-
tions. A new formalism, which will be developed here, is
simpler than the conventional formalism, and yields the
envelope wave functions corresponding to the edge ener-
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v(z)

V

-b 0 a d d+0
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gies of each band. These envelope wave functions are use-
ful to analyze the superlattice properties.

From Eqs. (3) and (4), the phase difference (4= kd) be-
tween ql(z) and 4'(z +d) is 0 or +m for the wave function
corresponding to minimum and maximum energy of each
band. The phase difference between 4, (0) and ql, (d) is
the sum of the phase difference @, between +, (0) and
4, (a ), and the phase difference 4i, between +, (a ) and
0'z(d ). When A is different from B or B in Eq. —(I), @, is
different from 0 or +~. Similarly, when C is difFerent from
D or D in Eq. (I), —@& is also different from 0 or +m. In
general, when W, and +b do not have even or odd parity
(when A&B or B, or C&—D or D), the to—tal phase
difference cannot be 0 or +~. Therefore, the envelope
wave functions corresponding to the minimum and max-
imum energy of each band must have even or odd parity.

1. Odd index bands (n-=1,3,5, . . .)

As will be shown in Fig. 2, the minimum energy of
every odd-index band corresponds to cosN = 1 or N =0.
Following the above arguments, N, and Nb should both
be even or both be odd at minimum energies. Note, how-

FIG. 1. A schematic view of the periodic square potential of a
superlattice. a is the well thickness, b is the barrier thickness,
d =a +b is the period of the superlattice, and V is the barrier
height. 4', and +, are the envelope wave functions in the wells

at 0&z &a and d &z &d +a, respectively. '0& and 4d are the
envelope wave functions in the barriers at —b & z & 0 and
a &z &d, respectively.
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ever, that at large b each band in a well degenerates to an
energy level with vanishing bandwidth. Thus ql, '" (corre-
sponding to minimum energy) and ql, '" (corresponding to
maximum energy) become identical. Hence, the parities
of 0', '" and +, '" must be the same for any value of b.
Furthermore, 4, is even for the first (ground) state, odd
for the second state, and alternating even and odd with
increasing n. Therefore, both 0, '" and %~

'" of every
odd-index band have even parity, and can be written as

FIG. 2. The first five electron energy subbands of a
GaAs/Al Gal As superlattice with x =0.5, a =100 A, and
b =25 A. V=375 meV is the barrier potential height. Dashed
curves (a) and (b) correspond to the functions in the left-hand
side of Eqs. (7) and (8), and (11) and (12), respectively. Dotted
curves (c) and (d) correspond to the functions in the left-hand
side of Eqs. (15) and (16), and (19) and (20), respectively. Solid
curve (e) corresponds to the right-hand side of Eqs. (3) and (4),
respectively. n is the band index.

ql, '"(z}=A cos a z ——
2

+i, '"(z) =B cosh 5 z +—
2

for V &E,

0', '"(z)= A cos a z ——
2

4i, '"(z) =B cos P z +—
2

for V &E,

where 5=iP=[2mi, (V —E)]' /fi.
Using Bastard's boundary condition at z =0, i.e.,

0' (0) ='Pb(0)

and
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m

1
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we obtain
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aa3 cos
2

b6=B cosh
2 ma
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2
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2 ma 2

B—. bP
P sin

mb 2
for V &E,

which in turn gives the minimum energy of every odd-index band:

tan (2m, E;„)'~
2A

V —1
mb Emin

tank [2mb( V E;„)—]'~ =0 for V )E,2'

tan (2m, E;„)'~ +
2A

ma 1— V

mb Emin

1/2

tan
25

[2m'(E;„—V)]' =0 for V &E .

The smallest solution of Eq. (7) corresponds to n =1 (ground subband), the next solution to n =3, etc. The band in-
dex corresponding to the smallest solution of Eq. (8) depends on how many bands are confined inside the well.

To find the maximum energy of each odd-index band, we note that cos4 is —1 or 4 is +~. 4, is 0 because 4', is
even. Since N, +Nb is +~, Nb is +~, or +b is odd. Hence, the wave functions can be written as

4, '"(z)= 3 cos a z ——
2

Ob'" ——B sinh 6 z+—
2

for V) E,

%', '"(z)= 3 cos a z ——
2 2

q'b'"=B sin /3 z +— for V&E. (10)

Following the same procedure as above, we obtain the maximum energy of every odd-index band:

tan (2m, E,„)'~
2A

ma V

mb Emax

1/2

coth [2m'(V E,„)]'~ =—0 for V) E,
2A

tan (2m, E,„)'

2R mb

m, 1— V

Emax

1/2

cot [2mb(E, „—V)]' =0 for V &E .
2A

(12)

2. Even-index bands (n=2, 4, 6, . . .)

For even-index bands, the minimum energy corresponds to cos4 = —1 or 4= +~. Since 4, is odd and 4, is +~,
Nb ——N —4, is 0. Thus %'b is even, and we can write

4, '"(z)=A sin a z ——
2

4'b '"——B cosh 6 z +—
2

for V)E,

4, '"(z)= 3 sin a z ——
2 2

=Bcos P z+— forV &E . (14)

mb Emin

Using the boundary condition and simplifying as above, we obtain the minimum energy of every even-index band:
1/2

—1 tanh [2mb( V E;„)] =0 —for V )E,2' (15)

cot (2m, E;„)'~
2A

ma 1— V

mb Emin

1/2

tan [2m' (E;„—V)]' =0 for V & E .
2A

for V) E,

The smallest solution of Eq. (15) corresponds to n =2, the next to n =4, etc. The band index corresponding to the
smallest solution of Eq. (16) depends on how many bands are confined inside the well.

To find the maximum energy of every even-index band we note that cos4 is 1 or N is 0. Since 4, is odd and 4, is
+~, Nb ——+—N, is +~. Thus 4'b is odd. Hence, we can write the wave functions as

'P, '"(z)= A sin a z ——,'PI, '"=Bsinh 5 z+— (17)
2

'
2

4, "(z)=A sin a z ——
2

4b'"=B sin P z +—
2

(18)
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Following the same procedure as above, we obtain the maximum energy of every even-index band:
1/2

cot (2m, E,„)'~ +
2A

ma

mb Emax
coth [2mb( V E—,„)]' =0 for V & E,2' (19)

mb

ma 1— V
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1/2

cot [2mb(E,„—V)]' =0 for V &E .2' (20)

tan (2m, E)'a
2A

V——1
rnb E
m, =0

for n =1,3, 5, . . .

Even though formulas similar to Eqs. (7) and (19) have
been previously derived by Masselink et al. ,

" their rela-
tionship to the Kronig-Penney model has not been
clarified. In addition, they are not a complete formalism
because they cannot yield the maximum energies of odd-
index bands and minimum energies of even-index bands,
and the corresponding envelope wave functions.

The question might arise why only one boundary con-
dition at z =0 was used in developing the new formalism,
whereas boundary conditions at both z =0 and z =a were
used to derive Eqs. (3) and (4). The explanation lies in
the main difference between the two formalisms. Since
the conventional formalism is concerned with all the ener-
gies from 0 to oo, Eqs. (3) and (4) indicate that &0 (=kd)
can be any real value from 0 to 2m (for energies inside
bands) or any complex value (for energies outside bands).
Thus there are no definite parities of 4', and 4'b and no
symmetry relationship between qI, (0) and 4, (a) or
'Pb( b) and +—b(0). Therefore, in Fig. 1, the boundary
condition at z =0 and z =a are different and both bound-
ary conditions must be used. On the other hand, the new
formalism is only concerned with the band-edge energies,
at which N can be only 0 or +n. Thus +, and 4'b have
definite parities. Since ql, (0)= +4, (a ) and
Vb(0)=+Cd(a), the boundary condition at z =0, which
determines the relationship between +, and Ob, is identi-
cal to that at z =a. This is the reason we need only one
boundary condition in developing the new formalism.

When b becomes sufficiently large for V &E, Eqs. (7)
and (11) degenerate to

1/2

max min

p ZX W f'X

mox
'P~

p p

—z
min

@mox
min

0

We have also calculated the envelope wave functions us-
ing the new formalism.

Figure 2 shows the first five electron energy subbands.
We have taken AE~ =0.476+0. 125x +0.143x eV for
0.45 & x & 1, ' as the band-gap difference between GaAs
and Al Ga] As at room temperature; m, =0.067m o
and mb =(0.067+0.083x)mo, ' where mo is the free elec-
tron mass, as the electron effective mass at well and bar-
rier layers. We have assumed 65%:35'7o band offset ra-
tio" ' ' between the conduction and valence band. Thus
the barrier potential V is given as 0.65AEg =375 meV.
As shown in Fig. 2, the first three bands are confined in-
side the well and the remaining two bands are not. Curve
(a) in Fig. 2 corresponds to the function in the left-hand
side of Eqs. (7) and (8) for E & V and E & V, respectively.
This curve meets the E axis at 31, 268, and 684 meV.
Since Eqs. (7) and (8) give the minimum energies of odd-
index bands, these three values are the minimum energy
of the first, third, and fifth subband, respectively. Curve
(b) corresponds to the functions in the left-hand side of
Eqs. (11) and (12). Obviously, it gives the maximum ener-

gy of the first, third, and fifth subband. Similarly, curves
(c) and (d) correspond to the functions in the left-hand
side of Eqs. (15) and (16), and (19) and (20), respectively.

and Eqs. (15) and (19) to
r

cot (2m, E) ' +
2A

ma V——1
mb E

1/2

=0
+max

2

o

max

min

min

for n=246, . . . .

These results are, of course, identical to the single-well re-
sults. '

0 ~ b d
p

b d d+b 2d
—Z

III. APPLICATION AND DISCUSSION

As an illustration of the application of the new formal-
ism, we have calculated the electron energy subbands of a
GaAs/Al Gai As superlattice with x =0.5, a =100 A,
and b =25 A by using both the conventional formalism
[Eqs. (3) and (4)] and the new formalism [Eqs. (5) to (20)].

FIG. 3. Envelope wave functions corresponding to the edge
energies of the first five subbands shown in Fig. 2. O~

'" is the
wave function corresponding to the maximum edge of the first
subband, and Oi '" is that corresponding to the minimum edge of

0
the first subband, etc. b =25 A is the barrier thickness;
a =d —b =100 A is the well thickness. The amplitude of the
wave functions has arbitrary units.
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They give the minimum and maximum energies of the
second and fourth subband, respectively. All these curves
are obtained from the new formalism. Curve (e) is ob-
tained from the conventional formalism. It corresponds
to the functions in the right-hand side of Eqs. (3) and (4)
for E & V and E & V, respectively. We can easily identify
the first five subbands.

If we define f (E) as the longitudinal axis of the curves
(a)—(e), we note that curve (e) meets the f (E)=1 or —1

line at exactly the same points on the E axis as the
minimum and maximum energies found from curves (a),
(b), (c), and (d). This indicates that the energy bands
found from the new formalism are identical to those
found from the conventional formalism, as they must be.
Even though we have plotted complete curves of functions
in Eqs. (7), (8), (11), (12), (15), (16), (19), and (20) to find
the subbands by the new formalism, usually it is not
necessary. The energy bands can be easily found by sim-
ple numerical or graphical methods. Of course this for-
malism can also be used for bulk materials with m, =m~.

In Fig. 3 the envelope wave functions are presented,
which correspond to the minimum and maximum ener-
gies of the first five subbands of the superlattice in Fig. 2.
These wave functions have been found by using the
minimum and maximum energy of each band in calculat-
ing a, P, and 6; also the boundary condition
0', (0)=+i, (0) is applied to Eqs. (5), (6), (9), (10), (13),
(14), (17), and (18), thus eliminating A or B. Although
these wave functions are not normalized,
I'b =Ib l(I, +Ib), where I, = f o ~

0',
~

dz and Ib

= f b ~

+b
~

dz, gives the probability to find an electron
at a barrier layer. The calculated values of Pb for this su-
perlattice have been found to be 5.7%, 12%, 25%, 38%,
and 43% for minimum energy of the first five bands, and
1.3%, 5.3%, 8%, 13%, and 18% for maximum energy of
the first five bands. They are an increasing function of n,
because electrons become more energetic with increasing
n and are more probable to leak to the barriers. PI,

'" for
4'q'" is larger than I'I, " for %q" of the same band, be-
cause +~ '" has even parity and 9'b" has odd parity.

We observe another general property of the envelope
wave functions in wells and barriers of superlattices:
When E ~ V, wave functions at the wells, corresponding
to both E;„and E „of the nth subband, have n —1

zeros (meet z axis n —1 times). Those at the barriers have
0 {for E,„) or 1 (for E;„) zero. When E ~ V, wave
functions at the wells still have n —1 zeros; those at the
barriers have a diAerent number of zeros for diff'erent b,
ranging from 0 for small b, to infinity for infinitely large
b. In Fig. 3, however, we see only 0 or 1 zero inside the
barrier, because the barrier is sufficiently thin to have only
0 or 1 zero.

In conclusion, we can calculate both the energy bands
and the wave functions corresponding to the edge energies
of each band, of superlattices or bulk materials, using the
new formalism of the Kronig-Penney model. Moreover,
the calculation of energy bands can be done more easily
by the new formalism than by the conventional formal-
ism. The new formalism is very useful for the analysis of
superlattices and application to device designs.
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