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We study a heavy particle moving in a periodic lattice of arbitrary dimension and interacting with

a degenerate fermionic heat bath. We assume that the Fermi energy of the screening particles is large
compared to the tight-binding bandwidth of the particle. We develop a path-integral method for the
partition function of the heavy particle where we integrate out the electronic degrees of freedom. We
perform also a summation over the paths between the screening-interaction points that makes the
method capable of treating band motion and hopping. Following the method of Anderson and Yu-
val, we derive scaling equations by eliminating that part of the phase space of the light particles
which is far from the Fermi energy. We find that the screening strength is not renormalized; the
bandwidth of the heavy particle is, however, essentially reduced. That reduction coincides with the
reduction in the two-site model. Extrapolating the result for larger values of the screening strength
we find band motion and localization at zero temperature depending on the coupling strength; thus
the behavior is of Ohmic type. We show that the results obtained can be combined with the classical
kinetic equation to get the diffusion coefficient. We believe that the present work based on the path-
integral method helps to clarify the connection between results obtained by different methods. The
relation of the model to other models, especially to the Caldeira-Leggett model, is discussed in detail.

I. INTRODUCTION

In the last several years, the problem of the motion of a
heavy particle interacting with a light degenerate Fermi
gas has attracted considerable interest. ' That problem has
many important implications for, for example, the
diffusion of muons or hydrogen in metals, the motion of
heavy ions in the degenerate Fermi liquid He, the mass
reduction of heavy d electrons in transition metals, and
very likely heavy-fermion systems. The problem has been
attacked by different methods: first, the direct perturba-
tion theory and summation of diagrams in the logarithmic
approximation by Kondo and Soda and then the general-
ization of this method developed by Kagan and co-
workers ' for the small-polaron problem, which is com-
bined with the kinetic equation. This problem has also a
strong resemblance to the Caldeira-Leggett ' problem,
where a moving particle is coupled to a heat bath with
many degrees of freedom. The latter has been almost ex-
clusively treated by the path-integral method. The
present paper is devoted to developing a path-integral
treatment for a particle moving by hopping on a lattice
and coupled to a degenerate Fermi gas. We believe that
the present method helps to make the relationship be-
tween the different methods more transparent; further-
more it establishes a stronger connection to a similar
problem where the hopping motion is restricted to only
two sites, known as the two-level system (TLS). Final-
ly, we suggest that the present method is applicable to

heavy-fermion systems as well. In the following we give a
brief discussion of the methods that have been already
developed.

The common features of all of the many-site systems
are that the screening by the light particles results in the
reduction of the hopping rate or of the bandwidth of the
heavy particles, and that the interaction between the
heavy and light particles is not renormalized. Further-
more, in the case of the hopping model for the heavy par-
ticle, the light-particle-assisted hopping or tunneling, also
called incoherent hopping, is not included. We know that
the assisted tunneling changes the behavior of the two-site
problem in an essential way; however, it will not be in-
cluded in the present paper either. In general, the renor-
malizations of the parameters of the heavy particle are
due to Anderson's orthogonality catastrophe, namely, at
zero temperature, T =0, the screening clouds formed by
the light particles around the heavy ones placed at two
different sites are orthogonal to each other. At zero tem-
perature, if the coupling is strong enough, the heavy parti-
cle is localized; in other words, its mass diverges and the
hopping matrix element 6 behaves like

A(T) =6 T
0 for K) 1,

where A0 is the unrenormalized hopping rate, D is the
light-particle bandwidth, and K is proportional to the
square of the coupling responsible for the screening. In
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the case of weak coupling, K & 1, the above renormaliza-
tion provides a reduction of the hopping rate as the tem-
perature is lowered, but the renormalization saturates as
the temperature becomes comparable to the hopping rate.
In that case, the smallest value of the hopping rate 5, is
the solution of the equation

A, =Ap for K&1 .
D

(1.2)

In the following two approaches either the band or the
hopping motion of the heavy particle is emphasized. In
the band picture, Kondo and Soda attacked the problem
by using perturbation theory, and they showed that the
heavy-particle self-energy has a logarithmic correction in
the second order in the perturbation theory. The argu-
ment of the logarithm is the temperature or the energy of
the heavy particle divided by the band cutoff of the degen-
erate Fermi gas, which is of the order of the Fermi ener-
gy. By summing a certain class of diagrams, the results
given by expressions (1.1) and (1.2) can be obtained. '"
These renormalizations must be taken into account in the
kinetic equations, as recently justified by Yamada" in the
framework of the Green's-function technique. The solu-
tion of those equations gives the mobility and the diffusion
constant in agreement with the results based on the Kubo
formula. ' At finite temperature the diffusion is limited by
the creation of light particle-hole pairs, and the diffusion
constant shows a power behavior in its temperature
dependence.

There is another approach to the problem which was
first suggested by Kagan and Klinger for the small-
polaron problem. In that method first the hopping rate to
a neighboring site is determined, which means a calcula-
tion of the overlap integral of the two screening clouds.
Such calculations have been recently performed in great
detail. ' ' The second step is to build the hopping rate
obtained into a kinetic equation for the heavy particle
where the variables of the light particles are integrated
out. '" Such a program has been performed by Kagan
and Prokofev' and by Yamada et al. '

Considering the theory of Caldeira and Leggett, the
most interesting are those models in which the dissipation
of the motion of the heavy particle due to the light ones is
of Ohmic type. The condition for Ohmic dissipation was
given by Kagan and Prokofev' in terms of a function
f (co) defined as

f(~)= g
c(P ~z

5(co —co ), (1.3)

where co stands for the energy of different excitations in
the heat bath and C" is the coefficient in the interaction
Hamiltonian in front of the product of creation and an-
nihilation operators obeying the usual Bose or Fermi com-
mutation rules, assuming that the heavy particle is at site
i The sy.stem shows Ohmic behavior if lim, +(co)
=const for i&j. That is the marginal case, where we
have different behavior for K ~ K, and K & K, as shown
by Eqs. (1.1) and (1.2) with K, = l. If lim Q(co)=0 or
oo then we always have a delocalized or a localized state,
respectively, at T =0.

In the case of a bosonic and of a fermionic heat bath
lg~ Rt.

the constant C" contains a phase factor e ' where R; is
the position of the heavy particle and q is the total
momentum of the excitation in the heat bath. That phase
factor is not introduced explicitly in the Caldeira-Leggett
model. ' The source of a further formal difference is
that the latter authors introduce the coupling F(R) in the
interaction Hamiltonian g F (R)x where R and x are
the coordinates of the heavy particle and the oscillator, re-
spectively.

Considering Eq. (1.3), the condition for Ohmic behavior
depends on the dimensionality d of the system. In the case
d = 1 we must distinguish between models where the elec-
tron scattering is forward or backward. In case of forward
scattering, the momentum transfer q is small,
C"-e ', co -q, and the density of the electron-hole
excitations is proportional to co: thus, f (co)-co for small
co. In the case of backscattering, the momentum transfer
is q -2k+, where kz is the Fermi momentum; thus
f(co)~ cosnt as co~0 and we find Ohmic behavior. Re-
cently, Itai ' has treated the forward-scattering model by
transforming the electron density operators into Tomona-
ga bosons. In the case d ~ 1 the momentum transfer is
large (q connects two arbitrary points of the Fermi sur-
face), thus those models always exhibit Ohmic behavior.

Finally, we comment on the Caldeira-Leggett model
where F (R)—R, in which case their well-known expres-
sion for the friction coe%cient holds. That model has
been used also for one-dimensional (1D) diffusion by
Schmid' and several other authors. ' ' As has recently
been pointed out by Zawadowski and Itai ' the hopping
models of Schmid's type can be derived only in the local-
ized region by expanding the factor e ' —1+iq R;,
where an extra factor of q occurs. In order to compen-
sate for that extra factor the coupling to acoustic phonons
with a constant density of states must be modified to

] y2 lfC"-q ' e ' in contrast to the physical coupling to
( ) 1/2longitudinal phonons where C"—q

' e '. Thus,
Schmid's 1D theory is valid for a special coupling in the
localized region where qR; « 1 holds for the infrared pro-
cesses and for the dynamics of superconducting
quantum-interference devices.

In the path-integral method two different couplings for
the hopping of the heavy particle, 5, and the screening
strength must be taken into account. One gets a partition
function of a simpler form if the summation in one of
those couplings is carried out explicitly. Itai ' was able to
perform that summation for the forward scattering of
electrons, and in case, e.g. , of the Kondo problem ' or
of TLS's ' ', the contribution of the electronic screening
can be summed up by solving the Nozieres —de Dominicis
equation for the electron Green's function. In the present
problem that solution would be needed for the time- and
space-dependent external potential representing the heavy
particle. We were not able to solve that problem. We
performed the summation, however, for the hopping be-
tween the screening-interaction points using a result of
Coleman where he introduces the tight-binding band
structure for the heavy particle. In this way in our calcu-
lation we do not need to differentiate between hopping
and band motions.
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II. FORMULATION OF THE MODEL

We consider a particle moving by hopping on a lattice,
coupled to a degenerate Fermi gas in arbitrary dimension
d. The Hamiltonian takes the form

H =Hp+H))+Hi2, (2. 1)

In the present paper we treat the case of large momen-
tum transfer in arbitrary dimension d (the backscattering
model in 1D. We consider an arbitrary hopping path of
the heavy particle on a lattice, where the path is decorat-
ed by the interaction points. As a first step we write the
partition function in the form proposed by Yuval and
Anderson in the Kondo problem where the screening
points, e.g. , ~; and ~~ on the imaginary time axis interact
by a logarithmic interaction ln

l
r; —r, l. Then we per-

form the summation over all possible paths between the
screening-interaction points shown in Fig. 1. In the ex-
pression of the partition function we are not able to per-
form the explicit summation over the directions of the
electrons, therefore we use the scaling method developed
by us where the scaling is established in the individual
terms. Using the Anderson, Yuval, and Hamann
method, we derive the scaling eliminating the short-
time behavior (close screening-interaction points), and
compensating for that by renormalizing the overlap in-
tegral 5 and the screening couplings. The latter turns
out to be actually invariant. Finally, we discuss the fact
that the renormalized overlap integral 6 can be used in
the classical kinetic equation to get the diffusion
coefficient at finite temperature.

In Sec. II the model is formulated and the form of the
electron Green's function is discussed. In Sec. III the
form of the partition function is derived in the 1D case.
Section IV is devoted to the derivation of the scaling
equation and the results with their discussions are
presented in Sec. V.

7'-O, $'
T2

N-7

FICz. l. Typical hopping path on a two-dimensional lattice is
depicted. The path starts and ends at the same lattice point la-
beled by 0. The time ~; (i = 1, . . . , N) of the ith hop is also indi-
cated. The dashed line represents an arbitrary path connecting
the end points.

is taken over all the possible hopping paths R(r) on the
lattice (see Fig. 1) and the partition function Zl(R(r)) is
given in the interaction representation with respect to Hp
as

k and spin s are ak, and ak, . The c„and c„operators
destroy and create the particle at the well labeled by n at
position R„and n +6 labels the positions R„+& which
are the nearest neighbors of position R„. 5 is the hop-
ping amplitude for the particle and Vkk is the interac-
tion matrix element.

We calculate the partition function of the system by us-
ing the imaginary-time technique and the functional-
integral approach for the particle. The functional integral
in the expression of the partition function,

RZr R& (2.5)

where

HO —vF g( l
kl kF)&W— (2.2)

—PHp PZI =Tr e T,exp — dr H1(r)
0

(2.6)

k, s

H11 =6 g Cn+5 nC
n, 5

1 i(k' —k).R„
H12 —

d g g Vkk C„C„Q1UQk ze
L n k k's

(2.3)

(2.4)

Here L is the size of the sample, UF and kz are the Fer-
mi velocity and momentum, respectively, and we apply a
momentum cutoff D& vF (

l
k

l

—k—F ) & D, where D is
of the order of the electron bandwidth. We take a con-
stant density of state for the electrons. The creation and
annihilation operators of the electrons with momentum

I

where T, is the imaginary-time —ordering operator, P is
the inverse temperature, and the trace is taken over the
electron states. In the following, we will use the low-
temperature approximation of Anderson et al. and
Hamann, where the trace is replaced by the ground-state
expectation value denoted by ( ). As pointed out by
those authors, the results obtained in that approximation
can be generalized to finite temperatures by straightfor-
ward modifications to their final form. For a given path
with N~ hopping steps (with hopping fugacity y) and with
N, electron-particle interactions (N =N» +N, , ) we obtain
Z,& z by expanding the exponential in Eq. (2.6) as

Z~, ~, = g ( —1) f dr~ f dr; . . f dr1(S(P, r~)H1, S(r~,r~, ) H1~, S(r1,0))
y& v

Ia 0 p

=yL '"' y y( —1) """f'« f '"dr; f 'dr, Z"
IaI I k, k'

I I s I

T, '
Vk k ak, ~; ak, (r; )e "

np c„.c„) np, (2.7)
i(k' —k) R„

I
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where S(r, r') is the time-evolution operator due to Ho, n;

(n ) labels the position of the particle immediately after
(before) the interaction process labeled by i, and, formally,
the c„operators are kept to indicate the path with coin-
ciding initial and final state

~

no). The index a; of the in-
teraction H& has two values a; =1,2 and the summa-

I

tion covers all of the possible configurations [ a ]= (a, ,a2, . . . , a~). The momentum integrals are
represented by summation over the momenta of all of the
possible electron creation and annihilation operator pair-
ings in the momentum interval D&—(

~

k
~

—kz)vz &D,
which are denoted brielly by the configuration [ k, k'], and
[s] is a similar configuration for the electron spins s, .
Furthermore, Q" means the product associated with the
electron-particle scatterings described by the Hamiltonian

H)q. Finally, the boundary condition for the paths R„(r)
is n (0)= n (f3) =no, which is an arbitrary position.

Next we evaluate the expectation value in Eq. (2.7) with
the help of %'ick's theorem. In course of this, we have to
consider all possible pairings of the operators aq and ak
where the pairings are associated with the Green's func-
tions G' '(r, r', k) to be determined next.

The following treatment is based on the approximation
that the interaction strength Vkk depends only on the
directions 2=k/

~

k
~

and k'=k'/
~

k'
~

but does not de-
pend on the absolute values

~

k
~

and
~

k'
~

. Thus the
summations over the absolute values of the momenta can
be performed for each Green's function separately, and we
obtain a mixed real-space —momentum-direction represen-
tation in which the Green's function is

I

G'"'(r r', R —R',2) =——g e ' e'"' '[nJ;(c(; ) —6(r —r')]

i)c), (R —R') r D ~&~ ~ ) &zv); (R—R') K. . . q))=e pdce ' ' ' e jnp(, ck) —O{.7—7'
—D

(2.8)

G,' '(r —r';R —R', a)

ikF(R —R').i pF
r' —r+i(R —R') kvF ' (2.9)

for r —r'
~

D && 1. The averaged distance
~

R —R'
~

covered by the particle during the time interval
~

r r' ~—
is R —R' &

~

r —r'
~

bh, where b is the lattice spacing.
Furthermore, we assume that 6 ~~op, thus the following
inequality holds:

{2.10)

where e), =v~(k —kq-) is the electron energy, p stands for
the electron density of state for a given direction n, nJ;(r. )

is the Fermi distribution function, and 6(r) is the step
function [6(r)= 1 for r & 0 and 6(r) =0 for r & 0]. In the
region r&)=D ' «

~

r r'
~

&&P—, the bare Green's func-
tion is obtained by evaluating the integral in Eq. (2.8),
thus

III. PARTITION FUNCTION AND SCALING
IN THE ONE-DIMENSIONAL CASE

The formulas are shorter for the one-dimensional model
with backscattering only; therefore, we give the detailed
calculation for that case. The direction of the momentum
x has only two values p=+1, thus the Green's function
given by Eq. (2.11) has two forms for p =+1:

G(0) { r. ~) p ipg(n —n')
SP & p7—7

(3.1)

where Q =k~b is the dimensionless Fermi momentum
and n corresponds to the site at R„. The left- and right-
hand sides of the one-dimensional electron dispersion
curve contribute to G, ' and G,'+, respectively. Further-
more, the backscattering electron-particle coupling Vkk
becomes a single number V. First we give an expression
for the partition function and then we establish the scaling
in terms of the cutoff.

and therefore we will approximate the Green's function
given by Eq. {2.8) as

7 —7
(2.1 1)

In the path-integral method there are, however, paths
where the hops are much closer than 6 '. The argument
presented here clearly shows that expression (2.11) holds
assuming that the time difference between hops is larger
than a characteristic time 7p) cp . That time 7p will be
related to the short-time cutoff which we will discuss in
Sec. V in more detail.

We will first evaluate the partition function in the case
of one dimension with backscattering. The generalization
for higher dimensions will be given in Sec. III.

A. Partition function

The ground-state expectation value on the right-hand
side (rhs) of Eq. (2.7) can be evaluated directly by carry-
ing out the integrals with respect to the absolute values of
the momenta, and then we introduce the Green's func-
tions of the form given by Eq. (2.11). We closely follow
the method developed by Yuval and Anderson and used
by the present authors ~here the sum of the contribu-
tions of different pairings in the evaluation of the expecta-
tion value is a product of determinants of Cauchy type.
We determine the ground-state expectation value in Eq.
{2.7) in that way. The summation over the momentum
configurations [k,k'] is carried out in two steps. First we
introduce the configuration [pp ] which gives the direc-
tions of the momenta of the outgoing and ingoing elec-
trons at each interaction point i. As p;= —p,' holds for
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backscattering, therefore we can introduce the simpler no-
tation [p[ = [pp'[. The summations remaining to be car-
ried out are restricted for given sides of the dispersion
curve k; (0 and k )0, which are determined by the
configuration [p[ but must include all the possible pair-
ings allowed by the configuration [p, I. Thus we can give
the expectation value occurring in Eq. (2.7) for a given
configuration [p, I as

it j|I;) in the new series. Furthermore, the parity of permu-
tation P(i) is p(P)=0 or 1. The determinant det, „ is
defined only for those indices i and j which are associated
with operators belonging to the group (s,p). The parity
p (P) is contained in the definition of a determinant. The
determinant is known as the Cauchy determinant which
has the value

det (3.3)

SP =+1 P I

=R exp —2iQ g p;n;
I SAN=+1 J

(3.2)

We have obtained the expression above in the following
way. First we have written the expectation value as a
product corresponding to electron operators with different
(s,p, ) index pairs.

The indices A, ,
'" (i),'") are those subseries of the interac-

tion indices i = 1, . . . , N, for which the creation (annihi-
lation) operators have common index pairs (s,p). R and
R,„are combinational factors R =( —1) where P is the
number of those neighbor exchanges in the product of the
creation and annihilation operators which are required to
group the operators with respect to the index pairs (s,p)
by exchanging operators only with different (s,p) indices.
Furthermore, R,„=(—1) "', where P,„ is the number of
the further neighbor exchanges in the group characterized
by the index pair (s,p) in order to get an alternative se-

quence of annihilation and creation operators by exchang-
ing creation operators only with annihilation operators.
Then we apply the Wick's theorem for those groups of
operators. Considering the alternative sequence of annihi-
lation and creation operator in group (s,p) any possible
pairings can be associated with permutation P(i) of the
q';" indices, where the original ith index is changed to

considering the determinant det, „, the inequality ~;~rj
holds as only backscattering is considered. The final form
for the expression in Eq. (3.2) can be written in a compact
form by introducing charges as in Refs. 25 and 26. Ln the
present case T,'&, is defined for the interaction point i as

T' =.—1
S)tL

0

if only the outgoing electron line

has the label (s,p, ),

if only the ingoing electron

line has the label (s,p),
otherwise .

(3.4)

7p
(3.5)

where X,„ is the order of the determinant det, „and the
factor R,„ is taken into account by taking the absolute
values; furthermore, the cutoff time ~p to be defined later
is introduced for further convenience.

By combining the expressions (3.2), (3.4), and (3.5) with
Eq. (2.7) we can give the contribution Zq v of a given

path decorated by the electron-particle interaction in the
following form:

Using Eq. (3.3) and definition (3.4) we get for the ex-
pectation value in Eq. (3.2)

( . )=R exp —i2Q +@;n;

Zy g ——$ $ ( —1) R f dry f dr; f driro y U

&&exp —i2Q g n;p;.
S, P. l,j

(i &j)

n~ II(c„c„)no

(3.6)

where we took the summations over the configuration [p [

of the momentum directions and we introduced the di-
mensionless hopping transition fugacities y and electron
scattering amplitudes U as

y=A~p,

where

(3.7)

(3.8)
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Finally, we mention that the short-time cutoff' intro-
duced by Yuval and Anderson for minimal time
difference between interactions will be introduced later.

B. Summation over the hopping transitions

cn cn g ( 1) ~( n—n, ), (m —m')

m, m'=0

+ 7 m {T —5 )~ +
Izz tIzz 'I 70 (3.9)

The hopping transitions and electron scatterings are the
interaction points occurring in the expression for the free
energy Z)v )v given by Eq. (3.6). In that expression the
summation with respect to the hopping transitions can be
carried out by inserting an arbitrary number of hopping
transitions between the electron-particle scatterings. That
we can do easily as the charges for the hoppings T„' =0,
thus they do not interact by logarithmic interaction.

We consider an arbitrary path with A, electron scatter-
ing processes occurring at times ~, and places n;. We
take now two successive electron scattering processes at
time points w; and rj (r; &r~) at positions n; and n~, re-
spectively. Then we inset m hopping transitions to the
right and m ' to the left assuming that m —m ' = n J

—n, .
The corresponding particle transition operator is

where 6 stands for the Kronecker symbol and we as-
sumed that the hopping transitions can be placed with an
arbitrarily small time difference. That point will be dis-
cussed later.

The summations over m and m' can be performed; fol-
lowing Coleman we use the integral representation of
the Kronecker symbol

dO (8[(n& —n; ) —(m —m')]
(3 1()}J e.2~

By combining expression (3.9) with Eq. (3.10) we get

, n&
—n; g n d0 io(n& —n; )

e
—~ 2m

(~~ —r;)-
X exp 2y cosO . (3.11)

We consider now a path where the hopping transitions
do not occur explicitly and the scattering processes take
place at r; and n; (i =1, . . . , N, ). Furthermore we must
assume that the particle starts and finishes at the same
place np=n)v +) at time 7p=O and 7)v +) =13, respective-

ly. We apply the formula (3.11) for the time intervals
(O, r ) ), (r), rp ), . . . , (r)v, P) with variables Op, O), . . . , 0)v

and formally we define 0N +1 ——00.
U

The contribution of that path to the partition function

Z)v=( —1) 'U ' g R f dr)v . f d~; f d~)rp "f
I v I I~ I

N, +1 N„ &i+1
X exp i g n [(0; (

—0)—2Qp]+2y g cosO;
i =1 i =0 7 0

d00
277

+ g g T,'„Tj„ln
70

(3.12)

where following Yuval and Anderson, we modified the
upper limits of the integrals in Eq. (3.6) by introducing
the cuto8' time ~0 in order to avoid interaction points
closer than 70. In this way the application of the form
of the electron Green's function given by Eq. (2.11) in
Eq. (3.2) is justified. See the discussion Sec. V for fur-
ther detail.

The advantage of using the variables 0 is obvious. The
expression (3.11) plays the role of the particle propagator,
where 0 is the dimensionless momentum of the particle
and c= —2y cos0 is the tight-binding band energy. Thus
the presented hopping formalism reflects the correct band
motion. Furthermore, in Eq. (3.12), 0; is the dimension-
less momentum of the particle in the time interval
(r;+ (,~;).

The form of Z)v given by Eq. (3.12) still depends on

the positions n; of the particle at electron scattering pro-
cesses occurring at time ~;. Thus the summation
with respect to n; must be carried out on an infinite
chain. That leads to a Dirac function

p +) +2 t)(0; (
—0; + 2Qp;+2wr), where 2Qp; is

the momentum gained by the electron scattered at times
That Dirac 6 function expresses the conservation of

the momenta at the scattering process with ambiguity of a
reciprocal lattice vector 2zTr. Now we perform the in-
tegrals with respect to 0; except the one for 00. The in-
teger numbers r do not occur in the expression obtained
by us as 0; occurs only in the expressions of the band en-
ergy. In the final form we have to take the summation
over the number X„, of the scattering processes and we get
the following expression for the partition function Z given
by Eq. (2.5)

Z= g ( —1)
N =0

U

&0

N, ,

R f" f dr)v f '+' 'dr, f ' "dr)exp 2y g cosO,2' 0 0 0 0 Vp

70
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where

thus

8; =0, i
—2Qp;, (3.14)

and

—7j i

70

. r(i,j sp)

= invariant, (3.17)

0;=Op —2Q g p, ; (i =1, . . . , X„)
j= 1

(3.15)

is the momentum of the particle in the time interval
(r;, r; i) disregarding the ambiguity due to the reciprocal
vectors. The only integral remaining is taken with respect
to the momentum Oo of the particle in the initial state.

Finally, we must emphasize that the momentum con-
servation of the particle appears in Eq. (3.14) only with a
limited accuracy because the momentum change due to a
backscattering is approximated by +2kF (2Q =2kFb), and
the deviations of the initial and final momenta from the
Fermi momenta are dropped.

C. Scaling equations

y /70 ——invariant (3.16)

The Anderson, Yuval, and Hamann scaling tech-
nique is based on elimination of the short-time behavior
by increasing the short-time cutoff from 70 to 70+drp
and on compensating the change in the partition func-
tion given by Eqs. (3.13)—(3.15) by introducing new
values of the parameters U and y in order to keep the
partition function Z invariant. We will assume that
y, u &&1 and we construct the scaling equations for lnv

and lny with accuracy, where we ignore the terms
O(u ),O(vy) and O(u ),O(y ),O(v y), O(uy ), respec-
tively. The effect of changing the cutoff appears in two
diff'erent ways: (i) the explicit dependence on rp, (ii) el-
imination of pairs of interaction points (i, i + I ) for
which rp ((r;+ i

—r;) (rp +dip holds.
(i) The explicit dependence is compensated if the follow-

ing quantities are invariant:

S,P I,J
(i &j)

5', p I

(3.18)

since g,. T,'„=0, and considering a given vertex i the term

(7,"„) =1 for two pairs of (s,p) indices; otherwise that is
zero. Thus, considering Eqs. (3.17) and (3.18) the cou-
pling v must be invariant. Thus the scaling due to the ex-
plicit dependence on 70 can be written as

dlny

(31nro
expl

(3.19)

dlnu

din 70
expl

(3.20)

(ii) First we consider a close pair p', p for which
7p ( (7&' —'r&) ( rp+drp and the total charge is zero
Tp„+ T~„=O for arbitrary index pair s,p and we will dis-
cuss pairs of other types later. We write the partition
function Z~ with not more than one close pair of the

type described as a product of the partition function Zq
with N, scattering vertex and without close pair and of a
correction factor which contains the close pair contribu-
tion in any of the intervals (r;+i, r;) with i =0, . . . , N, .

Using Eq. (3.13) we get

where the latter is considered for a given configuration
and X(ij ~

sp. )=g, T,'„T~„. The exponent in Eq. (3.17)
can be evaluated as

I U

&x =&x I+
U 70

k jp
70

iV ji —7
X p

jo

X(k,p I
s'p')

ji + 1 ji 7 —ji
& exp 2y —cosO; +cosO;

jo 70

jp jp ji +1 rp'
+cosO +cosOp

jo 70

(3.21)

where the combination factor R does not enter for the pair with zero charge as the associated Fermi operators have the
structure a,za,„a,,„a,„; furthermore O;, Op, and Op are the dimensionless momenta in the intervals (7;,rp) (jp rp') and

(r~, r;+i), respectively. We have to sum over all the possible Is] and IpI configurations of the pair. The first cosO;
term with the minus sign in Eq. (3.21) just compensates the similar unnecessary factor in Zz . We can expand the fac-

tors in the product appearing in Eq. (3.21) for small rp and we obtain
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X(k,p i
s'p')

rk rp rI (rp + ro)
—X(k,p i

s "p")
70

(3.22)
70 'Tp

where TP„=—TP„and r; —rp
~

&&ro as a consequence of v && I is assumed. Furthermore, taking into account Eq.
(3.15), the possible Ip}p„„configuration corresponds to 0p ——0;+2Q and 0p =0p+-2Q=0;. Therefore, the exponential
term in Eq. (3.21) can be rewritten and expanded for y « 1 as

exp}2y[cos(0;+2Q) —cos0;]}—
( 1+2y[cos(0;+2Q) —cos0;]} . (3.23)

A typical distance between interaction points is larger than rou ', e.g. ,
~

rk rp
~

—&rov ', therefore the correction
term on the right-hand side of Eq. (3.22) is of the order of u « 1. The partition function Z~ given by Eq. (3.21) can be

expanded simultaneously in parameters v and y by using Eqs. (3.22) and (3.23); then we get

Z~ ——Z~ 1+d 70
v v 70

2 Xv N

J dip 1+ g g T,"„T,~ +2y[cos(0; —2Qpp) —cos0;]
pI ar IsI ar i =0 k = I +k +p s', p'

+O(u )+O(u'y)+. O(v y ) (3.24)

Now we can perform the summation over the configuration [s}p„,Ip}p„„which gives zero for the charge Tp„. Us-
ing Eq. (3.14) we get

2 N„,
U

Z& ——Zz I+dro —N, 2/3+2y g (r;+I —r;)[cos(0;+2Q)+cos(0; —2Q) —2cos0, ]
7 0 I=0

(3.25)

where we assumed that ~;+~ —~; ~~~0, and X, denotes the
spin degeneracy of the electrons (N, =2). The factor in-
dependent of ~; provides a simple renormalization of the
amplitude of Z~ . The only relevant factor is proportion-
al to cosO;, and that can be embodied into the fugacity y
in (3.1 3) as

=2N, v (cos2Q —1)=—4N, v sin Q, (3.26)
d in~0

pair

and obviously

(3.29), but that is negligible. In that way vertexes of
higher orders are generated as well. The physical mean-
ing of the sin Q term in Eq. (3.29) will be discussed in
Sec. V.

The diagrammatic meanings of the eliminated pairs are
demonstrated in Fig. 2. If the total charge is zero then
the lines entering and leaving the pair have the same in-
dices, they may play the role of a correction of self-energy
type in agreement with Eq. (3.29).

Blnu

Bin&0
pair

(3.27)
IV. PARTITION FUNCTION AND SCALING

IN ARBITRARY DIMENSION

holds.
Thus the final scaling equations are obtained by com-

bining Eqs. (3.19), (3.20), (3.26), and (3.27), and they have
the final form

=0+0(u )+O(u y)
Bln~p

(3.28)

and

Blny =1—4N, v sin'Q+O(u3)+O(u~y) .
Bin~0

(3.29)

Finally, we have to comment on the elimination of
pairs with nonvanishing total charge. The elimination of
those pairs is associated with generation of two-electron
interaction with electron indices (s,p) all different. In the
Lee equations of these new vertices the generators are pro-
portional to U, and it can be shown that the generated
new vertices have an upper bound proportional to U .
The generated two-electron interaction may appear on the
second power in the right-hand sides of Eqs. (3.28) and

The method presented in Sec. III can be generalized to
arbitrary dimension. We will use the general form of the
Green's function given by (2.11) where the direction of the
momentum of the electron given by the unit vector sc and
that replaces the indices p =+ 1 used in Sec. III.

Formally the expectation value of the electron
creation and annihilation operators in the expression of
the partition function can be given in terms of Cauchy
determinants, where the determinants are formed by
Green's function with the same indices s, a. In dimen-
sion, d & 1, however, electron lines with the same direc-
tion sc can not occur more than once in the limit of
infinite volume L ~ ao, thus the use of a determinant is
unnecessary. The charge T,- is defined in an analogous
way to Eq. (3.4). The configuration [p} is replaced by
[k,k'} where the ingoing direction a; can be associated
with an arbitrary outgoing a,' in contrast to the 1D case,
where the ingoing direction determines the outgoing one
for backscattering. In general the dimensionless cou-
pling U„-, depends also on both the ingoing and outgoing
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directions ~ and sc'. In the procedure of summing up
the different hopping paths the identity (3.10) must be
applied for all directions separately, and 0; means the
corresponding component of the dimensionless momen-

turn with v=1,2, . . . , d, where d stands for the dimen-
sion. The sites of the interaction are denoted by n(r;),
which has d component and each is an integer. The ex-
pressions analogous to Eqs. (3.13) and (3.15) are

Z= g ( —1) "L "g gR f
NU ——1

dO fg ~i + I ~o ~2 —~o

27T 0 0 0

NU

v=1i=0
Xexp 2y g g cos9; i+1 +i

%0
g T,'-T,'„-ln

~~J S, K
(& (J)

7 0

where

(4. 1)

6,"=0,"
i
—Q(a,'—a,' ) (v= l, . . . , d) .

In deriving the scaling equations, special attention must be paid only to the elimination of pairs.
The contribution of a close pair with zero charge can be given by a form similar to Eq. (3.24) as

(4.2)

ZN ZN 1+ X X
I pair I ~ I pair

2r N

~u
i =0 k =1

70 k pT ii~siT
S K7n ir ~iiS,K

d

+2y g (cos[8,"—Q(k~ k~ )]—cosO;—I (4.3)

where v -. =p V - and V- is the interaction matrix element between directions a ' and x at time ~ . This expres-KpKp KpKp Kp K
p

sion can be written in a more simple form if the expression following the integral symbol is symmetrized in the
configuration space in the sense that the incoming and outgoing directions sc z and a ~ are interchanged at both scattering
points of the pair. The term in the middle proportional to T,--„ is canceled by symmetrization, and the last one becomes
proportional to cosO;. Thus we have correction due to a close pair with zero change

ZN =ZN ' 1+ X X
IS I pair IK~K Ipair

KpKp

NU
&i + 1 &i

/3 —4y g g cosO, sin —(k —k'")
i =0 0 v=17 =

'
2

(4 4)

Thus, the elimination of a close pair with zero total
charge can be compensated by changing y in expression
(4.1)

d lny

din~0 '

pair

(4.5)

where v stands for an arbitrary direction in the isotropic
case.

Our previous result for d =1 given by Eq. (3.25) is a
special case of the expression above.

Turning to the close pairs with non vanishing total
charge, two cases must be distinguished. In the first case
the pair involves four electrons with different indices (s,k)
and in the second case the same index belongs to a

creation and an annihilation operator and the other two
indices are different. In the first case electron-electron in-
teraction is generated, which does not contribute to the
scaling equations for y and v-„. in our approximation
schema as that has been discussed in Sec. III. The second
case appears only for d & 1, as in dimension d =1 there
are only two different orbital indices for a given spin. In
the second case the interaction v —.may be generated,
thus that may contribute to the scaling equation for v-„-..

The interaction v„-, is generated by two different pairs
which can be characterized by their interaction at times
~&+1 and ~& as v„-„v„-„„-,and v„-„-,v —„. Those two pair
contributions due to the direction sc" to the interaction
of that pair with another interaction point of the ~& can-
cel each other with logarithmic accuracy because the
combinational factor R =+ 1 has different values for
those two pairs. The remaining interaction is due to
directions x and x' that has just the form which is
characteristic for a vertex u„--, (see Fig. 2).
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Now we consider the close pair with times ~~+ ~ and ~~
in the time interval (r;,r;+i). By the eliminations of that
pair the band-energy terms proportional to y cosO; may be
changed in Eq. (4.1). That possible change arises from
the time interval (r~, r~+i) which has the length ro. The
dimensionless momenta of the particle in those intervals

are 0;+Q(k~ k—~ ) and 8;+g (a ~"—a. ~") for the two
different pairs, respectively.

The contribution of the second pair has an additional
negative sign due to the different order of the operators
a, -, and a, „- (see the definition of the combinational fac-
tor R in part A of Sec. III). The momenta to be associ-
ated with that time point in that interval is ambiguous
after the elimination of the pair, as those depend where
the generated new interaction is placed in the interval
(r~+i, rz). However, by expanding the strength of the
generation of the interaction U„-„-, with respect to y &&1
we get a contribution which is proportional to yv-„U-„„-,
which is of the order of 0 (v y ). The correction of that
order is beyond our approximation [see Eq. (3.8)], thus
the ambiguity does not lead to any further complication.

Thus, in dimensions d & 1 like in case d =1 only the
fugacity y is renormalized, and by combining the explicit
and pair contributions the final result is

2~ L —2(d —1 j

d lnwo

~
v„- sin —(k ' —8") . (4.6)

2

The consequences of the scaling equations obtained will
be discussed in Sec. V.

V. RESULTS AND DISCUSSIONS

In this section we give a detailed discussion of the re-
sults obtained.

The method presented here is restricted to zero temper-
ature as the electron Careen's function given by Eq. (2.11)
does not depend on temperature. The length of the imagi-
nary time axis /3=(kT) ' appears only for formal con-
venience.

A. Cutoff

(c)
FIG. 2. Different diagrams are depicted which illustrate the

elimination of the short-time behavior: first a diagram with and
second the diagram without the short-time insertion. The wavy
line represents the particle, which also indicates the time How.
The shadowed area represents the electronic part of the diagram
which is connected with the particle line several times, but here
only the different short-time insertion is shown which can be el-
iminated and compensated for by different renormalizations: (a)
typical self-energy diagram which provides the main contribution
to the renormalization of the particle; (b) the two interaction
points of short-time difference can be replaced by a renormalized
vertex. The renormalized diagrams can be different depending
on whether the line with momentum v" connects directly the
two interaction points or is connected also with the remaining
electronic part. In the latter case the two disconnected lines
with momentum v" must be closed. (c) If all of the momenta K,

K, K, and a'" are different then a new vertex with four electron-
ic legs must be introduced, but the latter cases do not play an
important role in the present schema.

The short-time cutoff ~o occurs in two different ways in
our formalism: (i) the electron bandwidth cutoff ~D' D, ——
(ii) the finite instanton width r;„, for the tunneling from
one site to the next neighboring site in the complex time
path integral method.

We have to take the larger of these two quantities
ro=max[rD, r;„,]. The instanton width can be estimated
by considering a tunneling process through a squarelike
barrier with width di,„and potential height Vi„„as
r;„,-di„„(2Vb„/m) where m is the mass of the hop-
ping particle. The quantity ~;„, can be of the order of the
Fermi energy for an electron, as the bare electron mass
must be substituted. For muons or hydrogen, however,
7 o 7;„))7D =D EF as the mass m is much larger,
thus v.;„, can be larger than ~D at least by one order of
magnitude.

The cutoff ~o occurred in two different places in our
formalism: (i) the condition for validity of the Green's
function given by Eq. (2.11), (ii) in the expression (3.12)
for the partition function as the cutoff in the upper boun-
daries of the integrals.

In the first case we have to find the necessary condi-
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tion for
~

R —R'
~

&&
~

r r—'
~

vF. The shortest possible
time to make a distance equivalent to

~

R —R '
~

/b sites
is

~

r —r'
~

& ro(R —R ')/b, thus the condition is

ipUp /b » 1, which is aPProximately equivalent ipcF » 1.
Thus the approximate form of the Green's function
(2.11) holds for almost the entire time scale. Consider-
ing the second case, ip plays the role of the shortest time
between scattering processes. That time is not necessari-
ly 7;„„as we have placed several tunneling events be-
tween the scatterings. The order of magnitude of ip is
correct again except the case where there are very many
tunnelings between two scatterings (y »v) with the aver-
age value y/U, and in that case ip=7'„p/U must be tak-
en.

For large degeneracy N, » 1, the validity of the
present theory is given by y «1 and U/X, «1. The
latter modification is justified, as the average time be-
tween scatterings with the same color is N, U 'ip, which
appears in the condition for using the long-time approxi-
mation for the Green's functions.

B. Scaling equations

The scaling equations for the coupling U and the hop-
ping fugacity have been derived with accuracy 0 (U ) and
O(v y), where the approximation for u corresponds to
the leading logarithmic one and that for y holds in the
next-to-the-leading one, and where y is the first nonvan-
ishing one. In general to get the self-energy y with that
accuracy the vertex U must be calculated in the leading or-
der.

The results obtained and given by Eqs. (3.28), (3.29),
and (4.6) can be summarized for arbitrary dimension
d =1,2, 3 as

v—:invariant (5.1)

d lny

dlnip
(5.2)

where

K=4N, u sin Q for 1D,
K=N, u [1—Jo(Q)] for 2D,

K=N, v [1—jo(Q)] for 3D,

sin'Q
2

(5.2a)

(5.2b)

(5.2c)

are obtained by performing the integrals in Eq. (4.6)
where Jp and jp are the Bessel and the spherical Bessel
functions of first kind. These equations have many in-

teresting features.
(i) The single coupling u responsible for screening is

not renormalized as in many other models. The
enhancement of the couplings in the order of U is al-

ways due to the noncommutative nature of several
di6'erent couplings like in the Kondo problem or in the
case of the TLS. Even in the commutative case of the
TLS ' there is a term on the rhs of the scaling equa-
tion proportional to Uy . That correction does not occur

' K/(1 —K)
Ap

(5.3)

In the second case K & 1 the y scales to zero, thus the
hopping is absent in the scaled partition function at T =0.
The extrapolation for large K can be justified especially in
the limit X, » 1.

(iii) In the case of the Kondo problem or of the TLS
with electron assisted tunneling, the strength of logarith-
mic interaction between scattering processes depends on
the phase shift, which is therefore strongly renormalized.
In the present case such renorrnalization does not occur,
as that strength depends on the charges T in expression
(3.14) or (4.1) where T has kinematical origin only.

C. Comparison with the two-site model
and extrapolation for K & 1

Considering the many-site problem there is a widely ex-
pected conjecture, " that to determine the bandwidth y is
enough to calculate the renormalized hopping rate in the
two-site problem. Concerning the hopping rate y the final
results given by Eqs. (5.2) and (5.2a) —(5.2c) coincide with
the scaling equations of the two-site problem with screen-
ing only, thus without assisted tunneling. The geometri-
cal factor in the interaction matrix element

i (k —k')-al i (k —k')-a2
—,'(e ' —e ') must be taken into account, how-

ever, for an arbitrarily large separation distance between
the two sites. Here k —k' is the momentum transfer;
furthermore, ai and a2 stand for the positions of the two
sites. We have learned by studying the two-site problem
that for d & 1 Eqs. (5.2b) and (5.2c) can be applied for ar-

in the present case similarly to the 1D hopping motion
coupled to a 1D electron gas with only forward electron
scattering as that has been discussed by Itai. ' He has
shown that the contributions of any hopping step and of
the step in the opposite direction cancel each other,
which cannot happen in the two-site problem (TLS).
That difference appears as a formal consequence in the
methods applied for these two cases; namely, hopping
pairs are not eliminated in the method presented here,
thus all corrections are proportional at least to U and,
therefore, corrections proportional Uy cannot exist.

(ii) The bandwidth of the hopping particle b =y/ro al-

ways decreases due to the scaling (K&0). Considering
Eq. (5.2), two cases are distinguished: K & 1 where y in-

creases, and E & 1 where y decreases. Our theory for
N; =2 is adequate only in the case K & 1, but the discus-
sion of the case A & 1 is also instructive, as will be dis-
cussed later. These cases are also known at zero tempera-
ture as the case of nonlocalization (band motion) and of
localization, respectively. In the first case the scaling can
be applied until y =1 is reached, when the inverse time
cutoft' ip ' starts to exceed the renormalized hopping rate

That condition can be obviously interpreted for the
two-site problem; in the general case, however, we can
simply argue formally that our theory is valid only if
y «1. Considering the boundary of the scaling region,
the self-consistent solution of Eq. (1.2) for the critical
value 6, has been obtained by several authors and the re-
sult is
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bitrarily strong coupling in a single angular momentum
channel, e.g. , l =0 if the coupling is replaced by 61/~
where 6~ is the phase shift defined as 6= —arctan(vrv).
That result very strongly supports the extrapolation of the
scaling Eq. (5.2) for K & 1 with an appropriate definition
of K for strong coupling K ~ 1.

D. Role of Friedel oscillation

Comparison of the 1D models with only forward
scattering or with only backscattering in the absence of in-
frared corrections in the scaling equation in the first case
strongly suggests that the infrared term given by Eq.
(5.2a) is due to the formation of the Friedel oscillation in
the density of the electrons which is proportional to
sin(2kFr)/r where r is the distance measured from the
particle. The periodicity of that oscillation is 2~(2kf)
From Eq. (5.2a) it is evident that if the hopping distance
is b =2~(2kF) 'n, where n =0,+1,+2, . . . , then
K =0. In other words, if the Friedel oscillations are in
phase before and after hopping, then only their amplitude
is modified and that is negligible in large distance. For
any other value of b, however, the whole electron screen-
ing must be rearranged. The situation is depicted in Fig.
3.

As can be seen from Fig. 4, this argument cannot be
applied for cases d & 1 as the condition of the phase
coherence is different in different directions.

E. Relationship with Schmid's model

Schmid' has proposed a model for 1D hopping cou-
pled to a 1D acoustic-phonon gas. The interaction Ham-
iltonian can be written as'

FICi. 4. The Friedel oscillations are shown for two positions
of the particle by solid and dashed lines in two dimensions. At
large distances the Friedel oscillations are always distinguishable,
thus the strength of the renormalization given by Eq. (5.2b) can-
not vanish.

ponent in Eq. (2.4) can be expanded and we keep only the
term proportional to R, =nb. By introducing new elec-
tron operators A+(k) =(1/&2)(al, +a k) with k & 0 the
model can be transformed to a forward scattering model
with two colors + additional to the spin. That Hamil-
tonian can be bosonized and we get the Hamiltonian (5.4).

That equivalence holds only in a very extreme 1imit;
the two Hamiltonians, however, belong to the same
universality class with Ohmic character. '

F. Dift'usion constant

H~ =g g nc„c„gk '~ (bk+bI, . ), (5.4)

where g is the coupling and bq is the Bose operator of the
phonons. That Hamiltonian can be derived from Eq. (2.4)
in an extreme limit assuming that the lattice constant b at
the hopping lattice is very small, bkF «1 (R„=bn), and
in the localization region the position of the particle can
be described by a few values of n. In that limit the ex-

The present theory describes the renormalized propaga-
ting motion of the particle and we get the temperature
dependence of the bandwidth from the scaling equation.
The partition function evaluated for T =0 does not in-

clude, however, the temperature-dependent damping of
the particle, which is due to creations of electron-hole fer-
mion pairs. We can get the diffusion constant by solving
the classical kinetic equation with the scaled overlap in-

tegral and the invariant particle-fermion coupling. Such a
kinetic equation is derived and solved by Yamada, " and
that solution justifies the proposed combination of the
path integral method with the classical kinetic equation.
We emphasize that the collision term and the overlap in-

tegral can be given by the same expression K of the cou-
pling.

For further details see Ref. 16.

VI. SUMMARY

FIG. 3. The Friedel oscillations are formed around the heavy
particle in positions of the solid and shadowed circles and they
are represented by solid and dashed lines, respectively. If the
periodicity of the Friedel oscillation coincides with the lattice
constant then the Friedel oscillation with solid and dashed lines
are not distinguishable at large distances in the one-dimensional
model. Therefore, the renormalization given by Eq. (5.2a) disap-
pears on the right-hand side of Eq. (5.2).

We have studied a particle moving in a periodic lattice
coupled to a degenerate electron gas with large momen-
tum transfer. In analogy with the path integral technique
developed for the two-site problem we generalized that
method for the periodic case. In the long-time approxi-
mation we determined the partition function of the sys-
tem. By means of different summation and scaling tech-
niques we identified two phases in the problem: for weak
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coupling K & 1, the particle propagates with a renormal-
ized hopping integral but the particle-electron coupling is
invariant; for sufficiently large coupling K & 1, the extra-
polated results show that the electrons freeze the particle
into its initial state at temperature T =0. We propose
that the path-integral technique for T =0 can be com-
bined with the classical kinetic equations to get transport
coefficients like the diffusion constant. We suggest that
such a combined technique can be applied for some prob-
lems of the heavy fermionic systems.

We have shown that, disregarding some extreme limits,
the studied Hamiltonian is different from the bosonic
Hamiltonian proposed by Caldeira and Leggett to de-
scribe the coupling of the particle to a heat bath, but both
problems belong to the same universality class called
Ohmic dissipation.

We note that concerning some recent considerations
dealing with measurement theory, the model studied here
can serve as a measurement apparatus for the position of

the particle in the sense suggested in Ref. 34. By switch-
ing the coupling with a large enough value K & 1, the par-
ticle becomes localized and its position can be measured
by noninvasive measurement.
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