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Exact Kohn-Sham direct gap at an insulator-metal transition
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The alternate molecular orbital ground state for the cubic electron gas (three-dimensional analo-
gue of the two-plane-wave model) has an insulator-metal transition at r, =100. In contrast, the ei-
genvalues of the exact Kohn-Sham potential are metallic at all r,

I. INTRODUCTION factor g(y, z) and restricted to a pair of plane waves along

It is well known that the one-electron eigenvalues gen-
erated by local-spin-density approximations (LSDA) to
density-functional theory (DFT) do not predict the fun-
damental gap e~ for semiconductors and insulators
correctly. ' The essential source of the discrepancy is not
the LSDA, but neglect of a discontinuity b, (in N, the to-
tal electrons) in the functional derivative t)E„,/c}n which
generates the exchange-correlation part of any Kohn-
Sham (KS) potential, either exact or LSDA.

Nearly ubiquitous use of KS eigenvalues (in spite of
their deficiencies) as valid spectroscopic energies makes it
important to study reasonably realistic systems that are
simple enough that the exact KS potentials V„„ their ei-
genvalues, the exact excitation energies, and hence 6, all
can be determined. Light atoms are one obvious choice,
since the electron excitation energies from a high-quality
correlated wave function can be compared to the eigenval-
ues of the potential which generates the same density as
that determined by the wave function. Several light-atom
studies have shown that such KS eigenvalues do not
correspond well with the true excitation energies. Since
the one electron spectra of light atoms have a nonvanish-
ing gap, those studies could not consider the dependence
of 6 on gap size nor, of course, any extended system
effects.

Such effects have been considered in a recent calcula-
tion for crystalline Si. The exact KS eigenvalues differ
remarkably little from the LSDA eigenvalues, while
DFT-based one-electron propagator energies are quite
close to experiment. The latter result was found earlier '

to be broadly true for various other semiconductors as
well ~ However, none of these studies considered the
dependence of 5 on the size of the KS gap. The impor-
tance of an extended three-dimensional system for which
6 can be determined directly as a function of KS gap size
is illustrated particularly well by crystalline Cse, which has
zero gap in LSDA. '

The two-plane-wave model " (TPWM) is a quasi-one-
dimensional version of a system which has been used to
study the gap-size dependence of A. ' " It models the
semiconductor as a linear chain with the electronic basis
functions localized to within 1/Bp in the y-z plane by a

P+k =L ' exp[i(k+B)x]g(y, z),
with 2B =g equal to the Brillouin-zone (BZ) length. In
previous work, 6 was calculated in the TPWM in
exchange-only DFT (XODFT; see below) at first order in
perturbation theory (cf. Sec. IV, Ref. 12) and at the
random-phase approximation (RPA) level of exchange
correlation' ' (without self-consistent iteration of the
self-energy, screened-interaction, dielectric-function,
Careen's-function loop).

Here we connect the TPWM with a long-known three-
dimensional model system whose properties are both easy
to grasp and amenable to direct calculation purely within
a wave-function treatment. We show, without analytical
approximation, that the KS eigenvalues fail (completely)
to describe the evolution of the one-electron behavior with
system density.

II. THE ALTERNANT-MOLECULAR-ORBITAL
(AMO) ELECTRON GAS

The alternant-molecular-orbital (AMO) state' is a
particular generalized Hartree-Fock state that enables
inclusion of electron correlation via an axial spin-density
wave. ' ' An extensive study of the electron gas in the
AMO state has been described elsewhere. ' ' Two criti-
cal results are (1) the exact one-electron energies are
known (at the level of Koopmans' theorem) since the
AMO is a single-determinantal state, and (2) there is a
metal-insulator transition' at r, =100 as the system is
driven towards the Wigner lattice limit.

To make connection with the TPWM and provide the
basis for our results, we summarize pertinent features of
the AMO state. The restricted Hartree-Fock (RHF) one-
body states for the electron gas are simple plane waves
i1(k, r) doubly occupied within a spherical Fermi volume.
For the AMO electron gas, the RHF occupation is
modified so that all i)(k, r) within a cubic' Fermi volume
are doubly occupied. The AMO state is a single deter-
minant of one-electron states fk, in which each RHF-
occupied g is allowed to mix with one RHF virtual g ac-
cording to
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pl, ,
——u (k)rl(k, r)+ v (k)q(k, r) (spin up),

f~, ——u (k)rl(k, r) —v (k)g(k, r) (spin down), (3)

with u (k) and v (k) variational parameters subject to the
normalization condition

u (k)+v (k)= 1 (4)

The vector k is chosen by adding that simple-cubic
reciprocal-lattice vector Ko that takes k into the second
Brillouin zone (bcc direct lattice symmetry having been
imposed). At any given r, the optimal AMO state
defines an exact model system state.

Enforcing cubic symmetry on the RHF Fermi surface
of' course increases the energy of the system relative to
spherical RHF, but the AMO mixing of the g's then
lowers it. For r, )25, the decrease in the potential energy
due to mixing predominates, and the AMO is energetical-
ly favored over the spherical RHF state. This result is in-
tuitively accessible by noting that the AMO state gen-
erates a cosine-modulated spin density

n+(r) =(N/2V) [1+(X/3)[cos(Kox)+cos(Koy)

+cos(Koz) ] I

with + ( —) for spin up (down) and A, determined from
the v(k). The AMO state gets its name from this spin
correlation. The total electron density is uniform:
n (r)—:N/V =n, so there is no electrostatic penalty to
pay for the separation of the charges. The amplitude of
the cosine modulation k is plotted as a function of r, in
Fig. l.

Since the AMO wave function is a single-determinant
state, its single-particle energies are determined once the
minimizing form of v (k) is known. Those energies at two
densities are shown in Fig. 2. For larger densities there is
indirect band overlap and the system is a conductor. At
lower densities it is a semiconductor; see Fig. 3 for E'g as a
function of r, . (The band gap is small compared to real
systems because it is provided strictly by spin correlation. )
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FIG. 2. AMO cubic electron gas single-particle energies for
r, =15 and ISO.

III. DENSITY-FUNCTIQNAI. THEORY
OF THE AMO EI.KCTRON GAS

Because the AMO is a generalized Hartree-Fock state,
the distinction between Hartree-Fock DFT (HFDFT)
and exchange-only DFT (XODFT) is relevant. In
HFDFT the total energy is the actual restricted Hartree-
Fock value, while the local KS potential is that which
reproduces the RHF electron density. In general the
HFDFT and RHF orbitals are not identical. XODFT in
contrast generates the total energy and electron density
from a single determinant with doubly occupied orbitals
restricted to those which can be generated from a local
potential. On variational grounds EXODFT )EHF.

With the full AMO cubic electron gas solution avail-
able, it is straightforward to determine the associated
HFDFT results by finding the effective one-body poten-
tials that generate the AMO spin density (since the
Hohenberg-Kohn theorem ' is a uniqueness theorem).
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FIG. I. Amplitude of cosine modulation k of the spin density
as function of r, .

FIG. 3. Solid curve: energy gap of the AMO cubic electron
gas as a function of r, (normalized by the valence-band width for
given r, ). Dashed curve: normalized XODFT energy gap.
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FIG. 4. Kohn-Sham eigenvalues for HFDFT at r, =150. FIG. 5. As in Fig 4 for XODFT

The Hamiltonian will contain two local potentials, one for
each spin. Since the spin density is a simple cosine modu-
lation, it is sufficient to expand both the potential and the
wave functions in a plane-wave basis, then solve (numeri-
cally) for the potential coefficients that generate the re-
quired density.

The HFDFT eigenvalue spectra which those KS poten-
tials generate is shown for r, =150 in Fig. 4. The surpris-
ing result is that HFDFT always makes the system metal-
lic; there is no gap in the HFDFT-KS eigenvalue spec-
trum for any value of the density obtained in the AMO
calculation. Thus, the exact DFT fails to give even the
qualitatively correct result for this system. Since there
must be a gap for r, ) 100, its magnitude is the value of

XODFT for the cubic electron gas is generated by redo-
ing the AMO calculation with the additional constraint
that only AMO determinants populated with states from
an independent-particle Hamiltonian be admitted. That
is, the allowed values of v(k) are restricted to those ob-
tainable from a KS potential ~ The procedure is a three-
dimensional, variational version of the TPWM calculation
of Ref. 10. Assuming a weak, symmetry-restricted (in the
sense of omission of higher Fourier coefficients) KS poten-
tial, it must be of the form

tan(28' ) = V/(k;Kp ), (8)

where k; is the largest magnitude component of k. Thus,
while the general AMO calculation is free to choose any
values of the U (k) parameters, XODFT restricts con-
sideration to a specific one-parameter family. The result-
ing XODFT one-electron spectrum for r, = 150 is shown
in Fig. 5. There is no gap. XODFT does eventually gen-
erate a gap, at r, ) 500. Comparison with the exact AMO
gap (Fig. 3) makes explicit an important result. Imposi-
tion of the AMO form (i.e., physically correct form for
this model) on the KS orbitals does result in a KS spec-
trum with qualitatively correct behavior (a metal-insulator
transition) but the quantitative behavior is grossly in er-
ror.

This result is a clear caution regarding interpretation of
KS spectra generated with the nearly universal practice,
for real systems, of constraining the KS orbitals to physi-
cally realistic symmetries (that is, irreducible representa-
tions of the appropriate symmetry group). The present
calculation suggests strongly that the outcome may be
qualitatively plausible yet quantitatively meaningless.
These results are also an unambiguous counterexample to
the commonplace assumption that HFDFT and XODFT
are virtually interchangeable.

V(r) = V[cos(Kpx)+cos(Kpy)+cos(Kpz)] .

With orbitals of AMO form [Eqs. (2) and (3)] and varia-
tional determination of the constrained parameters v~(k)
and u~(k) (subscripted to distinguish XODFT from gen-
eral AMO), one finds

u~(k) = cosOk, v~(k) = sinful, ,
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