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Anharmonic dynamics of defect pairs in soft-mode systems
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Molecular-dynamics calculations have been performed for two-dimensional soft-mode systems with
defects. An isolated defect, which is softer than the host crystal, produces a localized vibration below
the phonon band whose frequency decreases with decreasing temperature T & T, ; finally, in the vicin-
ity of T„ there is a change from oscillator to relaxator behavior connected with the appearance of a
central peak, whose height increases rapidly upon approaching T, For low defect concentrations c
this effect leads to a linear c dependence of the central peak in the dynamical structure factor
Sq=o(co). In the case of defect pairs, the dynamical structure factors of the localized modes show a
strong dependence on the defect distance. For finite defect concentrations this gives rise to a c' con-
tribution to the central peak in Sq 0(~) and a temperature-dependent distribution of relaxation times,
which governs the central-peak shape. The connection to light scattering and dielectric measure-
ments in systems with low defect concentrations is discussed.

I. INTRODUCTION

In the last years much experimental (for a review see
Ref. 1) and theoretical' effort has been devoted to the
problem of soft-mode systems with defects. From the ex-
perimental point of view this question is interesting for
three reasons: Any real crystal contains impurities, many
experimental methods use special impurities as probes
(NMR, EPR, Mossbauer spectroscopy), and there exist
systems which show a drastic change in their physical
properties even with low defect concentrations [e.g. ,

KTa03 with Li (Refs. 7 and 8), Na, or Nb (Refs. 9—11)].
From the theoretical point of view, the anharmonic dy-
namics of the vibrations localized near the defects and the
defect influence on the global dynamics [e.g. , the dynami-
cal structure factor of the soft-mode Sq o(M)] are of spe-
cial interest.

A theoretical treatment of the low-concentration prob-
lem starts often, in a first step, with a single-defect system.
Such a model describes a situation where the defect dis-
tances are so large that their interaction can be neglected;
it leads to a single localized vibration and a linear concen-
tration dependence of the defect influence on global prop-
erties, e.g. , on the central-peak intensity of the soft-mode
dynamical structure factor. In a second step, isolated
pairs with a defect distance d can be treated. One expects
a d-dependent frequency splitting of the localized modes
due to the interaction between the two defects.

Earlier mean-field approximation (MFA) investigations
of single defect systems-yielded, for certain defect parame-
ters, a localized vibration below the phonon band, whose
frequency co& goes to zero at a temperature T,'" above T, .
A corresponding two-dimensional (2D) molecular-
dynamics (MD) treatment' ' ' yielded, for temperatures
far above T„a decrease of co~ parallel to that of the soft-
mode frequency. This is in agreement with the respective
MFA results. However, in contrast to the MFA results,
the frequency does not become zero above T„but levels
off and approaches the soft-mode frequency; the mode
changes its character from oscillator to relaxator which is
indicated by the rise of a central peak in the dynamical

II. MODEL AND MD TREATMENT

The molecular-dynamics calculations are performed for
a 2D square lattice with a local 2-4 potential and a har-
monic nearest-neighbor interaction. For the sake of sim-
plicity we use a one-dimensional order parameter, i.e.,
scalar local normal coordinates X„. The Hamiltonian of
this system is

b =g P2+ —,'(a+5 )Xa'„+ ,'(b+hb„)X'„—
n

——,
' g V„X„X

m, n

(2. 1)

structure factor. The central peak begins to form at a
temperature T & T, . It increases with decreasing tern-
perature, exceeds the phonon peak at a temperature T
with T, & T & T, and increases strongly at T, . These
efT'ects occur both for order-disorder and displacive de-
fects. The defect relaxator connected with the central
peak can be identified with the slow motion which is
found above T, in many measurements on mixed systems
with a low concentration of soft defects [e.g. , in
KTa03.Nb under high pressure' '' or in KTa03.Li (Refs.
15 and 16).

In the following we present MD calculations for a
two defect system-and discuss the influence of the defect
distance d on the dynamics of the system and especially
on the oscillator-relaxator transition temperature T
The results are used to determine the concentration
dependence of the central-peak intensity for a macro-
scopic crystal with a finite concentration c of defects
(particularly the c term). The notations for modes and
characteristic temperatures are summarized in Table I.

Section II contains a description of the model and the
MD technique. In Sec. III the numerical calculations
and the results are presented and discussed. In Sec. IV
the defect influence on Sq 0(co) for a macroscopic crys-
tal with a finite concentration is derived. In Sec. V,
finally, the main results are summarized.
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TABLE I. Notation of modes and of characteristic temperatures.

Indices p =0, 1, s, and a

Indices d =1, 2, and oo

TR

TOR

Label soft mode, local single-defect mode,
symmetric, and antimetric defect-pair
modes, respectively.
Indicate pair separation (in multiples of
the lattice constant); d= oo. single defects.
Temperature at which the central peak of
mode p begins to form.
Temperature of oscillator-relaxator
transition for mode p.

(with V„=C for nearest neighbors and zero otherwise).
Introducing reduced quantities [X;= ( C /b )

' x;,
h =C IbH, r=(1/mC)' t, where r is the original and t
the reduced time] one obtains

u ") = ($ p+$ d),v'2

—(b, p
—b,d),v'2

(2.6)

2
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where the interaction is U„= 1 for nearest neighbors and
zero otherwise. Identical defects positioned at n=(0, 0)
and n =d are described by the local potential parameters

A„=A+AA5„p+AA6„d,

B„=1+AB6„p+ AB5„d .

The simulation of constant-temperature conditions by sto-
chastic forces f„(t) and a corresponding friction y given
by

(f,(t)f (t*))=27 T&(t —t')

leads to a Langevin equation of motion:

x„=—A„x„B„x„'+gU„—x —yx„+f„(t) . (2.2)

Equation (2.2) is integrated numerically with an algo-
rithm similar to that proposed by van Gunsteren and
Berendsen. ' The global behavior of the system is de-
scribed by the time-dependent correlation function

( g, (t)Qo(0) &
—

& g,' &

of the soft-mode coordinate

(2.3)

Q, (t)= gx„(t) .
1

&N
(2.4)

Information about the local behavior is obtained from
the correlation functions of the symmetric (Q, } and of
the antisymmetric (Q, ) combinations of the defect coor-
dinates xp and xd.

1
Q, = —(xp+xd),

(2.5)
1

Q, = —(xp —xd) .Qd

In Eq. (2.5) we assumed, for the sake of simplicity, local
modes of the form

which reflect the main features of the real localized modes
of a crystal with a defect pair. This is justified for the
determination of the frequency dependence of correlation
functions, which is not very sensitive to the assumed
local-mode shapes. The scattering intensities, however,
depend strongly on the latter. Below, when the defect
influence on the dynamical structure factor of the q=O
mode is discussed, we shall therefore assume more realis-
tic localized modes.

From the time-dependent correlation functions the
dynamical structure factors of the interesting modes
v=O, s, a are obtained by Fourier transformation:

& g.(t)g, .(0}&S,*, tL) = =—f cos(Q)t )dt(g', ) (g', . )

(2.7}

III. NUMERICAL CALCULATIONS AND RESULTS

The numerical calculations were performed for a sys-
tem of size 15&(15. The value 3=2 was chosen for the
local potential parameter which corresponds to a critical
temperature T, =1.93 (measured in units of C Ikb) In.
cases where defects are present, we choose, unless stated
otherwise,

Ap = 3d =Bp =Bd =0.2
Thus, the defect as well as the host cells are of displacive
type.

First, to investigate the local dynamics, we determined
the dynamical structure factor of the symmetric (Q, ) and
antisymmetric (Q, ) localized modes for different defect
distances. Figures 1(a) and 1(b) show S, and S, for
nearest [d = ( 1,0) ] and third-nearest-neighbor defect
pairs [d=(2,0)], respectively, as functions of the frequen-
cy for different temperatures above T, . For comparison,
Fig. 1(c) shows the dynamical structure factor S, (Q)) of
the single-defect localized mode for different tempera-
tures. With increasing d, the structure factors S, , and
S, converge towards S].

In the temperature region with well-defined oscillatory
local modes there is a splitting between ~, and ~, which
increases strongly with decreasing d. This is illustrated in
Fig. 2, where the squares of the peak frequencies of the
different S (Q)) are represented as functions of tempera-
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ture. Shown are the frequencies co0, co&,co„co, of the soft
mode, of the local single-defect mode, and of the two local
defect-pair modes respectively, the latter for d=(1,0) and
d=(2,0). The leveling of the co (T) curves for the defect
systems in the low-T region is clearly visible for defect
pairs with d =2 (curves s2 and a2) and even more for
pairs with d= 1 (curves s~ and a ~). For single defects it is
noticeable only for defects softer than those described (by
curve 1) in Fig. 2. Furthermore, the curves level off at
temperatures increasing from single defects over d =2
pairs to d = 1 pairs.

S, (co) shows the strongest d dependence in the low-
frequency region. The oscillator-relaxator transition of
this mode is shifted to higher temperatures, and the half-
width of the central peak decreases drastically if d de-
creases. This is shown in Fig. 3 where the half-widths
Ace(d, T) are plotted as functions of temperature for d= 1,
d=2, and d = &x (isolated defect). The arrows indicate
the oscillator-relaxator transition temperatures T„ for
the dift'erent modes p. The central peaks begin to form
already at temperatures T„well above T„". We obtain
the following sequence

ToR ToR ( ToR ToR
c 0 1 s2 s]

0
0 0.5 1.0 1.5 2.0 2.5

FIG. 1. Reduced dynamical structure factors Sq (co). The
two upper parts of the figure show Sq {co) for the symmetric
(solid lines) and the antimetric modes (dashed lines) of defect-
pair systems. Distances between the two defects are (a)
d = (1,0) {s

&
and a ] modes) and (b) d = (2,0) (s & and a 2 modes).

The bottom part (c) shows S ~ (co) for the localized single-defect
mode A, =1. Temperatures in (dimensionless) units of C'/kb
[cf. Eq. (2.1)] are indicated at the curves. Defect parameters
are Ap ——Ad Bp Bd ——0.2. S*————in reduced units [cf. Eq.
(2.7)]. cur in units of (mC)' [cf. Eq. (2.1)].

where T0 is the temperature of the oscillator-relaxator
transition in a perfect crystal. ' '

The defect infiuence on the global dynamics becomes
noticeable in the dynamical structure factor Sq o(cu, T).
This basic quantity is measured in many experiments. In
defect-free systems it begins to form a central peak at re-
duced temperatures T0 of about 4 to 5. At T0 ——3 the
central peak attains a height equal to that of the oscillat-
ing peak. Sq 0 is aff'ected by defects only if they are
present in a finite concentration. In any computer simula-
tion the lattice has a finite size and consequently an isolat-
ed defect or a defect pair correspond to a finite concentra-
tion.

Figure 4 shows the inAuence of defects on Sq o(cu, T)
for the cases of an isolated defect, of a nearest-neighbor
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FICi. 2. Frequencies of various modes: soft mode {curve 0),
localized single-defect- (curve 1), and defect-pair-modes [curves
s~ and o ~ for d = (1,0) and s2 and a2 for d = (2,0)]. The dashed
vertical line is T, . s is the symmetric and a is the antisymmetric
mode. T is in units of C /kb [cf. Eq. (2.1)]. co in units of
(mC)'~ [cf. Eq. (2.1)].

FICx. 3. Width of the central peak of various modes. Curve 0
is the soft mode of the defect-free system. Curve 1 is the local-

ized single-defect mode. Curves s& and sz are localized sym-

metric modes of defect pairs with distances d=(1,0) and (2,0),
respectively. The dashed vertical line is T, . T is in units of
C /kb [cf. Eq. (2.1)]. her is units of (mC)' [cf. Eq. (2.1)].
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FIG. 4. Dynamical structure factor of the q=0 mode in-

cluding contributions (a) from the localized single defect mode

(1). (b) and (c) from localized symmetric defect pair modes
with defects at distances d=(2,0) (s& mode) and d=(1,0) (s]
mode), respectively. The numbers at the curves indicate the
temperatures in (dimensionless) units of C /kb [cf. Eq. (2.1)].
S* is in reduced units [cf. Eq. (2.7)]. cu is in units of (mC)'~
[cf. Eq. (2.1)].

pair, and of a third-nearest-neighbor pair. The soft-mode
frequency (in the temperature region T & To, where the
soft phonon is well defined), is not affected by the defects
for the low defect concentrations (+ for the pair and —„',
for the single defect) considered. Near co=0, however,
the dynamical structure factor changes drastically, when
the temperature is decreased to values in the vicinity of or
below the oscillator-relaxator transition temperature T„
of the relevant localized modes (p= 1; p=s, d =1; p=s,
d=2). The height, the reciprocal width, and the intensity
of the central peak increase with decreasing d. Between
T„and To, the soft-phonon peak and the central peak are
coexistent. It should be stressed that the defects investi-
gated in this paper, though being described by displacive
(single-well) local potentials, lead to pronounced central
peaks in Sq o already far above the bulk transition tem-
perature.

To study the influence of a passage of the defect param-
eters from the regime with distinctly displacive character
towards the order-disorder regime, we performed MD
simulations with different values of Ao (and Aa) and Bo
(and Bq). Some results are shown in Figs. 5 —7 for single

FIG. 5. Reduced [cf. Eq. (2.7)] dynamical structure factors
S~ (co) of single-defect systems, for two sets of defect parameters:
(a) 90=0.2, BO=0.2; and (b) 30=0, Bo=0.1. The numbers at
the curves indicate the temperatures in (dimensionless) units of
C'/kb [cf. Eq. (2.1)]. S* in reduced units [cf. Eq. (2.7)]. co in
units of (mC)' [cf. Eq. (2.1)].

defects and defect pairs described by different sets of po-
tential parameters. Notice, however, that all local poten-
tials used (host as well as defect potentials) are of the
displacive (single minimum) type.

One observes that a decrease of Ao and Bo (correspond-
ing to a decrease of the displacive and an increase of the
order-disorder characteristics) is accompanied by a pro-
nounced increase of the central-peak height combined
with a definite narrowing. The less-displacive-type defects
exhibit a central peak already at even higher temperatures.
This is shown for one-defect systems in Fig. 5 and for
nearest-neighbor two-defect systems in Fig. 6. The tem-
perature dependence of the height of the central peak is
shown in Fig. 7 for defect pairs with d = 1 and d =2 and
for single defects. There is a gradual passage towards the
Halperin- and Varma-type behavior (with a narrow cen-
tral peak).

IV Sq —p ( co ) FOR FINITE
DEFECT CONCENTRATIONS

The dynamical structure factor Sq o(cu) allows the
calculation of the imaginary and real parts of the dielec-
tric constant with the help of the dissipation-fluctuation
theorem and the Kramers-Kronig relation and is, thus,
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FIG. 6. Reduced [cf. Eq. (2.7)] dynamical structure factors
S, d &(co) for the symmetric localized modes of systems with

pairs of defects on nearest-neighbor sites (d =1), for two sets of
defect parameters: (a) A 0 =0.2, Bo=0.2; and (b) Ao =0,
B0=0.1. The numbers at the curves indicate the temperatures
in (dimensionless} units of C'/kb [cf. Eq. (2.1)]. S* in reduced
units [cf. Eq. (2.7)]. co in units of (mC)'i' [cf. Eq. (2.1)].

T

FIG. 7. Height S*(co=0) of the (symmetric) localized mode
central peak vs temperature, for defects with two sets of defect
parameters: (a) AD=0.2, B0=0.2; and (b) AD=0, B0=0.1.
Curves si and s2 are pairs of defects at distances d = 1 and 2, re-

spectively. Curve 1 is the isolated defect. The dashed vertical
lines indicate T, S" in redu. ced units [cf. Eq. (2.7)]. T in units
of C'/kb [cf. Eq. (2.1)].

is the q=0 mode. In the cu and T range defined above,
the main contribution to the scattering intensity in Eq.
(4.1) comes from the low-lying localized mode, i.e.,

S (co)=S( ) i
(uq=

i
u )

i

'. (4.2)

S (co)=+S „(co)&uq= iu &&u"iuq= (4.1)

connected to the central quantities measured with light
scattering and dielectric methods. The aim of this section
is to derive properties of Sq p(co) for a macroscopic crys-
tal with a small but finite defect concentration from the
structure factors Si and S, calculated with the help of
MD simulations.

For temperatures between T„and T„Sq p(cp) shows
a pronounced central peak, which represents a pure defect
contribution above To and a superposition of both defect
and soft-mode relaxations below To. In the following we
derive a simple expression for Sq p(co) which is valid in

the temperature range To (T(T„" and for co below the
soft-mode frequency.

In general, the total Sq p(co) for a crystal with an iso-
lated defect (or a defect pair) can be represented as

iu') =5 p., iu') = (5 p+5 d)

by

S~=Sg/i (u~iu ) i'. (4.3)

Equation (4.3) is valid if the interaction between the local-
ized (

i
u ) ) and the extended modes in the set [ i

u ")
) is

weak and in the cu range where only the localized modes
contribute to the structure factor.

With the help of Eqs. (4.2) and (4.3) the defect contri-
bution to Sq p(co) can be obtained from SI or S„which
were determined by MD, in the following form:

The index A. stands for 1 or s and denotes the localized
mode in the set I i

u") I. The structure factors S-, and

S~ of these actual localized modes are expressed approxi-
mately by the structure factors S I and S, of the
simplified modes [Eq. (2.6)]:

The sum runs over a complete basis set I i

u")
) formed

by the eigenstates of an e6'ective harmonic crystal with a
defect (or a defect pair):

i

uq= ), with
i

uq= )
&N

Sq p(cp) = Sg(co) .i

(uq= iu") i'
i( ki A) i2

For exponential spatial decays

u ) =Kiz

(4.4)
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and

r) ~( m + m —d

of the localized states, with a temperature dependent de-
cay rate z(T) between 0 and 1 and normalization con-
stants E~ and E„one obtains

and

yz -~ '= —'p, (T) (4.5a)
[(u'[u') ['

/m/ 2

f
(uq= /u') /' 2 m 2=——p, ( T, rI ) . (4.5b)1+. '

For a finite concentration c of defects, which are arranged
either as widely separated isolated defects or as widely
separated pairs with a distance d between the defects of a
given pair, Eqs. (4.4) and (4.5) yield

and

Sq 0(co) =cp i(T)Si(ru) (4.6a)

Sq o(co)=cp, (T,d)S, (co) . (4.6b)

where hd is the number of sites at a distance d. Conse-
quently, the probability of finding no second defect in the
neighborhood d (D of a given defect, i.e., of having an
isolated defect (ID), is, to first order in c,

II tD= I —c g h„.
d( &D)

For a crystal with a concentration c of random defects we
thus obtain the following expression for the defect contri-
bution to the dynamical structure factor:

Sq~=o=cp&S&+c g ha[p, (d)S, a p&S&] . —
d

(4.7)

The approximate results of Eqs. (4.6) were compared with
our MD data for systems with (1) an isolated defect, (2) a
third-nearest-neighbor pair (d =2), and (3) a nearest-
neighbor pair (d =1). Cfood agreement was obtained, in

the T cu range de-fined above, with z(T) varying from 0.45
at T= T, to 0.3 at T= To

In a real crystal, the three cases studied above (isolated
defect, nearest-neighbor pair, and third-nearest-neighbor
pair) appear with a certain probability which depends on
the defect concentration c and on correlations between the
defect sites. For a random distribution, the probability of
finding a second defect at a distance d from a given defect
is, to first order in c,

8'd ——Chd,

Two consequences of Eq. (4.7) for the experimentally ob-
servable defect influence in the central peak region are as
follows.

(1) In the temperature range T, & T & T~, where only
defect pairs produce a central peak, the intensity depends
quadratically on the concentration c. Below T] one has,
in addition, a linear term which dominates for small con-
centrations and close to T, .

(2) Below T, q ~, the central peak is a superposition of
different relaxators corresponding to defect pairs with
different widths d. The number of relaxators and the re-
laxation time r(d, T) increase with decreasing T leading to
a temperature-dependent distribution of relaxation times
whose average and width increase if T is lowered from
Tsd=] to Tc ~

These general results should be valid also (and even
more) for order-disorder-type defects. The consequences
discussed in point (2) are in qualitative agreement with
dielectric measurements at KTa03 doped with Li.

A quantitative theoretical description of the discussed
effects for a specific three-dimensional crystal —e.g. , the
intensively investigated system KTao3.Li (or:Nb)—
depends on the lattice structure, on correlations between
the defect sites, and on the defect potential. ' It should
include long-range dipolar interactions which can produce
a glasslike behavior.

V. SUMMARY

Molecular-dynamics calculations were performed for a
phase transition system with a pair of soft defects. We
determined the frequency splitting between the symmetric
and antisymmetric defect modes. It turned out to be
strongly dependent on temperature and on the distance d
of the defects.

The oscillator-relaxator transition temperature of the
symmetric mode increases drastically with decreasing d
and so do the relaxation times for a given temperature
below T

The strong d dependence of the defect dynamics has
two consequences for the dynamics of a macroscopic crys-
tal with a finite defect concentration c: In the defect con-
tribution to the dynamical structure factor Sq o(cu) a c
term arises besides the linear term. The central peak is a
superposition of relax ator peaks with a temperature
dependent distribution of relaxation times.
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