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Polycrystalline potassium samples have been plastically deformed under tension and the result-
ing effects on the phonon conductivity and phonon-drag thermopower have been investigated.
The reduction of the lattice thermal conductivity A, due to dislocations is much larger than can be
explained within the framework of phonon scattering by the static strain field of the dislocations.
The phonon-drag thermopower entropy S, is relatively weakly affected, a result which is con-
sistent only with a model where different groups of phonons are primarily responsible for each of
A, and S,. The mechanism which limits A, in the unstrained (i.e., as cooled) K has not been iso-
lated with certainty, but it seems unlikely to be dislocations.

I. INTRODUCTION

Some time ago we published the results of an investiga-
tion on the properties of potassium at low temperatures
and high magnetic fields' (referred to as I hereafter). The
effect of magnetic field B on the thermal resistivity ¥,
was striking and resulted in a rapid increase in Y,
roughly as B2. We interpreted this as being caused by the
lattice thermal conductivity A,, a deduction which has
been supported by recent work.? Initial skepticism of the
identification with A, (see Ref. 2 for a discussion) was due
to the fact that earlier calculations® had led us to expect a
much smaller value of A, than was experimentally found,
the difference being as much as a factor of 10 at 1.5 K.
We ascribed the unexpectedly large A, to the unusually
free-electron-like behavior of K which results in little or
no interaction between electrons and transverse phonons.
At liquid-helium temperatures it was assumed that
phonon-phonon interactions [both N (normal) and U (um-
klapp)] are too infrequent to maintain equilibrium among
the phonons, leaving the transverse phonons free to pro-
duce a large thermal conductivity. The earlier calcula-
tions had implicitly assumed that phonon-phonon pro-
cesses maintain equilibrium, which results in a much
lower conductivity.

A problem immediately arose that if phonon-phonon
scattering is so weak, what mechanism finally limits the
lattice thermal conductivity? There are various possibili-
ties: (i) the residual phonon-phonon coupling might be
sufficient to limit the mean free path of the transverse
phonons, (ii) the residual non-free-electron character of K
may be responsible (i.e., the presence of higher plane-wave
components in the band structure), (iii) residual imperfec-
tions. In our previous calculations we chose the last op-
tion for simplicity of calculation. Since point impurities
cannot provide sufficient scattering at low temperatures,
we finally chose dislocations as the most likely imperfec-
tion. Using a result of Klemens* for the scattering of
phonons by dislocations, and assuming only phonon-
electron [one orthogonalized plane wave (1 OPW)] and
phonon-dislocation scattering as input to the calculations,
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we found that a dislocation density of about 10'* m 2 was

needed to fit our experimental results. This is many or-
ders of magnitude higher than expected,’ which suggests
either that the phonon-dislocation scattering is not well
represented by Klemens’s result, or that the mechanism
which brings the transverse phonons to equilibrium had
been incorrectly identified in I. This does not necessarily
invalidate that work since one can treat the phonon-
dislocation scattering as simply an approximate phenome-
nological representation of the residual scattering, whatev-
er that might be.

The intent of the present work is to examine the effect
of plastic strain, and particularly of dislocations, on the
phonon conductivity and, to a lesser extent, on the ther-
mopower of K. By this means it was hoped to clarify the
above situation and gain more information about
phonon-dislocation scattering in simple metals. Similar
experiments have not been attempted before for the case
of pure normal (as opposed to superconducting) metals;
previous work on metals has been restricted to alloys or
superconductors.® In principle, the use of high magnetic
fields to investigate phonon-dislocation scattering can be
extended to many pure metals, but K provides an excel-
lent first candidate in view of our experience with this
metal.

II. THEORETICAL AND EXPERIMENTAL
BACKGROUND

In this work the primary objective is to extract informa-
tion about the scattering of phonons by dislocations.
There are two models to describe this, the models being
complementary rather than exclusive. In the first the
phonons are scattered by the (static) strain fields of the
dislocations. Many theoretical attempts have been made
to calculate the magnitude of the scattering and all results
are of the form

7od' =Ny = Ab’N,o , (1

where o is the phonon frequency, I' a parameter which
determines the scattering strength and which is always
proportional to the square of the Burgers vector b, and
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N, is the dislocation density. The dimensionless constant
A depends on the orientation of the dislocation, but we
shall quote only values averaged over all orientations. All
early theories were essentially single-parameter calcula-
tions, e.g., Klemens* and Ziman’ found

A =¢gy? (2)
where € is a numerical parameter near unity (Ziman
gives €~1, and Klemens, ¢=0.6), with y being the
Griineisen constant. It should be noted that initial esti-
mates of € were about an order of magnitude lower,? but
the later estimates, as quoted here, are expected to be
more reliable. Carruthers’ and Ohashi'® based their cal-
culations on the third-order elastic constants. The form-
er seem to be most appropriate to cases where central
forces might dominate, and cannot readily be used to
evaluate A4 for metals. That of Ohashi gives the relative-
ly crude estimate of A4 ~1(c,;, /c;)?, where ¢y, and ¢y,
are a third- and second-order elastic constant, respec-
tively. For Cu (Ref. 11) this yields 4 =1 in rough agree-
ment with Eq. (2) taking e=1 and y =2. However, for
K, ¢y, is by far the largest third-order elastic constant'?
and results in A4 =40, which is almost certainly an
overestimate. More recently, calculations have appeared
which use the third-order elastic constants more sys-
tematically. Brown'® gives a summary of these develop-
ments and using his own results has obtained agreement
with experiments on Cu, Al, Si, and Ge, but not for al-
kali halides. For Cu, Brown finds 4 ~11.6 compared
with Klemens’s estimate of about 2.5, and for K one can
use Brown’s result (together with the experimental
second-order'* and theoretical third-order elastic con-
stants'? to find A4 ~6.0, compared to Klemens’s esti-
mate, Eq. (2), of 0.86.

To summarize, the scattering of phonons by static
dislocations should obey Eq. (1). The calculation of A4
has been refined to a point where one might have reason-
able confidence in the numerical results. The recent cal-
culations predict larger values of A4 than the earlier
single-parameter theories, but the differences are less than
an order of magnitude.

The second model is concerned with the possibility
that phonons might also be scattered by vibrating dislo-
cations.!>!® In some respects the dislocation behaves
like a stretched wire which is more or less free to vibrate
and which will scatter phonons inelastically. Because
the dislocations will generally be pinned (by impurities
or other dislocations), phonon scattering will be a max-
imum if the phonon drives the dislocation into reso-
nance. Experiments®!” on LiF below 1 K have provided
the clearest evidence for this possibility. In particular,
exposure of deformed LiF to y radiation should produce
more pinning and hence shift the resonance to higher
frequencies; this would result in an increase of the lattice
thermal conductivity (as is indeed observed), an increase
which is not easy to explain by the static scattering mod-
el. Unfortunately the experiments on LiF have been
complicated by the anisotropy of phonon-dislocation
scattering; this is so extreme that some phonons appear
to be only weakly scattered and tend to overwhelm the
contribution of those most strongly scattered, so mask-

ing the effect to some extent. Nevertheless, it is not easy
to understand the behavior of LiF for T'>1 K and
indeed, Kneezel and Granato'® have been unable to ob-
tain agreement between experiment and this dynamic
scattering model for any T >0.1 K, with discrepancies
in magnitude of a factor of 30. Other ionic solids have
been less extensively investigated,'® but the scattering
appears to be more indicative of Tp‘d1~w° (T > 1 K) rath-
er than Eq. (1). When the vibrational frequency of the
dislocations is such as to produce a maximum in 7,;' at
very low temperatures, one expects T‘;,Iza)o—m)*f)/z to
be roughly appropriate at higher temperatures,'> a result
perhaps closer to the experimental data than Eq. (1).
Madarasz and Klemens?® have recently used both static
and dynamic mechanisms to produe good theoretical fits
to the behavior of CuAl alloys. This is of particular in-
terest in the present case because the vibrations of the
dislocations will be damped by the conduction electrons
and this must be included in the calculations.

Experimental results on the superconducting metals Nb
and Ta have been used to support both models. Recent
data on well-characterized samples deformed under ten-
sion®! are in good accord with Eq. (1) in both magnitude
and frequency dependence, whereas earlier data on bent
samples® show maxima in 7,;' which can only be under-
stood with the dynamic model. These results are not
necessarily in contradiction with each other; it may be
that the type of plastic deformation is important, and also
the quantity of dislocations introduced. Although these
results are on superconductors so that electron damping
of the dislocations will not be present, they are of interest
to the present work because both are bcc metals and so
are expected to exhibit large values of the Peierls-Nabarro
stress. This is simply the stress required to move a dislo-
cation from one lattice position to an equivalent neighbor-
ing position. Ge and Si would also have a high Peierls-
Nabarro stress and these materials have already been
mentioned as obeying Eq. (1). This should have the effect
of strongly constraining the amplitudes of dislocation vi-
bration, and also in increasing the resonance frequency.
On the other hand, fcc metals have low Peierls-Nabarro
stress, and thus comparisons between bcc metals (includ-
ing K) and fcc metals should take this difference into ac-
count when dynamic scattering is envisaged.

Very recently Haerle et al.??> have studied the effect of
plastic deformation on the electrical resistivity of pure po-
tassium. They find some interesting behavior at 7' <1 K
which they ascribe to dynamic scattering of electrons by
dislocations. At the moment it is prudent to treat this
identification as tentative, but it does indicate that resis-
tivity measurements might provide a useful complementa-
ry probe of these mechanisms.

It is clear from this brief review that the subject of
phonon-dislocation scattering is still controversial and
contains few clear answers. Because the theory of dynam-
ic scattering is not as readily applied to specific materials
as the static theory, the present approach will be to apply
the latter in some detail to determine whether it provides
a satisfactory explanation of the present data. The follow-
ing provides a framework for later analysis and discus-
sion.
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The standard calculations of thermal conductivity®’
show that A, can be written

=13 [ siwriHo)r(ode , (3)
i

where the sum is over the three modes of polarization,

Si(w)dw is the contribution to the specific heat of phonons

in the range 0, dw, v;(®) their velocity, and 7,(w) their re-

laxation time. If the Debye approximation is assumed,

then

#ote*
2%k T (e*—1)?

SZ(CL)):

>

where x =#w/kT and the other symbols have their usual
significance. For scattering of phonons by the static strain
field, Eq. (1) applies and if we substitute for 7 into Eq. (3)
and take the maximum value of X as X,, we obtain

K3T?

# = P TN 2 0, f [T @
By substituting 7 directly, we make the assumption, fol-
lowing I, that N phonon-phonon scattering is relatively
weak. If the opposite were the case the effective relaxa-
tion time of all phonons would be the same (at any 7T) and
it would be more appropriate to insert this average value’
into Eq. (3). Providing the temperatures are low com-
pared to the Debye temperature, the upper limit of the in-
tegral in Eq. (4) can be taken as <, in which case the in-
tegral has the value of 7.21. Hence

_7_21_k_T.2_2 1
¢ 6m TN #

When other scattering mechanisms are present the situ-
ation is more complex. In metals, phonon-electron
scattering is strong and also gives the same frequency
dependence as Eq. (1), i.e., T;e'~a) and so A, has the
same temperature dependence as Eq. (5). In this case, the
lattice conductivity after straining will be reduced by the
ratio 7,q /(Tpa 4+ Tpe )-

In principle a similar ratio is also appropriate to
phonon-drag thermopower. Previous work has estab-
lished that the thermopower of the alkali metals at low
temperatures can be written?®

S=aT+BT +yexp 7. (6)

The first term is identified with the diffusion contribution,
the second with phonon drag due to the electron-phonon
N processes, and the third with phonon drag due to
electron-phonon U processes. The pure unstrained metal
should exhibit the “full” phonon drag, i.e., when the pho-

(5)

non scattering is predominantly by electrons. Under
these conditions®®
B=98, /ne , (7

where §, is the phonon entropy, n the number of elec-
trons per unit volume, and e the negative electronic
charge. Again, when another scattering mechanism with
the same frequency dependence as 7, is introduced, then
B will be reduced by the same ratio 7,y /(Tp +7',,() as
found above for A,. 23 Hence from this point of view, the
lattice thermal conduct1v1ty and A, contain similar infor-
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mation. We shall delay further development and discus-
sion until Sec. V.

III. EXPERIMENTAL TECHNIQUES

The recrystallization temperature of K is about**?* 110
K so that any mechanical damage will rapidly anneal at
room temperature, probably in a matter of minutes. For
this reason the fundamental requirement is for a cryostat
in which the relevant thermal properties can be deter-
mined in high magnetic fields, and which allows samples
to be mechanically deformed at low temperatures. The
straightforward techniques of deformation by tension was
chosen because it has the useful attribute of allowing an
estimate to be made of the dislocation density.

The samples were extruded through a circular
stainless-stell die with a diameter of 4.4 mm, this being
chosen so that any cross section has many crystallites
(which were easily visible after storage and typically 1 mm
in size). The lower end of the vertical sample was at-
tached by split copper collars to the cold sink and the
upper end by the same technique to a i-in.-diameter
thin-wall stainless-stell tube connected to a motorized
puller at the top of the cryostat. The stainless-steel tube
had thermal links to the helium bath at three separate
points and also a simple sliding joint which ensured that
no stress was applied to the sample during cooldown (ex-
cept for the weight of a few inches of stainless tube and
the heater assembly). Probes for the carbon thermometers
and potential leads were threaded split copper collars
about 2 mm long. Initially these were embedded in nylon
supports but later models were self-supporting.

The cryostat was based on a design used previously?®
to measure the electrical resistivity of K at high B and is
a double can arrangement with separate vacuum spaces.
Normally the inner and outer cans are brought into
good thermal contact using helium gas, but the inner
sample space is under high vacuum to allow the thermal
measurements to be made. The inner can can also be
thermally isolated by pumping out the helium gas, and
then raised to any desired temperature by electronic
temperature controllers. In this way the sample can be
deformed or annealed at whatever temperature is ap-
propriate.

A series of measurements on one sample was typically
as follows. The sample was extruded at about 30°C and
left overnight or longer. It was mounted in the cryostat,
the whole arrangement being inside a clean glove box in
which freshly cut K samples could be kept for many
hours without visible deterioration. After making the seal
on the inner can, the cryostat was removed from the box,
the outer can sealed in place, and the whole rapidly
pumped to a high vacuum. The cryostat was cooled by
radiation overnight to about 120 K, after which exchange
gas was admitted to finish the cooling to 77 K and then to
4.2 K. After pumping out the inner can, a data set was
taken under these initial conditions; this entailed measur-
ing the thermal properties for both field directions for 0—6
T at five fixed temperatures in the range 1.4-4.2 K. The
zero-field thermopower was also measured, and limited
data on the electrical resistivity obtained (usually only at
1.2 and 4.2 K). At this stage the inner can was thermally
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isolated and stablized at a temperature convenient for
plastic deformation (in the range 10-30 K). After this in-
itial deformation (typically a strain €~0.005-0.01), the
thermal properties were remeasured as above. This cycle
was repeated for various strains up to 0.05-0.16 depend-
ing on the sample. The strain rate was about 4X 1073
sec”! and the stress and strain were monitored®® with an
XY recorder; Fig. 1 is a typical example. Throughout this
period the sample temperature never exceeded 30 K. Fi-
nally, the sample was annealed. For most samples this
was done at 130-145 K for 15-30 min, but for the last
sample (K5) a final anneal at 250 K was carried out.
After each anneal the properties were remeasured.

In previous experiments?® it was possible to find the
effective form factor of the sample (//A4) by measuring
the resistance at 12—-16 K and comparing with published
resistivity data. This was not possible here. The reason is
simply that the potential and current wires to the sample
were chosen for low heat loss as well as low resistance,
which almost inevitably implies the use of superconduct-
ing Nb-Ti (the zero thermopower is also a useful attri-
bute). However, Nb-Ti becomes normal near 9 K and
then has a very high resistivity which prevents the opera-
tion of the superconducting chopper amplifier; previously
Cu covered Nb-Ti leads were used so that high-
temperature operation was possible. The following tech-
nique was therefore used to determine // A. During plas-
tic deformation the volume of the sample was assumed to
be unchanged so that if it retains a uniform cross section,
a change of /y to / (which is measured) implies a change in
(1/A4) of (1/1p)*. Comparison with previous data shows
this to be an excellent approximation but there are also
two simple checks which were made: (i) After making the
correction (1/1y)* to (1/ A) and evaluating the resistivities
p at 1.2 K and/or 4.2 K one expects to see a gradual rise
in p due to the effect of dislocations. This was not visible
in the low-purity samples, but was seen in samples K4
and KS5. Thus for K4 the initial resistivity at 4.2 K, p(4.2
K), was 2.27 nQ) cm, and 2.53 nQ) cm after a strain of 0.1.
The difference of 0.26 nQcm is in good agreement with
our previous values?® of 0.25 nQ cm. (i) After annealing
one expects p(4.2 K) to return to its initial value. For
sample K4 an anneal at 145 K for 30 min gave p(4.2
K)=2.26 nQ2 cm in good agreement with the initial value.

0.30

K4

7 (kg mm~2)
(o]
N
o
T

100 €

FIG. 1. The measured tensile stress 7 as a function of strain €
for K4. 7 has not been corrected for the thinning of the sample
due to the strain. The breaks correspond to positions where the
stress was removed and the sample properties measured.
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These results suggest that the relative form factors are
well known, probably to the level of £29%. They also
suggest that the samples did deform uniformly, which was
consistent with visual observations at the close of each
series. However, the results were not accurate enough to
be able to reliably obtain the change in p(4.2 K) for small
strains, a result which would have been very useful in
determining the dislocation density as a function of strain.

Other experimental details were basically the same as
described elsewhere. !

IV. EXPERIMENTAL RESULTS

In I all independent thermal and thermoelectric
coefficients were measured. The present arrangement
does not allow the Righi-Leduc coefficient (y,,) nor the
Nernst-Ettingshausen coefficient to be obtained. Thus to
extract A, we resort to the results discussed in Ref. 27.
For an uncompensated metal, as here, one finds that the
measured thermal resistivity y 7y is given by

2
7/m — lIS’}/i»x +}\'37/,€X
xx ¢2+()\'g7/;x)2 ’

where 5. and yj, are the thermal resistivity and Righi-
Leduc resistivity that the sample would have if A, =0,
and ¢=147y3Ag. If we write Y =(Agy5./¢), then Eq.
(8) can be written as a power series in Y-, i.e.,

(8)

VY %x
¢

1 Y

Ag ¢

For B<6 T the present data always satisfies ¥ <0.2 and
hence the series may be terminated at Y* with no
significant loss of accuracy. Experimentally y5, is found
to increase linearly?® with B and so we write ¥&,
=ag+a;B. It is also found that y§A; <<1 under all
conditions; in the worst case of the most impure samples
in the deformed state, 5. A, reaches a value of 0.03. This
was ignored compared to unity so that Eq. (9) is finally
written

(Y2—Y44 - 0. (9)

m
Yxx =

Vie=ao+aiB+Agyis A3+ (10)
Although ¥}, is not directly measurable, it has been
shown in I to have the theoretical value of L,TB /ne
within the experimental error of about 2%, where L, is
the Sommerfeld value of the Lorentz number
(2.445x107® V?K™?) and (ne) '=-—44.5x10""
m>C~! for K. In the actual analysis it was simply as-
sumed that

y& =ao+a\B +a,B*+a,B*, (11)

where the a; are determined from least-mean-square fits to
the data.

We expect a, to be essentially equal to the measured
zero-field thermal resistivity, which was found to be so,
typically to within 2—-3 % and often within 1%. In ad-
dition, a, and a, are not independent [cf. Eq. (10)] and
should yield the same value of A,. In these experiments
the ratio —a,B?%/a, (i.e., Y?) never exceeds 0.05 but
even so, for the relatively unstrained samples, which
have the highest A,, the Ag calculated from a, was al-
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FIG. 2. Experimental results on the thermal resistivity ¥ xx
(multiplied by Lo7) as a function of B for K4. The lines are
fitted according to Eq. (11) and the strain is given on each curve.
The temperature is close to 2.10 K for all data. Changes in ¥ xx
at zero field are not visible on the scale of this graph.

ways within 10% of that from a,. For the highly
strained samples Y? drops to about 0.01 and the last
term in Eq. (11) becomes negligible. It is concluded that
Egs. (8)-(11) fit the experimental data extremely well
and that the values of A, so obtained are reliable. Fig-
ure 2 shows examples of the data and fitted curves. It
should be noted that a, and a; are very insensitive to
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FIG. 3. The experimental data on the lattice thermal conduc-
tivity A, for samples K3, K4, and K5 for various plastic strains
€. The error bars are typical of all the data. Samples K1 and
K2 were taken only at e=0 and =0.1 and are very similar to
K3. The dot-dashed lines for K4 and KS5 are results after an an-
neal at =140 K, and the dashed line for K5 is after an anneal at
250 K.

plastic strain, contrary to a3 and a,. Figures 3(a)-3(c)
give the results on A, for the three samples, K3, K4, and
K5 (see Table I for resistance ratios of the various sam-
ples). Data for K1 and K2 were obtained only for
strains of 0 and 0.1 and are not shown; they closely
resemble K3.

Some features are immediately apparent from Fig. 3.

(i) Even low strains (£0.01) produce a dramatic
reduction in A, especially at low 7. This sensitivity may
explain the variability in A, that has been noted in vari-
ous previous experiments. If the sample is constrained
during cooling, then it is probably inevitable that there
will be strain of the order of 0.01.

(ii) Purity is not a strong factor but it does seem to
affect A,. In the unstrained samples A, is lowest for K3
(the most impure sample shown in Fig. 3) and highest for
K5 (the purest). K1 and K2 were also of low purity and

TABLE 1. Resistance ratios and thermoelectric parameters for unstrained and strained samples.

Sample K1 K2 K3 K4 KS
(293 K) 5% 870 840 900 3630 5100
p(1.2 K)
Unstrained sample
a mVK™) —13 —11 9 —0.5
B aVK™% —173 —7.8 —9.4 —12.2
10~* (nVK™" 2.0 2.0 2.6 3.0
6 (K) 15.6 15.5 15.9 15.2
Strained sample
a mVK™H —13 7 5
B (mVK™ —4.6 -73 —10.0
107% (VK™ 1.1 1.9 2.5
€ 0.12 0.10 0.053
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reproduce the low values for K3.

(iii) After deformation, an anneal at 140-150 K,
which is well above the recrystallization temperature of
about 110 K, is insufficient to return the sample to its in-
itial condition [see K4 and K5 in Figs. 3(b) and 3(c)].
This is consistent with previous work on the electrical
resistivity?® where an extra resistivity of 0-0.05 nQ cm
always remained after such an anneal. Annealing at 250
K does return the sample to the original conditions.
This reproducibility in A, might point to the residual
phonon scattering mechanisms as being intrinsic to K.

(iv) K5 was deformed at 10 K so that the vacancies
produced during deformation would remain in the sam-
ple.?*? After taking results at a strain of 0.053 the sam-
ple was annealed at 20 K to remove the vacancies. Al-
though previous work has shown that this causes a drop
of nearly a factor of 2 in the resistivity induced by defor-
mation, A, is unaffected within the accuracy of the experi-
ments (=1% ).

The zero-field thermopower was measured only for the
samples in the unstrained and maximum strained condi-
tions. Complete data are available for K2, K4, and K5
and these are shown in Fig. 4 along with curves fitted ac-
cording to Eq. (6). Using the experimental Debye temper-
ature of 90.6 K, 3 is calculated to be —9.0 nV K ~* which
iis to be compared with the average experimental value of
—9.2+2.2 nVK~* However, the experimental values
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FIG. 4. The thermopower before and after straining for sam-
ples, K2, K4, and K5. The S signifies after straining which cor-
responds to €=0.12 (K28S), 0.10 (K4S), 0.053 (K5S). Absolute
uncertainties should be about 2-3 %. After the data for K5S
were taken, the sample was annealed at 250 K. The results after
this anneal are close to those of the unstrained sample being typi-
cally 5% lower in magnitude.
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show a noticeable increase with purity; the absolute accu-
racy of the fits to the data is difficult to gauge and is prob-
ably about +10%, so at least some of this variation may
not be real. The average result for ® is 15.5+0.3 K
which is in poor agreement with the value of 23+2 K
quoted by Schroeder® for a related thermoelectric quanti-
ty, and about 20 K for the resistivity.?! The reason for
this discrepancy is not known but the value of ® does not
vary strongly if the range of data is limited to lower tem-
peratures (e.g., to <3 K). Equation (6) has also been
fitted to the thermopower of the strained samples. Be-
cause ¥ depends sensitively on ® when both are variables,
the fitting was done by fixing ® at the same value as ob-
tained for the unstrained sample and allowing only «, f3,
and y to vary. The quality of the fit is not significantly
affected by this procedure. Table I collects all the
coefficients. It is of interest that 3 and y are reduced by
about the same ratio in the strained sample, i.e., both N
and U electron-phonon scattering are reduced by similar
ratios.

We conclude this section by using the experimental
data to estimate the dislocation density appropriate to
these samples. There are two independent ways to do
this: (i) using the electrical resistivity introduced by the
dislocations and (ii) using the flow stress.

The resistivity increase (measured at 1.2 K) due to
dislocations p, is always about 0.25+0.05 n{lcm at a
strain of 0.1 (see Sec. III). With Brown’s estimate®’ of
pa/Ng=8x10"" Qcm® for K, we have N;=3x10"
m~2. (Throughout this paper N, referes to the disloca-
tion line length per unit volume. Estimates made by etch
pit counts are more appropriately referred to as the inter-
section density and for a random array will be factor of 2
lower than the volume density®®). Unfortunately the
present data do not allow an accurate determination of py
as a function of €.

The second method relies on the fact that the flow
stress 7 due to dislocations is given by

T=rub(Ng)'"?, (12)

where u is the appropriate shear constant , b the Burgers
vector, and 7 is a constant of about unity. (Recent re-
sults®* give Ny ~7%3% for Cu but for the range of N, of in-
terest this does not significantly affect our results). Data®’
on polycrystalline bcc Fe yield » =1.5 when 7 is the mea-
sured tensile stress and N, the volume density. For K
with £ =1.2 GPa (Ref. 36) and b =4.5x 10~ ' m, togeth-
er with the measured 7=0.22 kgmm*2 at €=0.1, we
have N;=7x 102 m~2. It should be noted that 7 is the
flow stress measured after the initial sharp rise which is
identified with the Peierls-Nabarro stress3”*® (see Sec. II).
The difficulty in these experiments is that the low resolu-
tion on 7 and € does not allow the breakaway point to be
established with accuracy, so again we do not have a reli-
able measurement of N, versus €, though by €=0.1, 7 is
probably accurate to < 20%.

If we take the mean value of the above estimates we
have N;~5x10'2 m~? at €=0.1 which is probably reli-
able to about a factor of 2. We note that N, is not ex-
pected to be a linear function of € but will probably rise
faster than €.
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V. DISCUSSION

It is apparent from Figs. 3(a)-3(c) that A, does not fit
any simple power law over the whole range of 7. How-
ever, if we evaluate the extra thermal resistivity W, in-
troduced by the deformation from W, =W, — W, where
W, is the initial resistivity (=1/A,) and W, that after
plastic strain, then we obtain results shown in Fig.
5(a)-5(c). A simple power law W,;=dT ~° now ade-
quately fits the data where ¢ =2.35%0.15 for all sam-
ples, with no obvious purity or strain dependence of this
exponent. Heavily deformed samples at low tempera-
tures (€20.1) show W, ~ T 23 which is consistent with
this result, i.e., W, presumably dominates W, here. If
the exponent is set at 2.35, then the average value of the
constant d for K1, K2, K3, and K4 at €=0.1 is 3.0%£0.6
in m ks units.

The static strain field scattering of Eq. (5) predicts
W, ~T ~? which is only in fair agreement with these ex-
periments. It is also possible to estimate the absolute
magnitudes as predicted by Eq. (5) for comparison with
the experiments. This is done by calculating ¥; 1/v; us-
ing the measured elastic constants;'* the simple tech-
nique of averaging the v;,~! along [100], [110], and [111]
gives 3, 1/v;,=1.78x 107> m~'s. With b =4.5x10"1°
m, A =0.86 or 6.0 according to Klemens and Brown,
respectively (see Sec. II), and N; =5X 102 m~? as estab-
lished in Sec. IV, then one finds

(WyT?)=0.017 mK3W~! |
(WyT?)p=0.115 mK3W~! |

(13a)
(13b)

where the K and B refer to Klemens and Brown. If we
take the best fits of the experiment to W, ~T ~2, the re-
sult is

(WaTHep=2.120.5mK* W~ | (13¢)
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FIG. 5. The thermal resistivity W, introduced into the sam-
ples as a result of plastic deformation (W;= W, — W, where W,
and W, are the resistivities before and after deformation). The
slopes of the lines are shown, together with the strains e.

R. FLETCHER 36

i.e., about 2 orders of magnitude larger than Klemen’s es-
timate and a factor ~20 larger than Brown’s estimate
(which is probably the largest reliable value in the litera-
ture for static strain field scattering).

The above calculations are relatively crude and better
estimates should be possible using the more-refined calcu-
lations of Leavens that appeared in I. The ‘“‘real” phonon
spectrum was used, in the first instance with electron-
phonon scattering turned off, which makes the calculation
equivalent to that above. From Fig. 15 (the dashed line)
of 1 one sees that W,T?=8.1x10"° mK3’W~! at
N;=5x10"> m~2 This is appropriate to Klemen’s value
of A=0.86 and is about a factor of 2 lower than Eq.
(13a); presumably the difference is due to the real spec-
trum and is probably caused by the strong anisotropy in
the elastic constants of K. Equation (13b) will also be re-
duced by the same factor which aggravates the discrepan-
cy between theory and experiment.

The analysis is still incomplete since we can only as-
sume W,;=W; — W) if both the dislocation scattering and
the initial scattering mechanism have the same anisotropy
and frequency dependence. (The problem is similar to
that of deviations from Matthiessen’s rule for the electri-
cal resistivity). In metals W, is generally dominated by
electron-phonon scattering, and this is probably true for
the majority of the phonons in K. However, K is so free-
electron-like that the purely transverse phonons along
symmetry axes interact weakly, if at all, with the electrons
and give rise to strong anisotropy of 7,.. One normally
assumes that phonon-phonon N processes tend to equalize
Tpe for all phonons but for K this would lead to a A,
much smaller than observed; hence Leavens made the op-
posite approximation that these N processes play no role,
at least at low T, and it is under these conditions that the
solid curve in Fig. 15 of I was calculated, i.e., dislocation
plus electron scattering of phonons without phonon-
phonon N processes. Using this figure to find the ap-
propriate N; for the observed value of A, at €=0.1
[Ag=(0.35£0.05T2 Wm~'K™'] yields N;=1.0x10"
m~2. This again is appropriate to Klemens estimate of 4
and is in error by the same factor of 200 that was found
above for dislocation scattering alone. Thus the result of
more realistic calculations is that the right-hand side of
Egs. (13a) and (13b) should be reduced by a factor of 2
leaving discrepancies of 200 for Klemen’s estimate and 37
for Brown’s estimate. An alternate way of stating this re-
sult is that the experimental value of A4 is about 170, to be
compared with the Klemens and Brown results of 0.86
and 6.0, respectively.

It is not possible to make a similar quantitative compar-
ison for the case of dynamic scattering of phonons by
dislocations. The original calculations of Granato'’ pre-
dict a more rapid temperature variation for this mecha-
nism with kg~T3—>T3‘5. This is a much higher ex-
ponent than the experimental result. Recently, Madarasz
and Klemens®® have made detailed calculations for Cu al-
loys taking both the static and dynamic mechanisms into
account. Over the temperature range where dynamic
scattering is strong (=0.5-10 K), A, is reduced by about
an order of magnitude compared to static scattering. On
the high-temperature side of the resonance, kg~T3 in
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agreement with Granato’s calculation. If this was ap-
propriate to K, then A, should show a pronounced
change in slope at a temperature below the range available
here. Of course Cu is fcc and K is bce, and so the Cu
calculation cannot be safely scaled for use in the present
case.

Although the thermopower does not provide such a
clear picture, it does complement the above analysis.
Table I shows that the phonon-drag part S, is relatively
weakly affected in comparison with A,. It will be re-
called from the discussion of Sec. II that S, and A, are
both reduced by the same ratio 7,4 /(7,4 +7,.), providing
these relaxation times have the same frequency depen-
dence and that 7,, determines A, in the unstrained sam-
ples. The first assumption seems to be at least approxi-
mately obeyed since W,~T >3 implies 7, ~a*%
which is close to the expected 7, ! ~w. The second as-
sumption is probably not true otherw1se we should find
W,~T "% contrary to the experimental results. The
variation of A, and S, are consistent with the major as-
sumption of I that A, is dominated by the contributions
from the purely transverse phonons which interact only
weakly with the electrons. Clearly S, is dominated by
all the other phonons, i.e., those which do interact
strongly with electrons. When dislocations are intro-
duced, the relative effect is greatest on the transverse
phonons and so A, drops rapidly. On the other hand,
the extra scattering caused by the dislocations to those
phonons that are already effectively scattered by elec-
trons is much smaller and so S, is only weakly affected.
Although calculations are not available for the variation
of S, with N, for this model, one might expect that S,
will behave in a similar fashion to the phonon-drag part
of the Nernst-Ettingshausen coefficient €, which was
calculated in I. (The comparison is actually closest with

€8, rather than €}, /T as given in I). From Fig. 16 of I it
will be seen that €, /T decreases rather weakly with N;.
Even so these results on €%, /T indicate a stronger de-
crease than seen experimentally in S, in the present ex-
periments. The experimental results on A, at €=0.1
correspond to N;=1.0Xx 10" m~2 on Fig. 5 of T (see
above); the actual number is not particularly significant
since it varies with A and this value is used simply to
reproduce the actual scattering observed in the experi-
ments. For this same N,, Fig. 16 of I shows that €, /T
is decreased to about 30% compared to the full phonon
drag at N;=0. By contrast the experiments show a
smaller change with &, reduced to about 75% of the ini-
tial value (cf. Table I for K4 in the initial and strained
conditions).

There still remains the problem of what determines A,
in the unstrained samples The temperature dependence
of A, is clearly not in agreement with that for wil
(which is about T23° over the whole temperature range),
nor that appropriate to electrons W,~! (~T?). Of course
it is inevitable that phonon-phonon N processes will even-
tually bring the phonons into internal equilibrium®® and
so reduce the heat conductivity of the transverse phonons
which are weakly scattered by electrons. This will result
in a reduction of A, below that calculated for uncoupled
phonons, which is in qualitative agreement with experi-
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ments and remains the most likely mechanism near 4 K.
However, even for T <2 K, A, does not follow the tem-
perature dependence expected for wi! or W, ! but in-
stead has a weaker power-law dependence 1402 [see
Figs. 3(a)-3(c)]. If residual dislocations are responsible
for this low-temperature behavior, one would need a den-
sity of about an order of magnitude less than that ap-
propriate to €=0.1, i.e., a density of roughly 510"’ m~
which seems unreasonably large® and corresponds to a
strain in excess of 1%.

The alternative, that the residual scattering is caused by
electrons (due to the deviations from a single-OPW behav-
ior) is more appealing at the moment. This would imply
that the A, that is observed in the unstrained samples is
close to an intrinsic property of K rather than being due
to residual imperfections. Corbino experiments’ have
given lower and probably more irreproducible values of
Ag, which is consistent with the residual strain that one
might expect with that arrangement. The present results
on the purest samples are comparable with those taken on
various other apparatus’?® which introduce minimal
strains suggesting an intrinsic property. This point might
be worth pursuing in more detail, perhaps with the use of
single-crystal samples.

Figures 3(a)-3(c) show that the peak in A, seems to be
sensitive to sample purity. The effects of phonon-
impurity scattering are readily included within the
framework of Eq. (3). The relaxation time due to impur—
ity scattering by mass difference effects is given by*’

2

) (14)

_1_ ma’e’

T 4m’G

Am

Tpi
P m

where 77 is the number of impurities per unit volume, a’

the volume of a unit (primitive) cell, G the number of cells
per unit volume, Am the mass difference between host
and impurity atoms, m the mass of the host atom, and v
the phonon velocity. Adding ‘r,;‘ to T;d‘ [Eq. (1)] and
substituting in Eq. (3) gives [cf. Eq. (4)]

3 x

g™ 6772%21“1\! 2 fo (1+4+yx3)e*—1)? dx, (13
where y=(na3/47er3FNd)(Am /m ) kT /%), Tsotope
scattering in K has (Am /m)*(1/G)~2x 10~*, and this is
also roughly appropriate to about 100 ppm of chemical
impurity (i.e., similar to that expected in “‘pure” potassi-
um). Taking (v)=1.4%10° ms~! as an average ap-
propriate to the transverse phonons, a =4 X 10~ m and
I'= Ab? with AN, as appropriate to the measurements
on unstrained samples (=10'* m~2) gives y =3 X< 107°T":
with this value of y the value of the integral is reduced
only 1% at 4 K and therefore predicts no observable
change in A,. The pure samples have a quoted impurity
content of 300 ppm which would increase y by a factor of
~4. Furthermore, chemical impurities will cause strain
field scattering, and possibly changes in the local intera-
tomic forces such that, overall, y might be increased by an
order of magnitude in the pure samples and possibly even
more in the impure samples. Taking y=3X10" S
reduces the integral by 10% and y=3x 10~* T° reduces
the integral by 40%, both at 4 K. These estimates sug-
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gest that impurity scattering is not the primary cause of
the reduction in A, near 4 K, but that there might be an
observable difference between pure and impure samples,
as is observed; this could only be verified by controlled ex-
periments with impure samples. In this context the be-
havior of K5 is relevant since it was deformed at 10 K
where the vacancies are immobile and remain in the sam-
ple.?*?° These vacancies produce an increase in residual
resistivity of about the same magnitude as the dislocations
introduced by the deformation, and will be about 5-10 %
of the initial residual resistance. The vacancies were an-
nealed out at 20 K but any change in A, was no more
than 1% (which is the experimental limit on the relativity
accuracy of A,z); this is consistent with the above, that im-
purities have little effect in the pure samples.

Before leaving this section it might be useful to mention
that the mean free path A of the phonons responsible for
Ag is readily estimated from the observed A, and the cal-
culations in I, together with the fact that the 7 '~ does
give a roughly correct T dependence. For the unstrained
sample one finds A~0.2/Tmm which is an order of
magnitude smaller than the crystallite size =1 mm.

VI. SUMMARY

These experiments have given a much clearer picture of
the effects of dislocations on the lattice thermal conduc-
tivity and phonon-drag thermopower of K. Phonon
scattering by static dislocations is unable to account for
the magnitude of the observed changes in thermal resis-
tivity; the experiments require a value of A4 in Eq. (1) of
about 170 which is to be compared with Klemens’s pre-
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diction of 0.86 and Brown’s of 6.0. Also, the tempera-
ture dependence of A, cannot be understood within this
framework. There is insufficient information to be able
to compare the experiments with the model involving in-
elastic phonon scattering by vibrating dislocations, but
this is an obvious mechanism to investigate theoretically.
The phonon thermopower S, is only weakly reduced by
dislocations, and samples which are not intentionally
strained will probably show no visible effects. The
strong reduction of A, and the weak reduction of S, are
consistent with the idea that different groups of electrons
are basically responsible for each of these, as was put
forward in I, but detailed discrepancies remain.

It has not proved possible to unambiguously identify
the mechanism which limits the actual magnitude of A,
in the pure unstrained samples in this temperature
range, but the most likely involves residual scattering of
the phonons by electrons due to departures from a single
OPW band structure, combined with an onset of
phonon-phonon U processes in the region of 3 K.
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