
PHYSICAL REVIEW B VOLUME 36, NUMBER 6 15 AUGUST 1987-II

Weak localization in inhomogeneous magnetic fields

J. Rammer
Nordisk Institut for Teoretisk Atomfysil , N.ORDITA, Blegdamsvej 17, DK 210-0 Copenhagen 9, Denmark

and Department of Physics and Materials Research Laboratory, University of Illinois at Urbana Ch-ampaign,
1110 West Green Street, Illinois 61801*

A. L. Shelankov
Nordisk Institut for Teoretisk Atomfysik, NORDITA, Blegdamsvej 17, DK 2100 C-openhagen 9, Denmark

and A. F Io+e .Physical Techn-ical Institute, Leningrad 194021, Union of Soviet Socialist Republics
(Received 27 January 1987)

A theoretical analysis of weak localization in inhomogeneous magnetic fields is presented. The
weak-localization correction to the classical conductivity is the result of interference effects charac-
teristic of quantum-mechanical motion in a disordered conductor. The phase-coherence length, set
by inelastic collisions, describes the spatial limit to single-particle quantum-mechanical interference.
When this length exceeds the length scale over which the magnetic field is uniform the standard
theory of the weak-localization magnetoresistance in a uniform magnetic field is no longer applicable.
The coherent quantum-mechanical motion probes the inhomogeneity of the magnetic field, and the
conductivity thus exhibits its nonlocal dependence on the magnetic field. The inhomogeneity of the
magnetic field is shown to lead to observable changes in macroscopic quantities; one possible experi-
rnental method of testing the effects of weak localization in inhomogeneous magnetic fields is present-
ed.

I. INTRODUCTION

During the past few years substantial progress in the
understanding of the physics of disordered conductors has
been achieved. ' Since the original work of Anderson it
has been known that the quantum-mechanical description
of the motion of a particle in a random medium does not
give rise to a diffusive motion if the disorder is sufficiently
strong, but leads to localization of the particle. In the
case where the disorder is weak the transport properties
are essentially classical and may be calculated by the
Boltzmann theory. One achievement of the recent pro-
gress has been the recognition of a method for calculating
the quantum corrections to the Boltzmann result in per-
turbation theory and an interpretation of the theory in
terms of a simple physical picture leading to a comprehen-
sive physical understanding of moderately disordered con-
ductors. The quantum correction to the Drude conduc-
tivity o.o is the first correction in the expansion parameter
A/p+I where pF ——m UF is the Fermi momentum and
1=UF~ is the mean free path; when this perturbation ex-
pression is sufficient we are in the weak-localization re-
gime. In order to clarify the investigation presented in
this paper as well as the interpretion of the results we
shall brieAy remind the reader of the physics of weak lo-
calization.

The origin of the weak-localization effect is the general
phenomena of the interference of waves propagating in a
random medium. In our case of electronic motion its
wave character is due to quantum effects represented by
interference between alternative probability amplitudes for
electron propagation between space-time points. The
weak-localization effect, however, may be understood at
the quasiclassical level with the effect of quantum-

mechanical interference taken into account. The phases
of interfering probability amplitudes for the traversal of
different classical paths will be random due to the random
positions of the impurities, except for the case where a tra-
jectory and its time-reversed trajectory interfere. It is
now well established that the interference between the two
phase-coherent alternative ways of traversing, in the disor-
dered material, a classical path that returns to its starting
point is responsible for the quantum correction to the con-
ductivity. '

Consequently, the weak-localization correction to the
Drude conductivity describing the coherent backscattering
is expressed through the interference term

2e 2D
g coslg, —P, l expI —t, /v&))

C

where tb, and $, are the phases of the probability ampli-
tudes acquired by traversing of a classical path c that re-
turns to its starting point along its two respective direc-
tions as depicted in Fig. 1 and D is the diffusion constant.
The sum over all such closed loops should be performed
taking into account their probability, which we express by
use of the angular brackets. The interference phenomena
requires phase coherence and the factor exp( —t, le~) ac-

FIG. 1. A classical diffusive path c that returns to its starting
point can be traversed in two possible directions.
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counts for processes that destroy the phase coherence at a
phase-breaking rate 1/~&. In the case of time-reversal in-
variance the phases (t, and P, are equal, so that, as noted
above, the averaging over the disorder does not lead to
cancellation of this type of interference term. The number
of relevant paths will depend on the phase coherence time
~&, as paths with too long a duration t, do not contribute
due to the factor exp( —t, /r~). Since r~ is a function of
temperature, controlled by inelastic processes, the weak-
localization effect gives rise to a temperature dependence
of the conductivity which in the case of a two-dimensional

sample is given by

e2
b,o= — . in(r~/r) .

2~ A
(1.2)

2e 2D
I —cos2~

40
exp( —t, lxx)) . (1.3)

The theory of weak-localization predicts for the case of a
homogeneous magnetic field 8 a magnetoconductivity

Aa (8) her(0) = —f2
e 8

2~2%
(1.4)

where the function f2 is related to the digamma function

gaby

f~(x) = lnx+itj
1 1

(1.5)
2 x

and 8~ ——@0/4', L~ ——(Dr~)' . The applicability of
formula (1.4) assumes that the sample is two dimensional
with respect to the weak-localization effect, which requires
the transverse sample dimension to be much smaller than
the typical length L& the electron traverses in its diffusive
motion within the phase coherence time ~&. Furthermore,
it is assumed that the magnetic field is weak enough that
bending of trajectories is unimportant; that is, ~,~ && 1

where co, =
~

e
~

8/m is the cyclotron frequency and I/r
is the impurity scattering rate. Numerous measurements
have shown that Eq. (1.4) is in very good agreement with
the experimental data and that the sensitivity of the
weak-localization effect to a magnetic field is indeed the
property that enables one to separate out the effect by
suppression of the coherent backscattering. Magnetoresis-
tance measurements are thus a most important method
for the observation of weak-localization effects and due to
their accuracy and simplicity they have turned out to be a
useful tool for the experimental determination of charac-

An especially important way of influencing the interfer-
ence process is to break the time-reversal syrnrnetry by a
magnetic field. In the presence of a magnetic field the
quantum-mechanical amplitude for traversing a loop
counterclockwise around the magnetic field lines contains
the additional phase factor exp(i2m&P, /4o) where N, is

the magnetic flux enclosed by the loop |- and
No =h /2

~

e
~

is the fiux quantum. Since the phase
difference P,. —P, is equal to 2~+, /No the weak-
localization contribution to the magnetoconductivity is
given by

ho (8)—b,cr(0)

teristic times.
The above physical description of the by now standard

theory of magnetoresistance in the weak-localization re-
gime has been undertaken in order to assess its range of
validity in the context of inhomogeneous magnetic fields,
and shows that the quantum correction to the conduc-
tivity at a given point is sensitive to the magnetic field
structure within an area of order L

&
so that the range of

validity of Eq. (1.4) is restricted to magnetic fields that
are uniform on the length scale L&. In this case we have
a local situation where the conductivity cr(r) at a point r
depends only on the magnetic field at this point. The
magnitude of L& may, at low temperature, be very large
(typically in the micrometer range) and it is therefore of
interest to investigate the weak-localization magne-
toresistance in magnetic fields that are nonuniform on
this length scale, since we then are in the nonlocal limit
where Eq. (1.4) no longer applies. It is the purpose of
the present paper to consider this physical situation and
to calculate the nonlocal dependence of the conductivity
on the magnetic field. Before we continue with the pre-
sentation of the theory of weak localization in inhomo-
geneous magnetic fields we propose and discuss a physi-
cal system relevant for testing the results of the follow-
ing.

We shall restrict ourselves to the experimentally most
interesting case of two- or quasi-two-dimensional conduc-
tors [a metal-oxide-semiconductor field-effect transistor
(MOSFET) or a thin film]. For these systems there is a
rather simple way of imposing a nonuniform magnetic
field. It is sufficient to place a superconducting film near
(and insulated from) the normal film under study or to
use a superconducting gate in the case of a MOSFET.
For the sake of completeness, we briefly review the behav-
ior of a superconducting film in a magnetic field. A mag-
netic field creates the intermediate or the mixed state de-
pending on whether the superconductor is of type I or
type II.' In the intermediate state the magnetic field
penetrates as a series of lamina or flux tubes, depending
on field strength and film properties. In the latter case
each tube contains an integral number of flux quanta 4O.
In the mixed state the field penetration is accomplished by
the formation of a two-dimensional lattice of vortices.

The presence of a superconductor in a uniform external
magnetic field leads to nonuniformity in the magnetic field
within and therefore near the surface of the superconduc-
tor as depicted in Fig. 2. We let b, (r,z) denote the z com-
ponent of the local magnetic field b at a point r=(x,y) in

FIG. 2. Magnetic field lines showing the nonuniformity
within and near the superconductor.
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the plane parallel to the surface of the superconductor at a
distance z outside the superconductor and expand it in its
Fourier series

b, (r,z)= gb, (q, z)e'q'
q

From the Maxwell equations we then get that

b, (q, z) =b, (q, z =0) exp( —
~ q ~

z) .

(1.6)

The nonuniformity of the magnetic field therefore exists
only over distances of the order of the period of the mag-
netic structure.

The period is determined by the applied magnetic field.
In the case of a type-II superconductor the period is equal
to the magnetic length ls ——(40/B)' . Thus for a small
enough magnetic field and z && lz, the magnetic field
penetrates the normal film or the MOSFET channel as an
array of magnetic tubes, i.e., the field is highly nonuni-
form. In this case the dependence of the conductivity on
the average magnetic field differs significantly from the
prediction of Eq. (1.4), as discussed in Sec. IV. In the
case where the magnetic field is nearly uniform the modu-
lation of b,o (r) is too small to be observed by means of a
conductivity measurement as discussed in Sec. IV. How-
ever, we wish to point out the important feature that the
system under consideration allows one to extract experi-
mentally the spatially dependent part of the conductivity
even for the case where the modulation of the magnetic
field is small. We shortly discuss the circumstances under
which this can be brought about.

It is well known, ' that passing an electric current
through the superconductor can make the magnetic field
structure in the superconductor move. The motion of an
inhomogeneous magnetic field structure will thereupon in-
duce a dc electric current in any magnetoresistive film
placed near the surface of the superconductor. To illus-
trate the idea we consider the following simple example.
We imagine that the magnetoresistive film is placed in a
magnetic field of the form B(r, t) =zBO8(x-ut), where 6
is the step function. This moving magnetic field structure
induces electric fields and currents as depicted in Fig. 3.
If the conductivity depends on the magnetic field the
currents at point 1 and 2 do not cancel and a resulting dc
current flows through the film. Thus, an experiment with
a current through the superconducting film allows one to
extract the spatial dependence of the magnetoconductivity
of the normal film. The effect exists in any magnetoresis-
tive material irrespective of the origin of the magnetoresis-

tivity and has long been recognized" in connection with
the physics of the Giaever transformer. ' However, to our
knowledge, no quantitative theory of the effect has been
developed. As discussed in Sec. IV this brings about the
opportunity to test the weak-localization theory for inho-
mogeneous magnetic fields even in the case of a small
modulation of the magnetic field.

Besides the quantum correction to the conductivity due
to weak localization, there are, as recently established,
corrections of equal order of magnitude, the so-called
mesoscopic effects. These effects, however, vanish upon
averaging over the impurity potential and since we shall
calculate the influence of the magnetic field on macro-
scopic properties, i.e., properties measured by probes far
apart, we can neglect all mesoscopic effects.

In outline, the paper is organized as follows: In Sec. II
we study the case of a highly inhomogeneous magnetic
field where the film is penetrated by widely separated
magnetic-flux tubes. The Aharonov-Bohm model prob-
lem of a magnetic string is considered as well as effects of
finite tube size. In Sec. III we calculate the spatially
dependent part of the quantum correction to the conduc-
tivity for the case of a small but arbitrarily rapid modula-
tion of the magnetic field. In Sec. IV we consider the
effects of an inhomogeneous field on macroscopic quanti-
ties. The proposed physical realization of the inhomo-
geneous magnetic field allows one, by generating flux flow
in the superconductor, to induce a dc current in the nor-
mal film, thus enabling one to study the spatially depen-
dent part of the conductivity. Furthermore, the classical
magnetoconductivity and Hall effect are discussed in the
limit of classically weak fields since they, in the limit of
magnetic fields larger than the characteristic field 8& for
the saturation of the quantum correction, may be of more
importance. Finally, Sec. V contains a summary and con-
clusions.

II. THE WEAK LOCALIZATION
MAGNETOCONDUCTIVITY IN A HIGHLY

INHOMOGENEOUS MAGNETIC FIELD

In this section we consider the case of a sufficiently
weak applied magnetic field so that the presence of the su-
perconductor generates widely separated magnetic-flux
tubes. It is then possible to consider each tube separately;
that is, the distance between the tubes penetrating the nor-
mal film is much larger than L&. For simplicity, we as-
sume that the tubes have a circular cross section with ra-
dius ro within the film and that the magnetic field has the
constant magnitude bo inside the circles and is zero out-
side.

For the trivial case when ro &&L~ the spatially depen-
dent part of the conductivity 6cr inside the tube is given
by

e' &o
5cr = f2

2
(2.1)

FEG. 3. Electric field lines as a result of the moving magnetic
field structure.

and outside the tube we have that 5o =0. Throughout we
use the diffusion approximation and assume therefore that
all lengths are much larger than the mean free path /, in
particular for Eq. (2.1) to be valid ro » l.
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We then turn to consider the highly nonlocal situation
when ro «L&. To start with, we shall assume that yo is

the shortest length in the diffusion problem and in the
limit where yo goes to zero the tube shrinks into a mag-
netic string.

A. The magnetic string

We are thus led to study the problem of a magnetic
string intersecting the film at the origin of the (x,y) coor-
dinate system in the film plane and containing a magnetic
Aux N.

The weak-localization correction to the dc conductivity
is given by

Acr(r) = — C(r, r)2e D (2.2)

Formally Eq. (2.3) is identical to the equation for the
Green's function of the Schrodinger equation. The
physical interpretation of the particle-particle diff'usion

propagator was discussed in detail in the Introduction.
To describe the magnetic field configuration of the mag-

netic string we choose the vector potential A to be, in
cylindrical coordinates, given by

(2.4)

where the particle-particle diffusion propagator satisfies
the equation'

2

D i V ——A + C(r, r') =Air —r') . (2.3)
2e 1

7p

connection with the Aharonov-Bohm effect' ' and refer-
ring to these results we write down the solution C of Eq.
(2.3) for the magnetic string problem where the vector po-
tential is given by Eq. (2.4)

C (r, r)= f dt g f dkk J „+ (kr)
2w 0 „0

Xexp — Dk + t
1

(2.5)

where J,, denotes the Bessel function and o;=N/No. Evi-
dently, C (r, r) is a periodic function in 4 with the period

One can now, by use of a table of integrals and
series, ' perform the integration over k and the summa-
tion over n to obtain

1 ~ dt y
C (r, r) —Co ——— exp

4~2 o Dt 2Dt

2

XQ a,
2Dt

(2.6)

where Co is the particle-particle diffusion propagator for
the case a=0 and Q is the periodic function in a defined
for

~

a
~

( 1 by

ja/x (1 —/a/)x
Q(a, z)= sin(~

~

a
~

) f dx e
0 e +1

(2.7)

where P is the azimuthal unit vector To o.ur benefit, the
magnetic string problem has been extensively studied in

We can then expand Q(a, z ) in its Fourier series with
respect to n to finally obtain

1 dt y2
C (r, r) —Co=- exp

4n o Dt 2Dt

y2 oo 2

2Dt „ i
" 2DtP„ [1—cos(2vrn a )], (2.8)

where

2 exp [ —z cosh[(2n —1 )7rx ] ]q„(z)=— dx
7T 0 1+x

and

(2.9)

P„(z)= [q„(z)—q„+&(z)] .1

q, (z)
(2.10)

Let us pause to analyze the expression in Eq. (2.8) in

terms of the physical description of the quantum correc-
tion to the conductivity given in the Introduction. The
magnetic field is zero everywhere in the plane of the two-
dimensional electron gas except for the singular point
where the string intersects the plane. The only trajec-
tories that contribute to C —Co are therefore those which
encircle the string. Each relevant path can therefore be
ascribed a number characterizing its topological property
of how many times it encircles the string. Let us denote
this winding number by n. A path with winding number
n encloses the Aux nN and such an n-type path contrib-

e
—(r /2Dt) y2 y2

2Dt P

appearing in Eq. (2.8) has the following interpretation: It
is proportional to the probability that the diff'using particle
at a distance y from the string in time t returns to this
point with the constraint that its path encircles the string
n times. The function p„ is the distribution function over
the winding number and has the property g„,p„= 1.
The number q„(z)/q&(z)= g „p gives the conditional
probability to have at least n circulations.

It is important to emphasize that the quantities p„and
q„are of purely statistical and geometrical origin. They

utes therefore to the magnetoconductivity and the
particle-particle diffusion propagator with a factor
(1—cos2irna). Furthermore, the total contribution of all

n-type paths is proportional to the relative probability of
the n-type paths.

From this consideration we infer that the quantity
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are determined by the statistics of diffusion, i.e., random
walk, in two dimensions. We note that the above investi-
gation may therefore be considered as a method for calcu-
lating these statistical distributions; in fact, we know of no
alternative method.

The function q„(z), Eq. (2.9), may be expressed in
terms of the modified Bessel function Kp

2
q„(z)= Ko(z)

vr (2n —1)
(2. 1 1)

if either of the three criteria z « 1 and n »
~

lnz ~, z —1

and n »1, or z »1 and n arbitrary are fulfilled. Using
Eqs. (2.10) and (2.11) we then in turn get

p„(z)-n for z arbitrary and n~ m

2p„(z)= z &) 1
4n —1

(2.12)

(2.13)

ehcr(r, @) b,cr(4=0—) = sin2' A' Np

—(2r/L~ j
e

r

(2.15)

We note that the magnetoconductivity behaves
nonanalytically at the flux N equal to zero and at the
equivalent values N/Np ——+1,+2, . . . . The nonanaly-
ticity is attributed to the divergence of the average wind-
ing number.

The Aharonov-Bohm effect in the weak-localization
theory was predicted in the famous paper by Altshuler,
Aronov, and Spivak. ' They considered the Aharonov-
Bohm efFect in a cylindrical geometry. Certainly the flux
periodicity of Ao. does not depend on the kind of doubly
connected sample geometry but the flux dependence of
Acr(4) does. The reason for this is the difference in the
statistics of the paths which .are allowed in different
geometries and our results differ therefore from those of
Ref. 17.

B. The eft'ects due to finite tube size

The quantum magnetoresistance vanishes when the flux
in the string is equal to an integral number of flux quanta
as we have demonstrated above. This result is evident

p„(z)=m n
~

lnz ~, z &&1, n &&
~

lnz
~

. (2.14)

In the course of the derivation of Eq. (2.14) we have taken
into account that q, (z «1)=1.

We note, that the average winding number n (z)

&
np„(z), diverges for any z. This is particularly

surprising for the case of large z, r /2Dt »1, where the
particle has a short time available to reach the singular
point but nevertheless spends time revolving around the
point.

The weak-localization "magnetoconductivity" Ao(r, 4)
—Ao(4=0), i.e., the quantum correction to the conduc-
tivity due to the presence of the magnetic string, can be
calculated from Eqs. (2.2) and (2.8)—(2.10) for arbitrary
distances r to the string. If this distance is much larger
than the phase coherence length L&, r »L&, then by us-
ing Eqs. (2.8) and (2.13) we obtain

from the description presented in the Introduction since
all trajectories enclose zero or an integral number of flux
quanta leading to an inessential phase difference equal to
a multiple of 2~.

We shall now take into account the finite size of the
tube assuming that the flux is an integral number of flux
quanta. In this case trajectories traversing the tube may
enclose an arbitrary flux. In the considered case where
the tube contains an integral number of flux quanta these
trajectories will be the only source of magnetoresistance.
An intuitive argument it seems, would lead to the con-
clusion that the finite-size correction should approach
zero proportionally to the area of the tube as the area ap-
proaches zero. This estimate is based on the assumption
that the probability for a diffusing particle to reach a
small region in the plane is proportional to the area of the
region. However, this intuitive argument fails as a conse-
quence of the divergence of the average winding number
discussed above. For our model of a uniform magnetic
field of total flux X+p inside a tube of radius rp, we have
according to Appendix A in the leading approximation
(r )&ro)

C(r, r) Co ——— (r /2Dt ) 2

e ', Kp2a '0 Dt ln(Dr /r o ) 2Dt

(2.16)

r

b,cr(r, N&bo) Ao. (r, 0)=-2e 1 z r
Kp

ln(S/r o )
(2.17)

where S—max(L&, rL&).
From Eq. (2.17) it follows that in the leading approxi-

mation the magnetoconductivity does not depend on the
magnetic field in the tube, i.e., the flux N=N+p. This
dependence exists only in the next approximation, name-
ly where we take into account terms of order
1/( 1nS /r o ) ', r o /S.

In the following we shall need b, cr(r) for r & ro Having.
solved Eq. (2.3) for the particle-particle diffusion propaga-
tor it is in principle possible to calculate Acr(r) for the
model under consideration. Evidently, the results would
have only qualitative significance since they depend essen-
tially on the magnetic field distribution and in this respect

where tp & rp/D.
Since only trajectories passing through the tube contrib-

ute to Eq. (2.16) we conclude that the integrand excluding—1/x]
the factor e ~, has the following interpretation: It is
proportional to the probability that the particle at a dis-
tance r from the center of the tube in time t returns to this
point with the constraint that it passes through the circle
with radius rp, r »rp. We note, that indeed this proba-
bility goes to zero when rp goes to zero, but very slowly,
only logarithmically. This is again a peculiarity of
diffusion in two dimensions and this logarithmic depen-
dence on r p is not restricted to paths which return to their
starting point.

From Eqs. (2.2) and (2.16) we then obtain for the quan-
tum correction to the conductivity, due to the presence of
the tube with an integral number of flux quanta, at dis-
tances r »rp
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e '4 dt
b cr(r & ro, N+o) —b, cr(r, O) =

27( g min

e' bo
ln

2~'A
(2.18)

We note that the result of Eq. (2.18) is of the same order
of magnitude as Ao (r —ro) evaluated by Eq. (2.17).

In the case under consideration, where ro &&L& we ob-
tain bo »B&. Since f2(x)= Inx, x »1 we observe that
the result in Eq. (2.18) can be expressed in terms of the
function fz. In the opposite limiting case where ro »L~
we obtained as well [see Eq. (2.1)], that the magnetocon-
ductivity was described by f2(bo!By). We therefore con-
clude that for the magnetoconductivity inside the tube we
have approximately

the tube model is certainly unrealistic. For this reason,
we shall restrict ourselves to give only a simple estimate
of Acr(r & ro) using the qualitative arguments presented in
the Introduction.

We therefore consider diffusive paths which return to
their starting point inside the tube. If the time of flight
for a path is so short that it does not enclose considerable
flux (of the order of 4o) it will not contribute to the mag-
netoconductivity. The magnitude of the magnetic field in-
side the tube is bo, so boDt;„-+o determines the order
of magnitude of the time of flight for the shortest paths
which contribute to the magnetoconductivity and we
have'8

Here f2 denotes the derivative of the function fq defined
in the Introduction. We assume that the (x,y) com-
ponents of the field b and b~ are small and that they
have no influence on ~& and consequently on B&.

We then turn to consider the problem of an arbitrarily
rapid but small variation of the field. We therefore split
the vector potential A describing the magnetic field b into
two parts

A(r, z)= Ao(r, z)+ A, (r,z),

A, (r,z) = g a~(z)e' i',
q

(3.2)

where q is a two-dimensional vector in the plane of the
electron gas.

Without loss of generality, we can assume that the vec-
tor potential Aj satisfies V A& ——0 and has only x and y
components in the plane of the film so that q. az(zo ) =0.

In this gauge the Fourier components bz(z) of 5b, (r, z)

5b, (r,z) = g b~(z)e'~'
q

(3.3)

are related to az(z) by

where Ao describes the uniform magnetic field Bz and
A& describes the small modulation. We then expand the
vector potential A& in a Fourier series with respect to its
coordinate r in the plane of the electron gas

bo
ho (r 5 ro, N&o) bo. (r, O) = — f2

2~ A B~
(2.19)

a~(z)=, (qxz)b~(z) .
g

(3.4)

irrespective of the relation between ro and L&. We shall
in the following make use of the expression in Eq. (2.19)
for Ao. (r & ro).

III. THE WEAK LOCALIZATION
MAGNETOCONDUCTIVITY IN A SLIGHTLY

INHOMOGENEOUS MAGNETIC FIELD

In this section we consider the case where the two-
dimensional electron gas is situated in a nearly uniform
magnetic field b, (r,z)=B+5b(r, z), so that ~5b

~

&&B
and the spatial average (5b) =0. We then calculate the
spatially dependent part of the conductivity 5o. due to the
small modulation 6b of the magnetic field.

In the case where the field varies smoothly on the
length scale L& the problem is trivial and we have

C'"(r, r)= gC'"(q)e'~'
q

the expression

(3.5)

C(1)( )
1 B b~(zo)

(3.6)

Since we assume that the modulation is small we only
need to solve the equation for the particle-particle
diff'usion propagator Eq. (2.3) to first order in A~. For a
given Fourier component of A&, specified by q, it is al-
ways possible to choose the coordinate system so that
q=qy and for this choice it is convenient to use the
Landau gauge Ao ——xBy for the uniform part of the
field. We then solve Eq. (2.3) for the particle-particle
diffusion propagator C =C' '+ C" and get for the
Fourier component C'''(q) of the first-order correction
in A&

e f, B 5b

B~ Bp
(3.1) p=p(q, B)=(2&rr) 'ql~ and the function F is

defined by

F p,'B~
D B

pL ~~ B~
dx dx'C o

' x,x', C '
'q x',x

oo oo Bx
(3.7)
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for the uniform problem corresponding to A = Ap

g„(x —(A/2eB )k )P„(x' —(R/2eB )k )
C '„'(x,x') =

o 4
~

e
~

BDfi '(n+ —,')+1/zt,

where g„are the harmonic oscillator wave function.
The function F can be reduced to the form

t„(p)
F(P,x ) = g [(n +m P)t„(P—)

(3.8)

—2i/nm t„, , (p) ],

(3.9)

and given in terms of the particle-particle di6'usion propa-
gator

C"'(r, r) = dk e'"'~ -~'C P'(x, x )
277

magnetic field and as a consequence the probes for
measuring the local conductivity would have to have a
separation smaller than the distance between vortices or
the period of modulation of b(r). We note that meso-
scopic efI'ects could influence the results in this case. '

In a typical experiment a voltage or a macroscopic
current is measured and we are therefore interested in the
relation between the local conductivity and macroscopic
quantities measured by probes far apart. In the following
we shall show that nontrivial eA'ects of the inhomogeneous
magnetic field survives the spatial averaging over the inho-
mogeneity.

A. The macroscopic magnetoconductivity

We shall now consider how the nonuniformity of the
magnetic field influences the macroscopic magnetoconduc-
tivity o.M, i.e., the conductivity measured by probes dis-
tanced much further apart than the period of the structure
in the magnetic field. Neglecting terms of relative order
(b,o /oo) we have

where D„(x)=n+ —,'+1/x and the harmonic oscillator
matrix elements b,o ~ ——{b, tr(r) ), (4.1)

t„(p)= f dx it/„(x)g x — —pl&

satisfy the recurrence relations

where the angular brackets { ) denote spatial averaging.
We first consider the simplest case, where the magnetic

field varies smoothly on the scale L~ and the local magne-
toconductivity her(r) is just (e /2vt fi)f2(b, (r)/8~), then

m t„=pt„)+i tt 1„

i/n t„= pt„) +~m—t„
(3.10)

(3.1 1)

b, (r)
f22~ A'

(4.2)

and

(p) ( 1)n( t)
—1/2pn —p /2 t ( 1)m +nt

In the case where the magnetic field pattern has the
form of an array of wide magnetic tubes with flux X Pp
and radii ro satisfying ro »L&, Eq. (4.2) transforms into

For the Fourier component c7&(q) of the conductivity
5o (r) = g tr &(q)e'q' we then have

e' B bp

2''A bo
(4.3)

e' 8 bq(zo)
o,(q)= F P,

2
(3.12)

In the limit where p goes to zero

oo l
F(P,x ) =1——g P=O

o ( n + —,
' + 1 /x )

(3.13)

IV. THE MACROSCOPIC CONDUCTIVITY

In the previous sections we have derived the expres-
sions for the spatially dependent part of the conductivity
in a nonuniform magnetic field. In principle, an experi-
mental test of this theory could be a direct measurement
of the local conductivity. This, however, would be a rath-
er sophisticated experiment since the theory has nontrivial
predictions only for sufficiently rapid variations of the

so that F(p=O, x)=xf2(x). As expected, Eq. (3.12) thus
reduces to Eq. (3.1) for the case of slow and small modu-
lation. In the limit of large B we have F=1. We note
that the recurrence relations Eqs. (3.10) and (3.11) enable
one to obtain the function F by a straightforward numeri-
cal calculation.

where b p is the field inside the tube and B is the macro-
scopic field 8 = {b}. If the magnetic flux in the tubes is
not too high then the condition r p »L

&
ensures that

bo «8~. We can then use that f2(x)= —,', x, x &&1 to
obtain from Eq. (4.3)

e l B bo r()
Ly ((

2~2& 24 B~ B~ &N
(4.4)

We note that the macroscopic magnetoconductivity is
linear in the average magnetic field B in contrast to the
quadratic dependence for a weak uniform field and
bo/8( & 1) times stronger.

In the case of small tubes, rp ((I ~, each containing the
flux N+p and having a mutual separation larger than I ~,
we obtain from Eq. (2.17) in the region 8 «NBt,

l B
~~M (4.5)

N 1n(bo/NBt, ) Bp

In the region B »4~%8& a typical path encircles many
tubes. The nonuniformity of the magnetic field is then
unimportant and for this case Ao.M depends on B in the
usual manner.
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B. The current induced by a moving magnetic field

j(r, t) =o (r, t)e(r, t), (4.6)

where o. and e are the local conductivity and electric field,
respectively, we may represent o. as

As mentioned in the Introduction, even for the case
where the modulation of the magnetic field is small it is
possible to measure the effect of the spatially dependent
magnetoconductivity. This can be achieved by inducing a
dc current by moving a nonuniform magnetic field struc-
ture.

We first consider the case of a weak magnetic field so
that the magnetoconductivity is purely of quantum origin
and the Hall effect is negligible. Starting from Ohm's law
for the local current density

In the case where the magnetic structure is a two-
dimensional lattice with C4 or C6 symmetry or fully
disordered, averaging over the direction of q in (4.13)
yields

J;„d———,
' v g o ~(q)b, ( —q)

q

or alternatively

(4. 1 5)

(4.16)

E, =B)&u=Bv . (4. 17)

In the case where the motion of the magnetic structure
is due to flux flow in a superconductor as described in the
Introduction, the macroscopic electric field in the super-
conductor and the flux-flow velocity u are related by'

o (r, t) = & cr ) +o, (r, t),
where & o

~ ) =0. Analogously, we have

(4.7) We can then rewrite Eq. (4.16) as

J;„d——o.'E, , (4.18)

e(r, t) =E+e,(r, t), (4.8) where

where &e, ) =0 and E is the macroscopic electric field.
We then obtain for the macroscopic electric current
density J For the model with small magnetic tubes we get

(4.19)

J= & j ) = & cr )E+ & cr e ) . (4.9) y e' bo

a, (4.20)

The field e& consists of two components. The first one
is proportional to E, since an appropriate field is neces-
sary to maintain charge conservation in an inhomogene-
ous system. This field is of no interest to us since it only
gives a renormalization of &o. ) of the order &cr, )/&o )
(Ref. 20) which in our case is negligibly small. The other
component e;„d is induced by the flux movement and the
induced current is given by

J;„„=&cr, (r, t)e;„d(r, t) ) . (4.10)

The two factors on the rhs of Eq. (4.10) are correlated
in space and time since they originate in the same source,
the nonuniform magnetic field. This correlation leads to a
nonvanishing induced dc current.

According to Appendix B we have

e;„(r,t) = g e eiq (r ut)—
q

e~=, [q X(vxq)]b, (q),1

q

(4.1 1)

(4.12)

where v=z & u and u is the velocity of the moving mag-
netic structure. Inserting in Eq. (4.10) we then have for
the induced current

e B

Here we have assumed that the modulation possesses C4
or C6 symmetry or is fully disordered, otherwise o' is a
tensor.

The magnitude of the modulation falls off exponentially
away from the surface of the superconductor according to
Eq. (1.7). ' For practical purposes we can therefore re-
strict ourselves to consider only the smallest q vectors.

A convenient way to measure the effect of the induced
current would be to measure the voltage built up across a
disconnected sample. In this case the induced current is
compensated and the total macroscopic current is zero in
accordance with J= & o )E+J;„d=0, and thus the electric
field

where y=8/bo is the relative area of the plane with
nonzero magnetic field. In the course of the derivation of
Eq. (4.20) we have taken advantage of Eq. (2.19), which is
valid inside the tube.

In the case of small modulation of the magnetic field
we get from Eqs. (3.12), (4.13), (4.17), and (4.18) that

bq(zp)
0 (4.21)

B

qX (vXq) (4.13) o

&o)
(4.22)

In the case where the magnetic structure is a system of
lamina (intermediate state of a type-I superconductor) the
vectors q have only a component along the direction per-
pendicular to the lamina, then v is perpendicular to q and
Eq. (4.13) becomes

arises. Assuming that the films have the same length a
voltage V= —(cr'/&cr ) ) V, appears, where V, is the volt-

age across the superconductor.

C. Classical magnetoconductance

J,„,=vga, (q)b, ( —q) . (4.14) For sufticiently weak magnetic fields the main source
for the magnetoconductivity is the quantum correction
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due to weak localization. In the limit where B &~B&, the
quantum correction saturates and the classical magneto-
conductivity and the Hall effect may be of more impor-
tance.

We therefore turn to a discussion of the classical mag-
netoconductance in a nonuniform field. The origin of
classical magnetoconductance is the bending of particle
trajectories due to the Lorentz force. Since the Hall effect
has the same origin the two effects should be treated on
an equal footing.

Then the local current density has the form J=(o )E+(o )zXE+J;„„=0. (4.30)

structure with E, perpendicular to the lamina direction,
Eq. (4.29) is valid provided the rhs of the equation is mul-
tiplied by 2. One may note that the main part of the in-
duced current is in the Hall direction.

In order to measure the effect of the induced current
J;„d it is sufficient to measure the voltage built up across a
disconnected sample. In this case the total macroscopic
current J is zero and a macroscopic field E arises in ac-
cordance with

j(r) = cr(r)e+ o H (r)z X e . (4.23) It follows from Eqs. (4.29) and (4.30) that the field E
has only a Hall component

For definiteness we consider the Boltzmann results in
the relaxation-time approximation although the following
considerations are generally valid as we shall comment
upon at the end of the section. The dissipative conduc-
tivity is then given by

Op

1+(co,r)
(4.24)

and the Hall conductivity equals

C7H = Ct)C TO (4.25)

where we in accordance with our previous notation have
introduced crH = (o H ) +o.H.

For the same reason as above we are interested only in
the electric field e;„d induced by the moving magnetic field
giving rise to an induced current J;„d given by

(crle' d) +zX ~oH (4.27)

Since o. , —(co, r) (5b/B) while o.H —(co, r)(6b/B) we
need to calculate the electric field including the term to
leading order in co, ~. According to Appendix B we have

e;„d(q)=q '[qX(vXq) —cu, r[q (zXv)] jqb(q) .

(4.28)

To leading order in co, ~ we then obtain
2 2

Jind =
p cro(~c r)p 2 5b , p 6b

B ' ' BE, + —,era AXE, ,

(4.29)

where o.a is the Hall conductivity corresponding to the
uniform field B, crH = (crH ). Equation (4.29) is valid pro-
vided the moving magnetic structure has C4 or C6 sym-
metry or is fully disordered. In the case of a lamina

Here co, =
~

e
~
b, /m denotes the local cyclotron frequency

corresponding to the local field b, =B+6b where
(6b ) =0. We let cu, =

~

e
~

B!m denote the cyclotron fre-
quency corresponding to the uniform field B and assum-
ing co, ~&&1 we shall in the following take into account
only terms of lowest order in ~,~. We note that Eqs.
(4.24) and (4.25) lead to a diagonal resistivity independent
of B.

The macroscopic current density J is given by

J=(o)E+(o„)(zXE)+(o.&e, )+zX(crHe~), (4.26)

p 6bE= ——co 7C

2

zxE, . (4.31)

V. SUMMARY AND CONCLUSIONS

We have studied the weak-localization effects in inho-
mogeneous magnetic fields. As shown in the Introduction
the theory of weak-localization magnetoresistance in a
uniform magnetic field ceases to be applicable when the
field is no longer uniform on the scale of the phase-
coherence length. In Sec. II we considered the case of a
highly inhomogeneous magnetic field and derived the
Aharonov-Bohm —type quantum correction to the conduc-
tivity for the magnetic-string problem. The result was
conveniently interpreted in terms of a topological quanti-
ty, the number of windings around the Aux line. The
average winding number was shown to be a divergent
quantity due to the nature of diffusion in two dimensions
resulting in an Aharonov-Bohm —type conductivity ex-
pression being a nonanalytic function of the Aux. For the
same reason we obtained nonanalytic results for the finite
tube size effects. In Sec. III we studied the case of a
small but arbitrary rapid modulation of the magnetic
field.

The effects of the inhomogeneity of the magnetic field
on macroscopic quantities were worked out in Sec. IV. In
the case where the magnetic field pattern forms an array
of magnetic tubes we showed that, when the average mag-
netic field is small compared to the characteristic field B&,
the quadratic dependence of the weak-localization magne-
toconductivity characteristic of the uniform case was

The absence of the longitudinal component along E,, is
obviously due to the absence of magnetoresistance result-
ing from the simplicity of the chosen model. Very often
real samples show magnetoresistance due to inhomo-
geneities. We shall not consider this question in detail
here since such a discussion necessitates use of a particu-
lar model. However, the above analysis could equally
well have been carried through quite generally in which
case a longitudinal component of the electric field would
appear. We note, therefore, that the effect under con-
sideration can be used as a method for experimental study
of the inhomogeneities since the longitudinal voltage
should depend on the relation between the period of the
magnetic structure and the scale of sample inhomo-
geneities.
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changed to a linear dependence on the average magnetic
field.

One possible way of imposing a nonuniform magnetic
field was suggested, namely to superimpose the two-
dimensional normal film on a superconductor. In this
system it is possible, by passing a current through the su-
perconductor, to create flux flow and thereby induce an
electric field in the normal film. In Sec. IV we calculated
the macroscopic induced current resulting from the
weak-localization magnetoconductivity. The proposed ex-
periment allows one to extract the spatially dependent
part of the conductivity even for the case where the
modulation of the magnetic field is small. In conclusion,
we have presented the theory of weak localization in mag-
netic fields inhomogeneous on the scale of the phase-
coherence length and demonstrated its observable conse-
quences for macroscopic currents and voltages.
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Equation (A5) is Bessel's equation with the general solu-
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APPENDIX A: CALCULATION OF THE
PARTICLE-PARTICLE DIFFUSION PROPAGATOR
FOR THE CASE OF A FLUX TUBE OF FINITE SIZE

In this appendix we seek the Green's function C of Eq.
(2.3) for the case of a magnetic fiux tube of radius ro con-
taining the flux N=N+p in the gauge where the vector
potential A=PA& is specified by

d
( lnit„ I,. )'=—ro ( 1ng„k )

in terms of which we have

r =rp

PoJ +x
~

(Po) —(»0 u) J +N (Po)
b

( in/„ i. )'N,
,
„+x ~ (po) PP

,

'+x (po)
(A7)

where po ——kro and the quantity ( in/„k )' should be
found from the solution of Eq. (A3) for r &ro. The
essential values of k are of order r ' or L&

' so that pp
—max(ro/r, ro/L~). In the following we shall assume
that max(ro/r, ro/L&) «1 so that po«1. We then get
the following expressions

2 n+NI
po

2 (»g. , k
)' —

I
n +&

I

I
n +&

I
'(

I

n +&
I

—»' (»g. , ~ )'+
I
n+&

I

N p
r ( rp

(Al)
+O( 2 ~n+N ~+2) (AS)

N p
r ~rp.

27Tr

= g Pg(r)Pi. (r') f dt e (A2)

where gi are the eigenfunctions of the "Schrodinger equa-
tion"

The Green s function (particle-particle diffusion propa-
gator) can be expressed as

( Init, , )'
x= —— + o(pp j,

2 ( In' v q )'[ ln(p„/2)+C] —1

(A9)

where C denotes the Euler number. It follows from Eqs.
(A8) and (A9) that we can neglect all the b„'s except the
one where n = —N. The term with n = —N gives the
main correction to C —Cp, which is nonanalytic, in the
limit where rp goes to zero. One point, however, needs
attention namely that (I tn„ i)' Iis different from zero in
the limit where k goes to zero since we would otherwise
have that b z -pp. We have checked this point in the for
us most interesting case where N=1. In this case, the
function

(A3)
P(x)=x[Io( —,'x ) Ii( —,'x )], x= ——

rp
(A10)

with satisfies the Schrodinger equation (A3) for r &ro and is
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regular at r =0 since Ip and Ii are modified Bessel func-
tions. Furthermore, the function in (A10) has a positive
logarithmic derivative at x = 1. When N approaches
infinity so do ( In/ tv 0)' since the problem then is
equivalent to that of an impenetrable cylinder. We expect
that there is no physical reason for ( in/ &0)' to be zero
for intermediate N.

We note that all information about the Aux N+0,
N & 1, in the tube enters only through ( in' &0)' in (A9)

, +0(( lnpo) ') .
lnpp

(A 1 1)

Neglecting all the b„'s except 6 & we obtain from Eqs.
(A2) and (A6) for all N & 1

and this information disappears in the limit where pp goes
to zero.

In the main approximation where
~

lnpo
~

&&1 we have

max
—Dk t

C(r, r) —Co= f dt e J™xdk k Jo(kr)NQ(kr),
0 0 ln[(kro) ]

(A12)

where k,„-rp ' in accordance with the range of validity
of Eq. (All). In the slowly varying logarithm we can
substitute for k the value k=(Dt) 'r and then perform
the integration over k to obtain

e(r, t)= pe(q)e'q"
q

(84)

The transverse component e, (dive, =0) of the field e is
given by

2

C( ) —C = — " "E
to 2Dt

( )
qX(vXq)

b ( ) (85)

e

ln(Dt /r 0 )
(A13)

where tp ~ rp/D.
The expression in Eq. (A13) has been used in Eq. (2. 16)

and is valid at distances r )~rp provided L& ))rp, with an
accuracy of relative order I in[(r, L&)/ro] I

' « l.

APPENDIX B: CALCULATION OF THE INDUCED
ELECTRIC FIELD BY A MOVING MAGNETIC

FIELD STRUCTURE

(81)

(82)

V.j=0 (83)

In order to solve these equations it is convenient to ex-
pand the electric field e in its Fourier series

In this appendix we consider the electrodynamics for
the case of a moving magnetic field structure. The electric
field induced in the film is due to the moving magnetic
structure b(r, t) =8+5b(r —ut), where u is the velocity of
the moving structure. We assume that the magnetic field
generated by the induced current can be neglected com-
pared to b (i.e. , the film thickness is much smaller than
the skin depth, which is always the case for small velocity
u). We can then assume b(r, t)=[B+5b(r ut)]z to be a-
given quantity.

We are interested only in the component of the electric
field e in the (x,y) plane since e, has no influence and in
fact is essentially screened. In the following we therefore
consider e to be a two-dimensional vector in the (x,y)
plane determined by the equations

j=( &e+( „&"Xe, (86)

where ( o ) and ( o H ) denote the dissipative and Hall
conductivity, respectively, in the uniform field. Then,
from the continuity equation divj =0 we get

(o )V e —(crH )rot, e=0 . (87)

This means that the field e now has a longitudinal com-
ponent e~ determined by

(oH&
V et ——

( )
(VXe, ), , (88)

VXe( ——0 . (89)

With e, given by Eq. (85) we then have

q(q u) (oH &

e( —— . . . b(q).

Using (oH ) /(cr ) =co, r, we finally obtain
r

(810)

qX(vxq), [q (zXv)]qe=et +el = —CO~ '7 b, (q) .
q

(811)

where the abbreviation v=z)& u has been introduced.
In the weak-localization regime to zeroth order in the

nonuniformity of o. ] we have from j=0 e that divj =0
leads to dive=0. The longitudinal part of e has then no
source and is consequently equal to zero. In the weak lo-
calization case, therefore, the electric field e can be taken
as purely transverse and described by Eq. (85).

We then turn to consider the case of classical magneto-
conductance. In the zeroth-order approximation with
respect to the nonuniformity of the magnetic field we have
for the current
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