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Pulse-duration memory effect and deformable charge-density waves
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When repeated identical voltage pulses are applied to a material with a sliding charge-density
wave, the current response synchronizes with the end of the applied pulse. We discuss how this ob-
servation can be understood using the model of classical deformable charge-density waves. The effect
provides insight into unusual behavior that may be typical of many multivariate dynamical systems.

I. INTRODUCTION

Fleming and Schneemeyer' have recently reported that
the charge-density wave (CDW) in blue bronze
(Ko 3Mo03) at 77 K exhibits a "pulse-duration memory
effect. " This nomenclature is used to describe a transient
oscillation in response to repeated square-wave driving
pulses which has a phase that is synchronized with the
end of the pulse. For instance, in the voltage-driven
configuration, after an initial transient, the current is al-
ways increasing as the pulse ends, even at the cost of dis-
tinctly aperiodic oscillations in the middle of the pulse.
Thus, the CDW appears to "remember" the duration of
the preceding pulse and adjust its response to be in syn-
chrony.

In this paper we interpret this curious phenomenon in
terms of the Fukuyama-Lee-Rice classical model of de-
formable CDW's. We first discuss a numerical simula-
tion of a one-dimensional version of the model that shows
features very similar to those seen experimentally. Then
we isolate the features of the model that cause the effect to
occur. We propose that the "memory" is a signature of a
process that will occur in many multivariate dynamical
systems. The crucial features needed are a large number
of metastable states and a negative feedback mechanism,
features that often occur in nature.

When the system is subjected to identical repeated
pulses, it attempts to reach a state for which further
pulses induce no further changes (a "fixed point"). For
an extended system, an infinite number of such states can
exist. The system samples its available configuration
space until it finds a fixed point, which may be atypical of
the vast majority of configurations. In fact, it turns out
that the fixed points selected out by letting the system
evolve under the influence of repeated identical pulses are
in some sense the least stable. This is because the system
stops as soon as it reaches any fixed point, and the fixed
point reached first tends to be only barely stable. The
pulse-duration memory effect is the system's signature of
being on the edge of its region of stability. '

In order to investigate this hypothesis further, we study
multivariate discrete time mappings, some of which corre-
spond to a particular limit of the differential equations

used in our simulation. These mappings yield behavior
that is consistent with our explanation of the pulse-
duration memory effect.

The paper is organized as follows. In Sec. II we de-
scribe the pulse-duration memory effect in more detail,
stressing the aspects that imply that simple models involv-
ing uncoupled degrees of freedom cannot explain the ob-
servations. In this section we also discuss our numerical
simulations of about 50 coupled differential equations and
compare the results to experiment. In Sec. III we discuss
the results using the discrete time mappings with
thousands of degrees of freedom, and in Sec. IV we sum-
marize and make suggestions for future work.

II. BACKGROUND AND THEORETICAL
CONSIDERATIONS

In order to understand the mechanisms underlying the
pulse-duration memory effect, it is useful to recall the
"mode-locking" and "interference" features in sliding
CDW's pinned by disorder and subject to a voltage drive
periodic in time. Because the local pinning potential is
invariant under displacement of the CDW by an integral
number of wavelengths, the local motion of the CDW is
periodic with the washboard frequency coo=g, u (here,
A, =2m/Q, is the CDW wavelength in the sliding direction
and u is the average CDW velocity). In the presence of a
biased sinusoidal drive V(t)= Vo+ V~ sin(cut), strong in-
terference features (peaks in dVo/dIO, the derivative dc
resistance) occur when the CDW current (proportional
to u) is such that the washboard frequency is a harmonic
or subharmonic of the external drive frequency:
coo=(p/q)co. If the experimental conditions are arranged
so that the CDW can undergo significant relaxation while
the total applied voltage is below threshold, then true
locking of the CDW velocity to the external drive occurs
(experimentally, this appears as a plateau in dVO/dIo at a
value equal to the low-field resistance of the sample), both
for harmonics and for low-order subharmonics.

A successful model of CDW treats it as an elastic ob-
ject pinned by a random distribution of impurities. ' A
simplified one-dimensional model '' has been shown to
capture many of the qualitative features of the full model,
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and has the equation of motion

(la)

with

—V; cos(P; —/3; ) +F ( t)P;

(lb)

where the P; are random variables uniformly distributed
in (0, 27'), and F(t) is the driving field. The impurity po-
sitions r; are random, and we shall renormalize length
scales so that their average separation is unity. The pin-
ning strengths V; can also be chosen to be randomly dis-
tributed, although for our purposes this is not necessary.
A crucial feature of this model is the existence of a very
large number of metastable pinned states (growing ex-
ponentially with the size of the system). In contrast, a
model with a single degree of freedom has a unique
ground state up to translations by one wavelength (assum-
ing a single-valued potential).

We have considered the behavior of the model when a
sequence of repetitive square-wave pulses of duration t,„
is applied (as in Fig. 1) with the time t,tt between the
pulses long enough that the system relaxes to a stationary
(metastable) state in between each pulse. In an earlier pa-
per, weer, " we showed that under these conditions the plethora
of metastable states leads to both harmonic and subhar-
monic mode locking. ' Under the same conditions a sin-

gle degree of freedom model gives rise only to trivial har-
monic locking.

Each pinned state a can be represented by a set of vari-
ables [P; I, i =1, . . . , N, where P; is the phase of the
CDW oscillation at site i in the ath configuration and N
is the number of degrees of freedom in the system. The
effect of a single voltage pulse is just a mapping
[~~ I~[P~I from state a to state P; in general, these+t
states will be different. The transformation T such that
T [ ~~" '

)
= [ P,

"
I describes the change in configuration

caused by application of the nth pulse. If the system
evolves to a fixed point, such that T~[P; I

= [P; +Z~p I

for integral p and q, the whole system moves by p wave-
lengths but is in the same state o., and the total charge
transported per unit volume in q pulses is thus pp„where
pc &, is the collective charge density of the condensate.

NBecause the total number of states is approximately e
the naive expectation is that exponentially many pulses
must be applied before a configuration repeats. Remark-
a y, i wabl 't was found that after a short transient the system

thsettles down into typically quite short cycles (of lengt

q SN), with the same states (displaced by p wavelengths)
appearing after every qth pulse. This situation corre-
sponds to a p/q mode-locked step, since the current den-
sity (averaged over a cycle) is (p, /Q, )(p /q)(2n/T), where
T =t,„+t,ft- is the repeat period of the pulse sequence.

One can attempt to describe the behavior in terms of a
mapping involving a very few effective" degrees of free-
dom. ' A more complicated, but essentially trivial, possi-
bility is that the system behaves as a set of independent
nonlinear elements, each of which can be described by a
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FIG. 1. {a) Current oscillations in response to a square-wave
driving field of about lOE& (inset) in Ko 3Mo03 at 45 K (Ref. 1).
The data were obtained in a current-driven configuration and
have been inverted; however, the current oscillations are also
clearly observed in a voltage-driven configuration (Ref. 18). b
Current oscillations observed in numerical simulations of Eqs.
(1) for a one-dimensional system with 50 degrees of freedom.
(For details, see text. ) In both experiment and model the pulse
length is varied for fixed pulse height; dift'erent curves have their
vertical axis offset for clarity.

simple map; the complexity of the behavior is just the re-
sult of averaging over the independent elements.

Neither of these hypotheses is consistent with the obser-
vation of the pulse-duration memory effect. Rather, the
model is a representative of a general class of dynamica 1

systems in which the coupled nonlinearity and disorder
does not permit a reduction in the number of effective de-
grees of freedom, but whose properties are macroscopica—1-

ly regular and which exhibit features such as mode lock-
ing similar to those of low-dimensional maps. These sys-
tems have large numbers of fixed points, and one must
look at the properties of the particular fixed point that is
reached.
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We now discuss the experimental observations of the
pulse-duration memory effect in more detail. When a
square-wave voltage pulse from zero to above threshold is
applied to a CDW, one typically observes a transient oscil-
lation' at a frequency approximately equal to the wash-
board frequency coo, which is proportional to the (time-
and space-averaged) CDW velocity. These oscillations
could be interpreted as the sum of contributions of many
independent degrees of freedom, each in a periodic poten-
tial with a random amplitude. Because each oscillator is
at equilibrium when the pulse is applied (point 3 in Fig.
2), the current oscillations in P; will all begin with the
same phase. The oscillations dephase as time progresses,
so that the oscillations in the average current
(P(t) ) =N ' g; P; (t) gradually decay. However, notice
in Fig. 1 that at the very end of the pulse there is a sharp
upward cusp in the current. Experimentally, this cusp
occurs over a broad range of pulse durations t,„, so that
the CDW appears to be adjusting itself to the pulse dura-
tion so that its velocity is always rising as the pulse ends. '

The system has "remembered" the length of the preceding
pulses, so that for subsequent pulses it "knows" precisely
when to expect the pulse to end; this phenomenon has
been termed the "pulse-duration memory effect. "'

If a single, or independent, oscillator description were
invoked, this rise in P just before t„„wo lducorrespond to
P(t,„) being at point B' in Fig. 2 rather than at a general
point B determined by the length and height of the pulse
and the strength of the potential. Just as the field is
turned off, the particle lies at a maximum of the pinning
potential, so the particle can roll down to either of the
neighboring wells (i.e., C or C'). For a single oscillator,
such an endpoint B' is only reached for special values of
the pulse height or length. [This fact is easily seen be-
cause the motion is described by a deterministic
differential equation and initial conditions P(t =0) and
P(t =0), which are both zero under these conditions. ]
However, both in CDW experiments, and in numerical
simulations of Eqs. (1) [shown in Fig. 1(b), and to be dis-
cussed in more detail later], the upwards cusp always ap-
pears at the end of the pulse, for large ranges of t,„and
pulse height Fo. This synchronization is a cooperative
effect that cannot result from an assembly of independent
oscillators.
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FIG. 2. Current oscillations I (lower trace) for overdamped
motion of a single particle moving in a sinusoidal potential V

(upper trace).

Although the independent oscillator description is
clearly oversimplified, Fig. 2 already illustrates two key
points. First, the existence of a cusp in the current at the
end of the pulse requI'res a disproportionate number of the
degrees of freedom P; to be at a maximum B' of their lo-
cal pinning potential, precisely at the time the field is
turned off. ' Second, the potential maxima divide the
basins of attraction of the local minima.

The equations of motion (1) are that of oscillators cou-
pled by an elastic term that provides negative feedback.
We now imagine starting from an arbitrary pinned
configuration [P, I and applying a sequence of widely
spaced, identical field pulses. In the first few pulses, the
P; for which the pinning V; is small will tend to move fas-
ter than the average, and to move ahead of the more
strongly pinned sites, until their relative displacement
from the strongly pinned regions is balanced by the elastic
coupling. Thus the local velocities will become more
homogeneous, and the initial transient-current oscillations
will become well defined.

If the pulses were infinitely long, the CDW would even-
tually reach a unique sliding equilibrium configuration
the finite pulse length prevents this evolution from being
completely realized because the CDW relaxes to a static
metastable state at the end of each pulse. Thus the local
velocities will not become completely homogenized (as
they do in dynamic equilibrium); even in a mode-locked
configuration there is a distribution of local velocities,
though it is much narrower than that obtained during the
first few pulses.

Once the width of the velocity distribution Av becomes
5 2~/t, „, memory of the overall shape of the
configuration preceding the pulse will be retained. If, in
addition, the average velocity v is such that vt, „(m d2or)i
is close to zero, it is likely that the system will relax to an
identical configuration to that preceding the pulse. Be-
cause the equation of motion is deterministic, once a re-
peating state occurs, it will repeat indefinitely, and the
system is (in this case harmonically) mode locked.

Note that we can imagine carefully preparing a state
which has a very narrow distribution of velocities for a
given value of the applied field; thus there are many
different states which all mode-lock in identical driving
fields.

However, starting from an arbitrary initial condition,
the system will mode-lock first in the state when a large
number of degrees of freedom are found (at time t,„) at
the boundary of the basin of attraction of the local mini-
ma. This is precisely the feature required to explain the
rising cusp in the average current (Fig. 1) at the end of the
pulse. Most of the locked states will not have this proper-
ty, but we argue that it will be a generic feature observed
for those locked states reached from an arbitrary initial
configuration. This can be pictured easily in a general
configuration space, where the locked states (for a particu-
lar value of the pulse height F and duration t,„) are at-
tracting points. Because their global configurations are
quite similar, they will cluster together, and provide a
wide basin of attraction. As the configuration evolves to-
ward the cluster, it will be captured by states on the clus-
ter boundary. These states are likely to be only marginal-
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ly stable to variations in F and t,„; the more typical (and
more stable) locked states in the interior of the cluster will
rarely be reached.

An important point is that the tendency to end up in a
marginally stable state is not restricted only to systems
with many degrees of freedom; it is a property of having
many inequivalent metastable states and a feedback pro-
cess that causes evolution to a set of fixed points. Admit-
tedly, having many metastable states is a property usually
associated with many-particle systems. However, a sys-
tem consisting of one particle in a sinusoidal potential
connected by a weak spring to the point x =0 can also
display a pulse-duration memory effect. ' To see this,
consider the dissipative equation of motion

x = —V sinx —kx +F(t), (2)

dQ

dt
&2V [u I+k [u [+2~k

and

where 3 is a constant. Since V and t,„are fixed, as
k~O, u (t,„)~0. (This bound can be improved consid-
erably by accounting for the shape of the sine function. )

Hence, x'
~
—x' =Bk, where B depends on V and t,„,

which are both fixed and of order unity. We will assume
V is large and that F and t,„are chosen so that the parti-
cle originally moves only one well to the right per pulse.
Thus, the particle will move over one period of the poten-
tial until the spring is stretched enough. After the pulse is
turned off, the particle moves to the right if x(t,„)&xo
and to the left if x (t,„)&xo, where it is easily shown that

where F(t) describes force pulses, as before. Consider the
limit k «1. When F =0, x=0 for a discrete set of x's
spaced by approximately 2~ in the range —V/k to V/k.
When a pulse of height Fo ) V and duration
to &sr/(Fo —V )' +O(k) is applied, the particle moves
to another well. For the second pulse, x has increased,
and the ball will not move as far, since kx is larger. As
k ~0, the spring force may be approximated as kx„,
where x„ is the position at the start of the nth pulse, and
the equation of motion can be integrated analytically.
(The approximation holds because the particle moves a
distance of order unity during each pulse, though after
many pulses x„can be large. ) Even without doing the in-
tegration, one can compare the motion in the mth pulse
and (m —1)st pulse, where m is the first pulse where the
configuration repeats (i.e., the particle remains in the same
well). The (m —1)st pulse causes the particle to move by
2n, and the mth pulse causes no net motion (after allow-
ing for relaxation after the field is turned off).

We consider the quantities x'
&

and x', the values of
x modulo 2~ just as the (m —1)st and mth pulses are
turned off. To compare x '

~ and x ', we first note that
the position at the start of the mth pulse x =x
+2ir+O(k/V). So suppose we know x i(t), the posi-
tion as a function of time during the (m —1)st pulse. Let
u =x (t) x i(t) —2' Sinc—e

(
sinx.

(
& (x (,

m &xo & 3n/2. Now we know that x'
~ )xo and

x' (xo, so both x' ] and x' must be in the range
(xo B—k, xo+Bk) H. ence x' ~xo as k~0. The velocity
is thus always increasing at the end of the pulse, and if
the spring distortion is not too large, the particle ends
very near a well top.

It is nontrivial to show that many nonlinearly interact-
ing degrees of freedom also display the same behavior.
We have investigated this question numerically, both by
examining Eqs. (1) and by looking at discretized map-
pings, which are discussed in the next section.

The results of numerical simulations of Eqs. (1) are
shown in Fig. 1, for the case of pulsed forcing in a system
of size N =50. In order to reduce the size of the compu-
tation, we have worked in the intermediate-pinning limit
( V =1); although most experimental systems are believed
to be described by the weak-pinning limit ( V« 1), we do
not believe that this will qualitatively affect our con-
clusions. ' Starting from an initial configuration (chosen
to be [PI =0, which is far from the final locked stationary
states), the equations of motion (1) were solved for a se-

quence of identical pulses of height F =2 and length t,„.
The time t,~ in between the pulses was long enough that
the system relaxed to an equilibrium metastable state. In
Fig. 1(b) we plot the average current (P(t) ) obtained
when the system reaches its repeating, locked
configuration (with a value of p/q shown in the figure).
For the case when the locking is at a subharmonic
(q & 1), we have averaged the current over the q pulses in
the cycle; in such a case, the current response of different
pulses in the cycle is not identical, which is evidence for
finite-size effects. As the pulse length changes, the num-
ber of well-defined oscillations increases with t,„, but the
rising behavior at the end of the pulse is quite evident in
almost all cases. The occasional failure to observe a clear
cusp, as well as the difference in shapes of the different
curves close to the pulse end, is, we believe, a result of
finite-size limitations. The arguments given above should
apply only to the case of a very large number of degrees
of freedom, and when the locked configuration is ap-
proached infinitesimally slowly. Overall, the numerical
results are very similar to the experimental data on
Ko 3Mo03, also shown in Fig. 1.'

The existence of the "pulse-duration memory" effect
within the model provides strong evidence that the cou-
pling between oscillators [provided by the elastic term in

Eq. (1b)] qualitatively affects the behavior of the system.
Even though the model is extremely simplified, direct
solution of the equation of motion is tedious. We also ex-
pect that the picture we have described has considerably
more generality than the application to CDW motion.
We now show that the principal features can be captured
by a simple discrete map for a multivariate system, which
we describe in the next section.

III. DISCRETE TIME MAPPINGS

We now illustrate the principles described above by
constructing a simple dynamical system, which is a set of
variables [x, I and a mapping F: [x~"I~[xj"+'I.

The main features required are, first, a system with
many different states, including a large number which are
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invariant under application of the mapping, or fixed
points. These fixed points lie in a fairly compact region in
the configuration space. Second, there must be a source
of fairly weak negative feedback so that repeated applica-
tion of the mapping causes the system to evolve towards
the region of fixed points without overshooting. Finally,
the system should start out in a state that is not in the re-
gion of fixed points, so that properties that arise during
the relaxation towards the fixed-point region can be stud-
1ed.

The mapping we use is most easily visualized as con-
sisting of two steps, one analogous to the change in
configuration caused by application of a voltage, and the
second analogous to the relaxation to a metastable state
that occurs when the field is off. The defining equations
are

yg =t(k(xj"+) 2x&"+—xg ( )+F —d, ),
x,"+'=int(y~" + —,

' ),

(3a)

(3b)

with periodic boundary conditions x1 ——x~+1. The vari-
ables dj are reminiscent of the pinning potential in Eqs.
(1), and they are taken to be random numbers uniformly
distributed between 0 and 1. The mapping thus depends
on the three parameters t, k, and F, with the notation
chosen to suggest analogy with the coupled differential
equations (1).

This mapping is extremely similar to those that can be
derived directly from the differential equations (1) in the
limit F» V»k. Heuristically, the map can be under-
stood as follows. The first step mimics the behavior of the
system during the pulses, when the applied force dom-
inates the motion, since F» V»k. To a first approxi-
mation, the position just as the pulse ends yj is just
xj+Ft,„, with the springs and potential providing small
perturbations. However, because the system is randomly
pinned, there is a tendency for different parts of the chain
to move at different velocities, an effect which is account-
ed for by the random distribution of dj's. As the pulses
are applied, the springs stretch in a manner that causes
the velocity to become more uniform. Since each pulse is
short, the change in the spring forces during a given pulse
is small, even though large excursions are possible if many
pulses are applied. Thus, it is adequate to take the spring
force during the entire pulse to be its value at the moment
when the force is turned on. The pinning potential is ig-
nored during the pulse because it is not a source of feed-
back that causes the system to approach a mode-locked
configuration, and we are not concerned with the velocity
during the pulse.

The second step mimics the effects of turning off the
field, when the balls tend to fall down into the closest po-
tential minimum. Although large enough distortions are
built up such that well after the pulse is turned off, the
balls are not actually at potential minima, this step cap-
tures the qualitative feature that the system finds a nearby
metastable state.

However, we would like to stress that our arguments
do not depend on the details of the equations of motion
(1), but rather on the presence of many metastable states
and weak feedback. Therefore, it is perhaps more useful
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FIG. 3. Histogram of fractional part of y, [Eqs. (31] after 1

(dashed line), 1000 (dotted-dashed line), 2000 (dotted line), and
5000 (solid line) iterations of the map with 1000 degrees of free-
dom. The boundary of the basin of attraction is at y = —'.

to view the mapping as an example of a dynamical system
with these features rather than as a model of charge densi-
ty waves.

The system has a countably infinite number of
configurations Ixj I ("metastable states"); each x, can be
any integer. The invariant configurations are those for
which all the yj"—xj" lie within the interval
(m ——,', m + —,') for some integer m. For k =0, the ran-
dom dj cause the different xj to move different distances
in each cycle, and the system does not evolve towards a
fixed point (though it could start out in a configuration
that is invariant under application of the mapping). For
k & 0, as the map is iterated the "feedback" term acts to
counteract the random dj's and causes the system to
evolve towards the region of fixed points.

We will always choose F & 1, so the external driving
force is greater than 0 at all points. How fast the system
approaches the region of fixed points depends on the
strength of the feedback k. If k is large, then large
changes in the configuration occur in each iteration. For
large enough k, the system overshoots its optimum
configuration and various instabilities occur, leading to os-
cillatory motion of some degrees of freedom (e.g. ,
x)+'&xg for some j). As k is decreased, all the x, are
nondecreasing, which is the situation observed for the
differential equations (1). Thus, there are additional insta-
bilities in the mapping that are not present in the coupled
differential equations. For moderate k (~0.1), the feed-
back is strong enough so that fairly large steps are taken
toward the region of fixed points. As k is reduced fur-
ther, the steps become smaller, and one expects the sys-
tem to end up closer and closer to the boundary of the re-
gion of fixed points.

Whether or not degrees of freedom are piling up at the
boundaries of the basins of attraction can be studied by
examining the yj s; the boundaries lie where the fractional
part of the y's are exactly —,

' [see Eq. (3b)]. Therefore, we
expect that a plot of the number of y's with a fractional
part in a given range should show a peak near —,'.

As expected, the tendency to pile up is greater for small
k. ' Figure 3 shows the results of a calculation performed
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with the mapping defined by Eqs. (3) with the parameters
t =1, F =5, and k =0.0001. Initially, the distribution of
y~ is smooth, but as the system evolves a pronounced
sharp peak grows at y = —,'. This mapping also yields both
harmonic and subharmonic locking, although the subhar-
monic locking is quite weak with this particular map.
The piling up occurs well before locking, for even after
5000 iterations the system is still evolving for the condi-
tions shown.

The piling-up process occurs locally, and one can again
illustrate the basic mechanism using a mapping with a
single degree of freedom and a feedback term, which can
be obtained by keeping x& and x& fixed, x& ——0 and x~ ——0,
and allowing x2 =x to evolve under the mapping

y(n)=[ —kx (n)+F]+x(n), (4a)

x (n +1)=int[y (n)+ —,'] . (4b)

Since, by hypothesis,

z (n* —1)—:y(n* —1)—x (n *—1) & —,
'

and

z (n *)—=y (n *)—x (n *)& —,
'

one mUst have

z(n"))z(n" —1)—k(F+1),
so

z(n*) & —,
' —k(F+1) .

Since F is of order unity, as k~0, z (n *)~—,', as claimed.

The nontrivial point is that increasing the number of
degrees of freedom does not destroy the tendency to pile

up. Thus, one can envision a process where longer and
longer length scales have homogenized their velocities,

Assume that x (0) & 0, and F & —,', so x (1)& x (0), and that

k is small. It will be true that x (n + 1) & x (n) so long as
F —kx(n) & —,'. Thus, the system reaches its fixed point

the first time that y (n ")—x (n *)& —,'. Now,

x (n *)—x (n * —1)=int[F —kx (n * )+ —,'] & F + 1 .

with piling up at boundaries occurring at each stage. One
might hope to describe this process with a mode-coupling
theory.

IV. CONCLUSIONS

We have demonstrated that the phenomenon of
"pulse-duration memory" can be reproduced by numeri-
cal simulations of a one-dimensional model of CDW
motion, which has been found to be successful in explain-
ing many other features of CDW dynamics. While we be-
lieve that this gives further evidence in favor of a many-
degree-of-freedom interpretation of CDW dynamics, that
evidence was already strong. ' More important was to
show that such behavior is likely to be characteristic of a
variety of dynamical systems, where there are many possi-
ble attractors clustering in phase space, and the generic
properties are determined by attractors on the boundary
of the cluster. These states are the least stable, and one
manifestation of this low stability is the pulse memory,
shown in Fig. 1.'

These ideas were generalized by studying a two-stage
multivariate map for many degrees of freedom. By study-
ing the distribution of variables at the intermediate stage
of the mapping, we were able to show that the generic be-
havior was for the system to evolve toward a fixed point
characterized by the local degrees of freedom piling up at
the least stable point in their local potential.

Because there are generic properties of the locked
states, even in a random system (although randomness is
not, in fact, necessary as an ingredient; similar behavior is
found for the Frenkel-Kontorova model ) one may hope
to provide a complete characterization of the "devil' s
staircase" observed" for the locking behavior of Eq. (1)
and similar models.
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