
PHYSICAL REVIEW B VOLUME 36, NUMBER 6 15 AUGUST 1987-II

X-ray scattering and condensed-matter experiments: Beyond the nonrelativistic approach
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The relevance ok relativistic eA'ects on photon-electron scattering is analyzed with special reference

to condensed-matter experiments. An approximate treatment of the relativistic contribution to the

cross section is presented in a form that is useful for treating solid-state eft'ects. Special attention is

paid to the final-state density of states, which must be considered with some care. The present treat-
ment shows that, because solid-state and relativistic eAects are of the same order of magnitude, they

must be treated at the same accuracy level to interpret correctly the very accurate experimental data

presently available on elastic as well as inelastic scattering of relatively high-energy photons.

I. INTRODUCTION

In a previous paper' the present author analyzed the in-

formation contained in the nonrelativistic x-ray cross sec-
tion, with reference to condensed-matter experiments.
The possibility of obtaining information about the two-
body static and dynamic correlation functions was clearly
shown. However, while in the particular case of light ele-
ments it is possible to obtain quite reliable information
about many-body effects, ' it is clear that by employing
the x-ray scattering it is difficult to get very accurate in-
formation in a general case.

In recent years, to overcome a number of experimental
as well as theoretical difficulties some authors proposed
the use of rather high-energy photons in condensed-matter
experiments. Although the energy usually employed
in such experiments is not very high, being of the order of
0.5 MeV, it appears clear that a nonrelativistic approach
is not adequate. Moreover, even the use of the second-
order Born approximation to calculate the cross section
may render it invalid in the relativistic limit. In fact stan-
dard calculations of the relativistic cross sections include
terms up to the second order in the fine-structure constant
a (a = e /iitc =—„', ). However, it is well known that
higher-order terms, though small, become important at
relativistic energies. ' Therefore a straightforward extra-
polation of the known properties of the nonrelativistic for-
mulation to relativistic energies is not allowed and a de-
tailed examination of the x-ray cross section in a many-
electron system is mandatory. It- should be also noted
that both the elastic (Rayleigh) and inelastic (Compton)
cross sections have been subjected to thorough analysis '
in recent years. However, although a large amount of
work is available, there have been no studies with
condensed-matter experiments, especially with elastic
scattering experiments.

Though the elastic cross section at high energy is
strongly peaked in the forward direction, recently
Schneider et al. were able to measure accurately the
Bragg scattered absolute intensity at 0.412-MeV incoming
photon energy. Therefore, because important solid-state
effects seem to be present when the experimental cross
section is interpreted in terms of scattering factors, it is

very important to analyze the elastic cross section in such
an energy range.

To do this, in this paper we shall analyze the x-ray
cross section both for elastic and inelastic scattering, ex-
tending the older treatment of Franz, "' to describe
present condensed-matter experiments. In this way we
get a reasonably accurate high-energy cross section, which
compares favorably with known exact high-energy lim-
its. ' ' Moreover, in view of present experimental accu-
racy, it will be shown that a terms are not necessarily
negligible. In this context we want to note that a terms
are very important from a fundamental point of view as
they contain divergent self-contributions, a characteristic
e6'ect of quantum electrodynamics (QED). Therefore the
very accurate, recent Compton scattering experiments ap-
pear to be also useful as a check of QED with respect to
the effects connected to vacuum polarization.

II. CROSS SECTION TO THE ORDER a

First of all we have to remember that no first-order
scattering is possible, as the interaction between charged
particles and photons is linear in the photon variables and
the change of two-photon-occupation number (scattering)
is not possible to such order. This is in contrast to the
nonrelativistic situation, where a quadratic term is present
in the interaction. '

Let us consider JV electrons in the field of N (=—JV/Z)
infinitely massive nuclei, Z being the nuclear charge. In
the following discussion we shall neglect the nuclear con-
tribution to the scattering, and the presence of the nuclei
will be considered responsible for the appearance of local-
ized bound-electron states. As is well known the photon-
nucleus scattering gives rise to a nuclear Thomson contri-
bution and to a resonant contribution; both contributions
appear to be quite small in the range of energy and
momentum of condensed-matter experiments and at the
present accuracy level.

If a photon the energy of which is Acko impinges on
the above system, the cross section for any process giv-
ing rise to a scattered photon with energy A'ck, within
the solid angle d0, , in the energy interval d, in the labo-
ratory frame, in the second order in the fine-structure
constant a, is given by
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where cp and c~ are initial and final energies of the elec-
tron system, K~, is a matrix element given by

HpH;,
+fo

Ep —E;
(2)

where i indicates all intermediate states of the whole sys-
tem electrons plus radiation. 0;~ is the matrix element of
the interaction between electrons and radiation. p~ is the
density of final states, which must be treated with some
care. If E~ ——c~+Ack is the final-state energy, we have

g 2 ('-jE

Py=
a(hack )

When the energy transfer is small with respect to the rest
energy of the electron, it is easily seen that

BEg

B(Rck )
(4)

V being the average ground-state potential energy of the
system and mp the rest mass of the electron. Thus we ob-
tain

BEI
c)(lick )

Akp
1 + (1—cosO)

mc

1+ (ko —k)
mc

where m =(eo/JV —V)/c . Equation (4) looks quite simi-
lar to that obtained in the case of free electrons, apart
from the presence of the effective mass m. This result is

which holds exactly in the case of elastic scat tering.
When an appreciable inelasticity occurs, the momentum
transfer is given by

p =&(k +ko —2kko cosO)'

0 being the scattering angle. However, in general a sim-
ple relation between E~ and p does not exist, apart from
the case of a simple free electron. Therefore the general
case must be treated at some level of approximation. A
reasonable approximation is possible when the incoming
photon energy is large as compared to the average po-
tential seen by the electrons of the system. In this case
the final energy can be assumed with quite good accura-
cy to be that of the (JV—1)-electron system in its ground
state plus the energy of a single almost-free electron of
momentum p (single-particle excitation). If we confine
ourselves to extended systems (JV~ oo ) as it is the case
of condensed-matter experiments, the excited high-
energy electron can be treated employing the first-order
Wentzel-Kramers-Brillouin (WKB) approximation, as
the potential is very small compared to the kinetic ener-
gy of the electron. Therefore the final energy of the sys-
tem can be easily derived from the Dirac equation. We
get
E/=e() +[(pc) +(moc ) ]'~ + V+A'ck, (5)

A. Elastic scattering

We shall consider as elastic a scattering process which
leaves the system in its electronic ground state, or within
a reasonable accuracy level a state that corresponds to a
creation or annihilation of phonons only. Neglecting the
effect of nuclear motion which gives rise to a Debye-
Waller factor and to thermal diffuse scattering, ' the cross
section of Eq. (1) can be written as follows:

dO

dA
kp

($c )2 2' i
Kpp

The intermediate electron states entering Eq. (1) depend
on the particular system being considered; however, as
already done to discuss the final-state energy, such inter-
mediate states can be described to a good accuracy level
as the exact ground state of A' —1 electrons plus an
high-energy electron, the wave function of which is well
described by the solution of the Dirac equation for a sin-
gle electron moving in an external potential V(r), which
is due to all other electrons and nuclei present in the sys-
tem. The nature of such a potential is very complex and
a large body of work is available on it. ' We shall as-
sume that V(r) be a known functional of the ground-
state electronic number density. In general it is a good
approximation to assume that V(r) be a slow function as
compared to the photon wavelength and hence to the ex-
cited electron wave vector. Then the Dirac equation can
be solved using the first-order WKB approximation, thus
introducing a small position dependence of the electron
momentum. A similar approach was already suggested
by Franz. " Using the above approximation, the inter-
mediate energy is almost independent of the intermedi-
ate state, as the matrix elements appearing in Eq. (2)
vanishes unless Akp-Ak =p, p being the momentum of
the excited electron. Therefore the sum on the inter-
rnediate states can be performed using the completeness
property. The derivation of the elastic scattering cross
section is rather straightforward, but the procedure we
are going to use can be employed to derive the inelastic
cross section also. First of all, we have to remember

somewhat in contrast to that obtained by Ribbenfors et
al. , which is essentially erroneous. In fact the result
given by Ribbenfors et al. is obtained merely by means of
a Lorentz transform applied to the Klein and Nishina for-
mula. Such an approach should not be applied to treat
bound initial states, as no exact momentum conservation
occur and an incorrect density of final states results.

As already said the interaction is linear in the photon
field, therefore the intermediate states can contain two
photons or no photon and, if the initial state contains free
independent electrons (V=O and so=A'mc ), the well-
known Klein and Nishina formula is deduced.

However, in a real system bound electronic states exist,
so that elastic as well as inelastic scattering occur. An ex-
act derivation of the cross section is not possible, but it is
possible to deduce useful high-energy limits, as already
discussed by Franz in the simpler case of one-electron sys-
tems. "'
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As already said, in the high-energy limit, the matrix ele-
ments Hp; and H,f vanish unless the excited electron
momentum is such that p=kkp=Rk, as the electron and
photon wavelengths are much smaller than the region
where the system wave functions extend. Therefore the
sum over the intermediate states reduces to an integration
over the position coordinate of the excited electron and a
sum over the Dirac spinors corresponding to all the
single-electron states with momentum p. Then to derive a
closed form for the cross section we have to observe that
the matrix element Kpp is the same as that of Compton
scattering from a single free electron after the substitution
moc ~eo/JV —V(r). Then it is easy to derive the follow-
ing expression for the cross section

=ro(e eo)
~ f (k —ko)

~

(8)

where f (k —ko) is the modified structure factor of the
system and ep and e are the polarization vectors of the in-
coming and outgoing photons, respectively. The modified
structure factor is given by

p(r) exp(i Q r).
eo V(r)

JVm pc m pc
2 2

As already mentioned this modified structure factor was
originally introduced by Franz"' for one-electron sys-
tems and has been discussed by Kissel et aI. ' ' in com-
parison with exact (second-order) numerical calculations
for free atoms. It is worthwhile also to mention that
f (0), in the case of a single electron moving in a
Coulomb field, reproduces to the order (Za ) the high-
energy limit of Goldberger and Low' and therefore can
be regarded as a good high-energy limit. It should be also

that the intermediate states can contain no photon or
two photons. In the first case we have

E =eo(1 —1/JV)+e'

while in the second one we have

E;"=eo(1 —1/JV)+e'+Ac(k+ ko),

where the excited electron energy e' contains a slow
dependence on the electron position. Using the above re-
lationships, Eq. (2) becomes

T

Hp;H, f Hp;H, f&oo=g, +
ep/JV —e'+ Ackp ep/JV' —e' —%k

emphasized that the modified structure factor loses its va-
lidity at low energy; however, when its validity is lost, the
anomalous scattering contributions must be taken into ac-
count. Therefore, the high-energy limit deduced from the
nonrelativistic approach has validity in no energy range,
apart from the case of light elements.

B. Inelastic scattering

d20-

dQde

where

d2o
S (k —ko, co),

KN

The inelastic scattering cannot be treated, even in the
case of extremely high energy, if no assumption is made
about the excited states of the system. In fact as already
observed a rather complex relationship exists between
the dynamics of the system and the scattering kinemat-
ics, so that the dispersion relation Ef versus p must be
known to get an expression for the cross section. How-
ever, in principle, the Ef versus p relation can be de-
duced from the analysis of the cross section itself. This
is not the case in the classical limit where BEf /BAck =1,
so that the density of final states coincide with the densi-
ty of states of the scattered photon. However, in
condensed-matter experiments, when the incoming pho-
ton energy is comparable to the rest energy of the elec-
tron, if the scattering angle is reasonably high, the in-
dependent particle regime is a quite good approximation.
Therefore the intermediate states can be treated again in
the WKB approximation. But it should be understood
that the momentum p of the excited electron is not
necessarily equal to the momentum left by the incoming
photon as part of it can be transferred to the A'-electron
system as a whole. Following the same procedure we
discussed in the case of elastic scattering, we can derive
the cross-section formula, closely reproducing the free-
electron case apart from the use of the WKB approxima-
tion for the intermediate states and the use of a nonex-
plicit form for the system ground state. The procedure
to deduce a closed form for the cross section is the same
we employed in the case of elastic scattering. In fact,
the intermediate state energy looks quite similar in both
cases, so that again the cross section can be deduced em-
ploying a standard derivation of the Compton cross sec-
tion. Then it is rather straightforward that the cross
section is given by the Klein and Nishina cross section
times a modified dynamical structure factor:

S (Q, co) = f f f dt d r dr'e'~" "e'"'(0
~
p(r)p (r', t )

~

0)
2~4

Cp V(r)
mpc 2

Cp

JVm oc

V(r')
2mpc

p(r, t) being the time-dependent number-density operator.
Looking at Eqs. (8) and (10) we observe that in the relativ-
istic case the effect of binding, apart from the well-known
broadening of the Compton peak, can be described as a
change of the electron mass due to binding effects.

III. HIGHER-ORDER CONTRIBUTIONS

The effect of higher-order contributions is expected to
be rather small in the energy range of condensed-matter
experiments; however, as the energy is raised this sort of
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TABLE I. Delbruck scattering amplitude in electron units for
forward scattering as a function of energy in copper.

Sicko (keV)

10
50
100
200
412
500
1330
2620

Re(aD /ro)

5.39~ 10—'
1.35 ~ 10-'
5.39 &&

10-'
2.16 &&

10-4
9.16 &( 10
1.35&&10 '
0.0108
0.0409

Im(ag /ro)

0
0
0
0
0
0
2.60~ 10
0.0119

contributions becomes appreciable, even as far as the elas-
tic scattering is concerned.

It is not the purpose of present analysis to discuss the
higher-order contributions which have been studied by
various authors. However, we want to remark upon the
importance of such contributions as far as photon scatter-
ing in solid-state systems is considered.

When we are dealing with elastic scattering, the
higher-order terms are due to the interaction of the pho-
ton with the static field present in the matter, the nuclear
field in particular. This effect which is characteristic of
QED is called Delbruck scattering and has been deeply
investigated theoretically as well as experimentally. The
forward-scattering amplitude of Delbruck scattering has
been deduced in both low- and high-energy limits, ' while
a low-energy limit of the cross section as a function of the
scattering angle is also known. Using the above results
it is easily seen that the Delbruck contribution is com-
pletely negligible in the case of present condensed-matter
experiments; however, it could give an appreciable contri-
bution at energy as high as 3 MeV (see Table I).

We have to observe that the elastic photon cross sec-
tion can contain a terms directly derived from higher-
order terms in the perturbation series. However, it
should be remarked that at present accuracy level no ex-
perimental evidence of higher-order terms apart from
Delbruck scattering is available. ' Therefore such con-
tributions are expected to be rather small, though it ap-
pears useful to have an estimate of them. An exact cal-
culation of a contributions to Rayleigh scattering is

very difficult and beyond the purpose of present study;
however, it is possible to get a reasonably good estimate
of the a contribution to the forward-scattering ampli-
tude observing that in the forward direction the Comp-
ton and Rayleigh cross sections are equal provided that
the initial electron state has negligible momentum. If we
consider rather high incoming photon energy this is
indeed a quite good approximation. Moreover, it should
be emphasized that the a term is not vanishingly small
at high energy, where Rayleigh scattering is appreciable
only in the forward direction. Therefore we consider to
be a good estimate of the ratio between u and a terms
in the cross section the following relationship:

R(a /a )= — a16
3~

A, kp
ln

pc

fi, kp
2

mpC

It appears fortuitous that this ratio vanishes as
fickz=moc . Although as expected Eq. (11) contains a as
a multiplicative constant we see that its contribution is not
completely negligible at present accuracy levels. ' In
fact, in the case of copper it amounts to 0.18% at 0.412
MeV incoming photon energy. The detection of such a
contribution appears to be problematic as it is rather small
and essentially independent of the scattering angle at high
energy as an appreciable Rayleigh scattering is present at
small angles only.

As far as the inelastic (Compton) scattering is con-
cerned, the higher-order contributions come from two
difterent processes. The first is the higher-order approxi-
mation with one photon in both initial and final states,
while the second is due to a final state with two photons,
i.e. , the double Compton scattering. The two contribu-
tions interfere with each other and are of the same order
of magnitude. Both contributions are extensively dis-
cussed by Heitler and the relative contributions to the in-
elastic cross section at various angles are given in Table
II, in the case of a free electron. As we can see the
correction to the cross section (including double Comp-
ton) cannot be neglected at present experimental accuracy
level.

It is not clear which sort of effect might be expected in
real systems; in fact, little can be said about the effect of

TABLE II. Ratio of a' contribution to Compton scattering to Klein and Nishina formula as a func-
tion of scattering angle at 412-keV incoming photon energy.

(deg)
d

dCT

dA k /ko

0
20
40
60
80
100
120
140
160
180

1

0.858
0.573
0.347
0.234
0.197
0.196
0.207
0.216
0.220

0.000 44
0.000 37
0.000 22
0.000 03

—0.000 29
—0.000 95
—0.002 09
—0.003 55
—0.004 81
—0.005 32

0.000 44
0.000 43
0.000 38
0.000 09

—0.001 24
—0.004 82
—0.010 66
—0.017 15
—0.022 27
—0.024 18

1

0.954
0.842
0.713
0.601
0.515
0.454
0.414
0.391
0.384
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TABLE III. Modified scattering factor f (Q) in copper as compared to ordinary scattering factor
fp ( Q ) for various reflections. The ratio between experimental f,„ttt ( Q ) (Ref. 5) and theoretical
f,h„,(Q) (Ref. 23) scattering factors is also reported. The constant C is the ratio fo(Q) ff (Q) for
the (444) reflection, times a Debye-Wailer factor correction.

000
111
200
220
311
222
400
331
420
422
511
333
440
531
600
442
620
444
800

28.944
21.853
20.397
16.450
14.599
14.095
12.422
11.423
11.128
10.110

9.498

8.713
8.350

8.244

7.875
7.309
6.509

fo

29.000
21.927
20.474
16.538
14.691
14.188
12.518
11.521
11.226
10.210

9.599

8.815
8.453

8.347

7.978
7.412
6.611

(f Ifp)C

0.987
0.988
0.989
0.990
0.991
0.991
0.993
0.993
0.994
0.995

0.995

0.996
0.997

0.997

0.998
1.000
1.006

fexttt r ftheor

0.992
0.994
0.990
0.989
0.993
0.990

0.990
0.992

0.995

the a terms on the energy-transfer dependence of the
Compton cross section. However, the results of Table II
suggest that the total cross section at a given angle is ap-
preciably affected, so that further study should be done on
the u terms in real systems, as such a correction at least
affects the normalization of the cross section.

IV. CONCLUDING REMARKS

To assess the relevance of the effects described in the
previous sections we compare the various contributions in
the case of copper, which seems to be accessible to a very
accurate y-ray experiment of both elastic and inelastic
scattering. ' ' To deal with a realistic model of solid Cu
we employed the self-consistent charge-density calculation
by Moruzzi et al. In Table III vee report the calculated
contributions to the structure factors as compared to ex-
perimental data. As we can see, the modified structure
factor differs appreciably from the ordinary structure fac-
tor. Moreover, the difference increases when the momen-
tum transfer is increased. This behavior is quite natural
in view of the fact that a scattering process at relatively
high-momentum transfer samples the charge density of
inner shell electrons that spend much time in regions

where the total potential is high. Having in mind the be-
havior of the modified structure factor we can drastically
reduce the disagreement between the experimental results
of Schneider et aI. and the theoretical ones. In fact the
experimental data have been normalized to free atom re-
sults (nonrelativistic cross section) in the high-momentum
region, so that a lowering of the structure factor of low-
order rejections results. This effect is clearly shown in
Table III. Therefore the disagreement found as far as the
cohesive energy is concerned is almost completely re-
moved.

In the above discussion we neglected the a contribu-
tion discussed in the previous section; however, in view of
the normalization procedure employed in the analysis of
experimental data and the fact that the contribution of
Eq. (11) is constant, such a contribution does not change
the third column of Table III and hence the physical con-
clusion drawn from it.

A much more complex situation occurs in the case of
inelastic scattering as relativistic as well as higher-order
effects contribute appreciably to the cross section. As a
final note we want to stress once again that to deal accu-
rately with solid-state effects, relativistic as well as higher
order contributions must be taken into account and all ex-
trapolation of known results must be analyzed with great
care.
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