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Within the framework of a one-dimensional continuous Ginzburg-Landau theory, pulselike solitary
waves in shape-memory alloys are investigated. By neglecting heat conduction, internal friction, and
external volume forces, but including shear-strain and strain-gradient contributions in addition to the
Landau internal energy, a simple equation of motion is derived for the displacement of the atomic
planes. It is shown that it has pulselike solitary-wave solutions for both the austenitic and the mar-
tensitic phase. The stability of the solitary pulses is investigated by the Liapunov method. Stability

functionals are presented and analyzed.

In the parameter regions where they do not satisfy the

Liapunov criteria for stability, instability can be proved by variational methods. Thus, necessary and
sufficient stability criteria are available for the existing pulselike solitary waves in shape-memory al-
loys. The criteria and their physical consequences are discussed.

I. INTRODUCTION

The shape-memory effect and related phenomena such
as pseudoelasticity and ferroelasticity are due to a first-
order martensitic phase transition.! The latter is a special
type of displacive phase transitions with a significant shear
strain of the unit cell and a rather small change of the
volume, whereas the rearrangement of the atoms within
each cell (“shuffle”) is secondary. A more detailed
description of the physical phenomena can be found, e.g.,
in Ref. 2 and the references therein. At high tempera-
tures most of the crystals have a cubic lattice. Typical are
ordered bcc structures such as B2 (e.g., CuAl, NiTi, and
AuCd) or DO; (e.g., CuAINi and CuAlZn), but the fcc
lattice occurs also (e.g., InTl). This high-temperature
phase is called austenite. The low-temperature phase
(martensite) typically shows orthorhombic (e.g., for CuAl,
CuAlZn, CuAlINi, AuCd, CuAuZn,, NiTi, etc.) or tetrag-
onal (e.g., for InTl) symmetry. In order that the habit
plane, i.e., the contact plane between martensite and
austenite, is stress free on a macroscopic scale, martensite
occurs in a twinned microstructure. Since in shape-
memory alloys twinning takes place on the scale of the
lattice, a rather complex stacking sequence of close-
packed planes is observed. Due to the extremely fine
twinning, the habit-plane motion is reversible, thus ena-
bling the shape-memory effect.

For the cubic-to-tetragonal martensitic phase transition
Barsch and Krumhansl® established a three-dimensional
Ginzburg-Landau theory which shows kink-type solitary-
wave solutions representing moving plane twin boun-
daries. In their theory, elastic energy depends on ap-
propriate strain tensor components up to fourth order
and, in addition, on strain-gradient terms up to second or-
der. For a square-rectangular martensitic transformation
a Ginzburg-Landau theory was investigated by Jacobs.*
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His two-dimensional (2D) theory models both cubic-to-
tetragonal as well as cubic-to-orthorhombic transforma-
tions. In order to describe a first-order transition in a
one- or two-dimensional theory, elastic energy has to
comprise strain terms of second, fourth, and sixth order
as well as strain-gradient terms of second order. The
plane domain wall solutions in the 2D theory are essen-
tially one-dimensional,* i.e., they are identical to domain
wall solutions resulting from a one-dimensional
Ginzburg-Landau theory.> So the one-dimensional theory
yields the most important solutions of the 2D version al-
ready. Furthermore, it allows for pulselike solitary-wave
solutions.® A discrete version of a one-dimensional (1D)
theory was investigated by Suzuki and Wuttig.” Using for
the energy an even polynomial of the sixth degree they
numerically integrated the equation of motion for a lattice
with periodic boundary conditions to find moving marten-
sitic nuclei in an austenitic matrix.

The purpose of the present paper is to investigate, in
the framework of a 1D continuous Ginzburg-Landau
theory, the pulselike solitary waves in shape-memory al-
loys. Such an investigation requires a thorough discussion
of the relevant physical models and their solutions. Very
important for the development of a possible soliton
scenario is the answer to the question of the stability of
the calculated solitary waves. This topic will be a central
point of this investigation.

The problem of stability of a nonlinear solution can be
attacked in various ways with different pretensions. The
mostly used method is the discussion of the correspond-
ing linearized eigenvalue problem. It is generally simple
but it has the disadvantages of using (often wrong) com-
pleteness arguments and, in addition, of ignoring the
problem of nonlinear (in)stability. The more appropriate
method seems to us the Liapunov method.® When sta-
bility functionals can be found (satisfying the Liapunov
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criteria including the so-called convexity conditions),
sufficient criteria for nonlinear stability will be available.
However, as long as no additional arguments are
presented, there is no proof that the criteria are also
necessary. This task requires in general a tedious (com-
pared to the less accurate linearized eigenvalue analysis)
variational analysis. In the past’ it could be shown how-
ever that for solitonlike systems, a combination of the
Liapunov method and variational procedures very often
leads indeed to the desired necessary and sufficient cri-
teria. Finally, for soliton systems there can exist a third
method which, if known, is superior to the two men-
tioned before: the inverse scattering transform. It
solves the initial-value problem directly and therefore
can be used to answer all stability questions. However,
there is no systematic way to construct the inverse
scattering transform for an integrable system. That is
the reason why we cannot use it here. In this paper we
shall derive necessary and sufficient stability criteria for
solitary-wave pulses in shape-memory alloys by
Liapunov functionals and variational procedures.

The plan of the paper is as follows. In Sec. II. we shall
discuss the model and the resulting equation of motion for
the displacement of the atomic planes. The stationary
solitary-wave solutions are discussed in Sec. III. There,
we concentrate on pulse-type forms and show that soli-
tons can exist in the austenitic as well as martensitic
phase. Their explicit forms will be given either analytical-
ly or numerically. The stability even of the more general
(and quite difficult) case, i.e., the soliton in the martensitic
phase, will be treated in Sec. IV. From the constants of
motion, a Liapunov functional is constructed and its
definiteness properties are discussed. In those regions
where it does not fulfill the requirements for a stability
functional, variational principles for instability are
developed. (In Appendix B, the simpler and analytically
much easier case of a soliton in austenite is treated explic-
itly.) In Sec. V, the paper is concluded by a short discus-
sion of the physical applications.

II. ONE-DIMENSIONAL MODEL
AND EQUATION OF MOTION

In the one-dimensional model the crystal is built by
stacking atomic planes parallel to the habit plane (Fig. 1).
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FIG. 1. Sketch of the one-dimensional model.
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The shear strain e, depending on time and position in
stacking direction x, is in that plane in one direction only.
Since the strain does not vary within each layer, the mass
density remains constant. The displacement u (x,¢) of the

planes is related to the strain e by
e =0u/dx=u, (2.1)

In a previous paper® it was shown that, in reduced units,
the Landau internal-energy density (Fig. 2).

Uo(e,S)=eb—e*+g(S)e?+UyS) ,
U, expS

2.2)
g(S)=—gi+g2expS, Uo(S)=

describes the static behavior of homogeneously deformed
shape-memory alloys. S is the entropy density and g1, g>
and U; are positive material parameters such that the
monotonic function g (S) changes its sign in the entropy
range of interest. Other material parameters are hidden in
the rescaling of displacement, position, energy, entropy,
and later on, time. For g > 1 the internal energy has a
single minimum at e =0 representing the high-
temperature-phase austenite, whereas for g <0 there are
just two symmetric minima representing two variants of
the low-temperature-phase martensite. In the range
O<g <§, U; shows three minima, that is, austenite and
martensite are stable or metastable, reflecting the first-
order nature of the phase transition. In this way a single
energy function describes all the phases involved.

Since we deal with situations where the strain is expect-
ed to vary strongly over short distances, an additional
strain-gradient term has to be introduced into the internal
energy density U:

}f

1
FIG. 2. Landau internal energy U.(e) for different values of

L 2, 2 and 1). U is

entropy parameter g (— 4, &, +» %> 2

suppressed.
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Ule,es,S)=UL(e,S)+e? . (2.3)

Because of symmetry and stability, the strain gradient
gives, in lowest order, a positive quadratic contribution.
The nonlinear shear stress o(e,S) is defined by

0=3U/3e =0U; /de =6¢° —4e*+2g(S)e . 2.4)
In addition there is the couple stress
uley,)=0U/de, =2e, . (2.5)

In the following we deal with rapidly moving solitary
waves, so we can neglect heat conduction. Neglecting
also internal friction we end up with an adiabatic motion
where the entropy remains constant. In the absence of
external volume forces the equation of motion finally
reads

U—0yx +pxx=0. (2.6)

Here we have to use expressions (2.1), (2.4), and (2.5) to
understand Eq. (2.6) as a closed nonlinear partial
differential equation for u(x,?). In addition, for an
infinite crystal without external surface forces or surface
moments, we assume the boundary values

2.7)
(2.8)

u=0 forx—>*tcw ,

=0 forx—>=+ow .
They induce the following boundary conditions (note
e =uy):

e, =0 forx >+ . (2.9)

e,, forx—+
e= (2.10)
e_, forx——o,

where e, . and e, are the strain values corresponding

to the minima of Uy, .

III. SOLITARY-WAVE SOLUTIONS OF PULSE-TYPE

Looking for solitary strain waves moving with con-
stant velocity v, we make the ansatz

e(x,t)=e(x —vt)=e(z) (3.1)

which reduces the equation of motion (2.6) to the non-
linear ordinary differential equation

2

ve,—0,+u,;=0. (3.2)

For a pulselike solitary wave the values of strain at
z=+ « and at z= — o« are the same, i.e., in the bound-

ary condition (2.10) we have
(3.3)

€L =€ _ =€, .

Integrating Eq. (3.2) yields after some rearrangements

z(e)= f%—e(—e) (3.4)

with
R(e)=UL(e)—e®?/24v?%e e+C . (3.5)

The constant of integration C is determined by the bound-
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ary condition, which requires R (e¢) to have a double zero
at e, [compare Eq. (3.3)].

The total energy of a solitary wave relative to its undis-
turbed value for the crystal is given by

Eg= [ hix,0dx , (3.6)

where /4 is the Hamiltonian density
h=u0%/24Ule,ex)—Urle,) .

Due to the equation of motion for a pulselike solitary
wave, kinetic energy density and strain-gradient energy
density together equal just the Landau part of the energy
density. Hence we have

h=u’+2e, .

Taking into account Egs. (2.1) and (3.1) # can be replaced
by —v(e—e, ) if at x = — o the crystal is at rest. Then
the energy is given by

E.  (vig)= f[vz(e —e_ ) +2erdz (3.7)
with e (z;v2,g) and e _ (g).

Because of energy conservation, E, does not depend
on time. Remaining constant throughout the wave, the
value of the entropy density may be calculated from the
strain and the temperature T at infinity in front of the
wave. T is given by

T=03U/3S=(dg/dS)e*+dU,/dS
=(gre+U;)expS .

A. Soliton in austenite

We assume the crystal to be in the austenitic phase with
a moving solitary wave in it, which means e, =0. Be-
cause of symmetry the solitary wave can go to positive or
negative strain; let us assume e >0. The maximum am-
plitude e,, of the wave is given by that root of R (e,,)=0
which is closest to e =0. Some algebra yields
el =[1—(2v2—4g +1)'?]12 (3.9)

or
vi=2g —14+(1-2e5)2/2 . (3.10)

Hence the velocity of the wave is determined by its ampli-
tude, which is restricted by

O<el <i—V1/d—g . (3.11)
In a similar way we get from Eq. (3.11)
O<v?<2g . (3.12)

In the present case, the integral on the right-hand side of
Eq. (3.4) can be evaluated and we obtain

en

el(z)= , (3.13)

14+(1—e? /e})sinh®(ejenz)
with

et=1—e2>0. (3.14)
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Figures 3—5 show the dependence of the structure, veloci-
ty, and energy, respectively, of the soliton, on the ampli-
tude. The soliton in austenite can, of course, only occur
for g >0 where there is an austenitic minimum in the
internal energy. In the range O<g <, that is, if the
austenitic minimum is higher than the martensitic ones,
the soliton may occur even at rest with its highest ampli-
tude possible. For very small amplitude® the velocity ap-
proaches the acoustic wave velocity. The energy [see Eq.
(3.6)] reads

Eg=eme1 /24 (v 42g —Liarctanh(e,, /e;) . (3.15)

B. Soliton in martensite

In this case, the crystal is in the martensitic phase
with a moving solitary wave in it. That means that e _
is given by one of the martensitic minima of the internal
energy, let us assume the right-hand minimum (e , >0)
with

el =(1+V1-3g)/3. (3.16)

The amplitude of the soliton results from the lowest value
e, of the strain within the solitary wave, which is deter-
mined by the zero of R (e) closest to e . Rather tedious
algebra yields

vi=2(e, +e., ) ey —1+2e2)>0. (3.17)
This relation restricts e, in the following way:
0<(1—2e2)"?<e, <e, for l<g<t, (3.18)
—e,.<ey<e, OF ej<en,<e, for i <g<i, (3.19
—e,. <ey<e, forg<it. (3.20)
Here

er=[—e,.+(8—15¢%)'%]/4, (3.21)

er=—le,+e —(—ee,)?*]<e; <0. (3.22)

In the intermediate range of g there is not only an upper
value of the amplitude but also a gap.

Unfortunately, here Eq. (3.4), determining the struc-
ture, and Eq. (3.6), determining the energy of the solitary

05

10

FIG. 3. Structure of the soliton in austenite e(x —uvt) for
different amplitudes. The profile depends only on the amplitude
irrespective of temperature.
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FIG. 4. Velocity of the soliton in austenite as a function of

amplitude for different values of entropy parameter g. Below the
dashed curve the waves are unstable.

wave, can be integrated only numerically. Examples of
soliton structures are plotted in Fig. 6. Figure 7 shows
the dependence of the wave velocity on the amplitude.

IV. STABILITY CRITERIA

In this section we investigate the stability behavior of
the stationary (in a moving frame) pulselike solitary-wave
solutions. We begin with a slight reformulation of the
basic equations (2.6) and (3.2). The only reason for this
modification is to bring the dynamical equations into
some canonical form, which is more appropriate for stan-
dard stability considerations.

First, Eq. (2.6) can be written in the equivalent form

(still in the laboratory frame)
Uy 4 2Uxxxx — O (U gy =0, 4.1)

where the prime denotes the derivative with respect to the
argument and the function o(u,) is defined in Eq. (2.4).

E

FIG. 5. Energy of the soliton in austenite as a function of am-
plitude for different values of g. Below the lower dashed curve
there is no solitary-wave solution. Between the dashed curves
the solution is unstable.
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RNN/8
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FIG. 6. Structure of the soliton in martensite e(x —uvt) for
different amplitudes.

It is clear that Eq. (4.1) is the basic dynamical equation
for all perturbations considered in this paper; the stability
of the corresponding stationary (in a moving frame) solu-
tions will be investigated in this paper. We shall use in-
stead of e [as determined by Eq. (3.4), having, e.g., the

form (3.13)]
G=e—e, . (4.2)

Then G follows from Eq. (3.2), which we rewrite in the
form

— G +f(G)+1*G =0, 4.3)
where

f(G)=tole,+G)—1tole, )G, (4.4)
and

n'=1lole,)—1v?. 4.5)

FIG. 7. Velocity of the soliton in martensite as a function of
amplitude for different values of g. Outside the region limited by
the dotted curves there is no soliton solution. Below the dashed
curves the solution is unstable.
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tracted the term Jo'(e, ) to make f nonlinear in G. This
also guarantees that n>>0 whenever pulselike solitary
waves (with G—0 for |x | — «) exist. Since Eq. (4.3) is
written in the moving frame z=x —vt [see Eq. (3.1)], a
similar transformation has to be made in Eq. (4.1) with

the result
Uy — 20Uy +U2uzz 42U, —0' (U, U, =0 . (4.6)

The boundary conditions can be easily translated from
Egs. (2.9) and (2.10):

4.7)
(4.8)

and all finite times ¢. Then from Eq. (4.7), or the
equivalent form o(u,)—0 for |z | —>* « we also have

u,—e, for |z |—>ow,

u,—0 for |z | >

uy,—0 for |z | —w . (4.9)
The latter condition allows only
u,—>Ci forz—->+t 5 (4.10)

where C. are constants. Because of the Galilein invari-
ance (¥ —u +at) we can choose, without loss of general-
ity, the constants C . in symmetric form, i.e.,

C:=+K . 4.11)

Then it is straightforward to prove that Eq. (4.6) has (at
least) two constants of motion. First, from the energy and
momentum we construct

2

2
E= f+°cdz %(u,z—Kz)—f—ufz——v?uzz+D?ei

+vle (u,—e )+ Uplu,—Urle,) |,

(4.12)
where Uy (u,)=o(uy).
One finds
dE _ toe o, d o gy
=2 [ Tdz—-wi-K=0. (4.13)

Secondly, for
Q= f“odz[u,(uz—em)~uuf—+—veﬁc +2e vlu,—e,)]
(4.14)

we obtain after some algebra

49 _ (e, d 3
dr f_m dz——[Up(uz)—UL(e,)]=0. (4.15)

The two constants of motion, E and Q, will play a key
role in the stability analysis.

A. Liapunov functional for stability
We define the functional
L=E—E;+a*(Q—Q;)?, (4.16)

2

where a” is a positive constant to be determined later.
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The index s (on E and Q) should indicate that we evaluate
the corresponding values [see Eqgs. (4.12) and (4.14)] for
u =us(z —§&), where ug,(z)—e, =G, as determined from
Eq. (4.3). The shift parameter £ allows us to take the so-
called closest soliton as a reference state when stability
with respect to form is considered. Still we have

daL _
dr

although £=£&(¢). The integrands in the constants of

motion vanish for z—+ « and the borders of integration

do not change under the substitution z—z —§&.
Introducing the notation

(4.17)

Y=u,, (4.18)

d=u,—e —G(z—E)=u,—u, , (4.19)
we write

L=8L+8L +8>°L . (4.20)

The first term on the right-hand side of Eq. (4.20) con-
tains by definition the first-order contributions in ¢ and v;
the second term contains the second-order contributions,
and so on. For 8L we obtain

SL =2 fj"" dz ¢[ —G., +f(G)+1*G]=0,  (4.21)

E

=Y | ) +{(¢ |H | )+ |G )—20(d |G ).

because of Eq. (4.3).
In the second order we have to deal with

2
—L+%U’G+ew

SL= [""d S

SV

+at| [ TdzuG -2 [T7dz4G |

(4.22)
Here we have introduced the notation
<--->:f*:dz-~ (4.23)
and the operator
H:—:?ZZJrf'(GHnZ. (4.24)

H is a Schrodinger-type operator with the following prop-
erties:

HG,=0, (4.25)

H‘IG:—anE——a—a—zG .
n
Since G is pulselike, and thus G, has a node, the
Schrodinger-type operator possesses an eigenfunction e
with a negative eigenvalue A_. In Appendix A we shall
derive the auxiliary estimates

Ly |v)+a’ (Y| G)—2v(d|G))*
>2(1—XeWw* (¢ |G) (G |G) "+ Lelyp| ¥)

(4.26)

(4.27)
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for sufficiently small € >0, X > 1, eX << 1, and ate>>1.
Furthermore, to estimate the remaining term
(¢|H|¢) in 8%L, we also prove in Appendix A that for

(G|H '|G)<0 (4.28)
and even functions a with

(a |GY=0, (4.29)

(a|H|a)>0 (4.30)

holds. Finally, we prove in Appendix A that under the
condition (4.28), but with {a | G )40, the estimate

(a|H|a)>(G|H '|G) a|G)? 4.31)

holds for even functions a.

Using the results (4.27), (4.30), and (4.31) we can draw
the following conclusions.

(i) The odd parts (b) of ¢ make 8°L positive since the
translation mode ¢=G, can be excluded by the argu-
ment that we are considering stability with respect to
form.

(ii) The even parts (a) of ¢ lead to sufficient stability
criteria when we calculate the sign of 82L.

(iii) A sufficient criterion for stability is that under the
condition (4.28)

(GIH '|G) '"+20XG|G)'>0

holds.
(iv) Because of relation (4.26) we can rewrite the
sufficient criteria for stability in the simplest form
9
an’

(4.32)

(G|G)>0, (4.33)

and

v2~a—2(G\G>>(G|G), (4.34)

o
where (G | G) depends on 7 and g.

Note that now the criterion (4.34) alone is sufficient as
it stands. From Eq. (4.5) it follows that the derivative
9/37m* may be replaced by —23/0v?, with g and therefore
e, fixed. By a straightforward calculation it can be
shown from Eq. (3.7) that inequality (4.34) is equivalent
to

IE o (v2,8)
A?
Since the velocity v of the soliton is monotonically de-

creasing with its amplitude Ae (Figs. 4 and 7), the stabili-
ty condition may instead be written

<0.

O0E (Ae,g)

dAe >0
So the soliton is stable if its energy increases with ampli-
tude.

(v) For small but finite perturbations the sign of 8L
will determine the sign of L; therefore physically it seems
reasonable to abandon the discussion of §2°L.
Mathematically, the estimate of 82°L can be performed
by making use of the Sobolev inequalities.



36 STABILITY OF SOLITARY-WAVE PULSES IN SHAPE- . ..

B. A variational principle for instability

In this subsection we want to show that in the region
complementary to (4.34) instability occurs. For that pur-
pose we use a method which has been proved already to
be successful in many soliton systems. !°

Remember that the basic equation determining the
dynamical behavior of our system is Eq. (4.6). When
linearizing it with respect to the soliton solution and using
the notation (4.19), we arrive at

¢y —2v¢,,—20,H 3,6=0 (4.35)

for the perturbations ¢. Motivated by the search for an
exponential instability [¢ ~ exp(yt)], we investigate first a
related model system, where part of the time derivatives
have been simplified by assuming already a time depen-
dence of the form ~ exp(&z). (Later on, we shall set
v =25.) The model system in mind is

vy, =—0,HY (4.36)

with
8.

W:H—?az . (4.37)
If we split ¢ into its odd (1) and even (g) contributions

Y=g +u, (4.38)
and define

—(u | —03,%#39,|u)
h(8%) =5 sup | | 4.39)

Cu | HVu)

(where #f is positive for odd functions), then the ex-
ponential growth rate ¥ of the system (4.37) is given by'!

y2=h(8?) . (4.40)

v u

In Eq. (4.39), the supremum has to be evaluated for all
odd test functions u. It has been further shown'® that the
original system (4.35) is unstable with a growth rate y if
the implicit equation

yi=h(y?) 4.41)

possesses a positive solution. Thus the rest of this subsec-
tion is devoted to the proof that Eq. (4.41) has a positive
solution in the region complementary to (4.34). The gen-
eral procedure is as follows. One can show!© that

lim A(8%)=0 .

8" —

(4.42)

Then by continuity arguments, instability will follow if we
can show (by chosing appropriate test functions) that
h(0)>0 or h(8)~c8 for & << 1, with a factor ¢ and an
exponent v such that a solution of Eq. (4.41) exists. Let
us briefly summarize the results for the following cases

() {G|H™'|G)>0. (4.43)
The localized integral form of
f={(G|G)H'G—(G|H'|G)G, (4.44)

i.e.,
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a= [FIf(©)—eflef)]ds (4.45)

for e—0, can be used to construct a test function with the
intended result. The function

u=(G, |G, u+(u, |G)G, (4.46)
has the property
(u|G,)=0, (4.47)

which guarantees that H ~!u exists. Some simple calcula-
tions yield

u, =G, |G, ) f(z2)—€(G, |G, ) flez)—€{f(e2) | G )G, .
(4.48)

When using this in the numerator on the right-hand side
of Eq. (4.39) for §=0, i.e., when calculating

—u; |H|u,)=(G, |G,)*{G|G)G|H"'|G)
—(G|H '|G)G|H|G))
+0(e) , (4.49)

we can determine the sign of the right-hand side of Eq.
(4.49). Namely, in the case (I), Eq. (4.43), we get

—u, |H|u,)>0, (4.50)
since (G | H | G) <0 and thereby
h(8*=0)>0, (4.51)
implying instability.
The second case is
(I (G|H'|G)<0; (4.52)

then a calculation analogous to the first case can be per-
formed. Let us choose

f=H"'G (4.53)

and the same definition (4.45) for the localized integral
form of f. In Appendix C we shall show then that for
0 <& << 1 the estimate

_ 8 (GG 12
2w (G H 1)L o

holds. This clearly shows that under the condition (4.52)
and for

(GIH'|G) '"+2¥G|G) '<0,

h(8%)> (4.54)

(4.55)

a positive solution of Eq. (4.41) is possible. The reason is
that for (4.55), h(8?) first grows faster than &% for
0<82<<1, but from Eq. (4.42) we know that this behav-
ior will change later so that instability is possible. Note
that condition (4.55) is complementary to (4.32).

The final case is

(III) {G|H™'|G)=0. (4.56)

The corresponding argument parallels over a wide range
that in the second case (II) when we use
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u= [CdE[f(§)—ef ()]
0

48174 fozdg[G(§)—eG(e§)] 4.57)
as a test function. The final result is
h(8)~38 (4.58)

for 0 <8 << 1, and this again clearly shows that instability
is possible.

We have thereby arrived at the final conclusion: The
stability conditions as summarized in the formulas (4.33)
and (4.34) are sufficient and necessary. We renounce a
possible calculation of the maximum growth rates ¥ in the
unstable region. The regions of instability are marked in
the corresponding Figs. 3, 4, and 6.

V. SUMMARY AND CONCLUSIONS

Within the framework of a one-dimensional Ginzburg-
Landau theory for the martensitic phase transition it was
shown that in martensite as well as in austenite there exist
solitary-wave solutions of the pulse type for the shear
strain. In both the cases the velocity of the wave de-
creases with increasing amplitude; even a static solution
exists. Static solutions, as well as slowly moving ones, are
unstable in form with respect to perturbations of the ini-
tial conditions. Hence the static solution represents the
critical nucleus. In this paper we did not investigate the
mode of highest growing rate. Nevertheless, a simple cal-
culation shows that a pulse a little bit smaller than the un-
stable critical nucleus has lower potential energy, that is,
it further shrinks. On the other hand, a pulse a little
bigger than the critical one has lower energy too, hence it
will further grow. Thus the static critical nucleus is un-
stable in both directions. Using numerical values for the
parameters involved, e.g., as determined for AuCuZn; in
a previous paper,® the energy of the static critical nucleus
in both cases, martensitic or austenitic nucleus, referring
to the cross-sectional area perpendicular to the stacking
direction, if of the order of magnitude of 0.1 eV/nm?.
The same value applies to moving pulses for not-too-small
amplitudes. The energy mentioned is a result of the one-
dimensional model. Therefore contributions due to elastic
misfit in the plane perpendicular to the stacking direction
are not included. These contributions, however, are pro-
portional to the diameter of the nucleus; that is, they grow
with the square root of the cross-sectional area only.

It was further shown that pulselike solitary waves are
stable if moving faster than some threshold speed, which
in turn is lower than the acoustic wave velocity. In the
present paper, the initial-value problem for the nonlinear

|9 +a2((B]G)—20(6 | G) P> |a?s 1€ 1

20?2 (1—e€)a?

2 {G|G)
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equations of motion was not solved. This can be done
only numerically.

The current forecasted picture, however, is that soliton
will propagate with unchanging profile in a stable manner.
It may be assumed that initial data near that of the soliton
will produce a soliton plus phonons. Therefore it is
reasonable to predict that a moving soliton can be emitted
by a pulselike shearing force on the surface, even if its
time profile does not exactly meet the profile of the soliton
to be generated. In this way nuclei can be transmitted
through a crystal. For example, imagine a polycrystal
where one grain undergoes a phase transition from
austenite to martensite after a heterogeneous nucleation
process. When the phase boundary reaches the grain
boundary there is a jumping surface force exerted on the
neighboring grain where a stable pulselike soliton may be
generated if temperature and local static stress are favor-
able. A soliton emitted into the untransformed grain with
a temperature gradient in it may run into a region of
slightly different temperature where the soliton becomes
unstable, thus representing a critical nucleus which can
initiate the phase transition in the grain. This may hap-
pen even if the force on the surface was not high enough
to trigger the phase transition directly. Another possibili-
ty for the previously stable soliton to become unstable is
to run into a stress concentration generated, e.g., by a
dislocation. A stress field reduces the local value of the
shear modulus which is represented by the parameter g.
Therefore the stress concentration influences the stability
of solitons in a similar way as temperature does. As a re-
sult dislocations may serve as soliton-assisted nucleation
centers even if their own nucleation potency is not
sufficient to start the phase transition. Based on these
considerations it is proposed that stable pulselike solitary
waves are important as a new mechanism for autocatalytic
nucleation processes'? in shape-memory alloys.

APPENDIX A: SOME USEFUL ESTIMATES

First we prove the relation (4.27). The Schwarzs in-

equality yields

(Wl >(P|GYHG|G) . (A1)
We write
| . € ) l1—e 1
7(¢r¢)22<¢y¢>+—2 ———<G|G><¢|G>2, (A2)

where € is some sufficiently small positive number to be
determined later. Using this on the left-hand side of in-
equality (4.27), we obtain, after some algebraic manipula-
tions,

(| G>2—4a2u<w[G><¢|G>+4a2u2<¢|G>Z+§(wr¢>

276 |6) 5, l—e
(03

<¢\G>2+§<w|¢>. (A3)

1

2 (G|G)
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Thus for

(X—1ea’>(1—e)1—Xe)/(2{G |G ), (A4)

which can be fulfilled for sufficiently large a?, small €, and
X > 1, the estimation (4.27) follows. Take for example
a~e !and X fixed for a— oo.

Next we derive (4.30). Any even function a we can
decompose into a component parallel to e _ and the rest
being perpendicular to e _, i.e.,

(ale_ )

a=——"———e_+a,=a_+a, . (A5)
(e_le_)
Then we have
(a|H |a)=—|A_|{a_|a_)+{a,|H |a)). (A6)

3039
Because of {a | G) =0, Eq. (4.29), we can derive for
F=H"'G (A7)
the helpful relation
—|A_|Ca_ |F_)+(a,|H|F,)=0, (A8)

which can be used in the Schwarz inequality

(ai1H|(11>2<al|H|Fl)2<Fl|H'Fl>_l

> I)\,,]2<a._ |F_>2<F1|H‘Fl>_l .
(A9)

Thus, we can transform Eq. (A6) into the form

(a|H|a)>—|A_|{a_|a_)+|A_|Na_|a_Y(F_|F_)F, |H|F)!

>|A_|€a_|a )F |H|F) N(—(F|H|F)).

For (F|H|F) <0, Eq. (4.28), we therefore get the
desired result (4.30) since H is positive definite in the
function space orthogonal to e _ and G,.

Finally we present the relevant arguments for the esti-
mate (4.31). Let us discuss for that purpose

i = inf —M H|¢) (A11)
i in (§(G)2 ,
& even

i.e., the infimum of the right-hand side of (A11) when
varied over all possible even test functions &, which exists
because of the foregoing arguments. We replace in the
denominator on the right-hand side of Eq. (A11) (£|G)?
by (£ | H | F)? and introduce instead of the test functions

>

S=E—F, (A12)
with the normalization

(F4+8|H|FY=(F|H|F) . (A13)
Then the definition (A 11) reads

ie inf |SFIHIF)+(8|H|8)

5 (F|H|F)?
even
=(F|H|F) . (A14)

Combining the statements contained in (A11) and (A14),
it is straightforward to draw the conclusion (4.31).

APPENDIX B: STABILITY OF A SOLITON
IN AUSTENITE

In this appendix we rederive the stability criterion for
a soliton in austenite although all the calculations of Sec.
IV do apply for this special case. The reason is that (i)
we can easily show the similarity to the so-called Q sta-
bility,” and (ii) the stability criteria (4.33) and (4.34) can

(A10)

—

be evaluated explicitly.

In the present case (e, =0) we use E —E; itself as a
Liapunov functional and vary for 6Q=0 (Q stability).
The first variation vanishes because of the stationary equa-
tion (4.3) and for the second variation we obtain

SE= [""dz(1¢}+.Hs.), (B1)
where
d2
H=—;7+%0’(G)—%vz , (B2)
z
when
b=u—u; , (B3)
and
G=u . (B4)

The subsidiary condition 8Q =0 implies

[ TdzeG=2 [ 7dz4.G . (BS)
By the Schwarz inequality
[trazat|| [ a6 | [Trdz oG]

(B6)

we then obtain from (B1)
SE>20G|G) o, |G)*+(o, |H |d,), (BT

when use is made of Eq. (B5). Introducing
v=¢, (B8)

we rewrite (B7) in the form

SE>(G|G) K¢ |G)? 2u2+%%J>¢T><G|G) )

(B9)
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The estimate (4.31) now immediately leads to the stability
condition (4.32), together with (4.28).
With the abbreviation

N=(G|G) (B10)
and 772= —1v 2, the stability condition (4.32) can be writ-
ten as

-d-(Nv)<0. (B11)

dv
For the solution (3.13) we have

N=[""4dz q =2 arctanh (B12)

f*oc 14(1—g?)sinh’z 7
and
. 172

22 tyt|=—49 | | B13

v g +3 11q ( )
where

g=em/ey .

For the explicit evaluation we can use instead of criterion
(B11),

: 172
28— t+1 |
Pl 1+gq dN
—— 5N, (B14)
[(1—g)(1+4q)] dg
which reads
g>elel+ene(el —el ) arctanh(e,, /e;) . (B15)

The results are introduced in Figs. 4 and 5.

APPENDIX C: INVESTIGATION
OF THE INSTABILITY REGION (4.55)

In this Appendix, we treat the second case (II) [see Eq.
(4.52)] in more detail, i.e., we prove the estimate (4.54).
With that intention, we calculate the numerator

Z=—u, | H|u,) (C1
and the denominator
N=Cu|H "u), (C2)

appearing on the right-hand side of Eq. (4.39) for some
test function in the case 0 <& << 1. Inserting the function
(4.53) into the definition (4.45) we obtain

u= fozdg[H“G(é)—eH_'G(eg)] : (C3)
Straightforward evaluation of Z yields
2
Z:-(G\H*'|G>+%<u|u>+0(6). (C4)

One should note that
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(ulu)=0(1/€) . (C5)

Therefore we choose e=8° with B> 5 to obtain from Eq.

(C4)
Z=—(G|H '"|G)+0(8’8P) . (C6)

Next we calculate N. When doing this we formally

rewrite u, i.e.,
u=aF+u,, (C7)

where (u; |G,)=0 by definition and the (yet undeter-
mined) function F should have a component parallel to

G,. Then the coefficient a is
a={u|G,)(F|G,) . (C8)

Using the Schwarz inequality, we find for odd functions
(u) with the positive-definite operator # ~' (for 0 < 8),

N<o*(F|H " |F)
+20(F | H | FYVuy | H " u )
+<ul )7{7]1141) .

Estimating the terms appearing on the right-hand side of
inequality (C9), one has

(F|#H'F)<(F|(—-18%0;%)""|F)

(C9)

gf;(FZ | F,) (C10)

and
Cu | H " u)<Cuy |H  uy)
< Hu|u))<n Hulu)~0(1/€) .
(C11)

Now we can simplify (C9):
N <5 | GIXF, |G E, | F) +0(6~ 287

(C12)
The choice
F= [fd[G(£)—eG(ef)] (C13)
leads to
N< é(a |H™'|G)YXG|G)~'+0(5~ 24P/ 5-F) .
(C14)

For B=1, the use of the estimates (C6) and (C14) immedi-
ately leads to (4.54) for 0 < 8% << 1.




36 STABILITY OF SOLITARY-WAVE PULSES IN SHAPE- . .. 3041

L. Delaey, R. V. Krishnan, H. Tas, and H. Warlimont, J.
Mater. Sci. 9, 1521 (1974); A. L. Roitburd, in Solid State
Physics: Advances in Research and Applications, edited by F.
Seitz, D. Turnbull, and H. Ehrenreich (Academic, New York,
1978), Vol. 33, p. 317.

2F. Falk, J. Phys. (Paris) Colloqg. Suppl. No. 12, 43 C4-3 (1982).

3G. R. Barsch and J. A. Krumhansl, Phys. Rev. Lett. 53, 1069
(1984).

4A. E. Jacobs, Phys. Rev. B 31, 5984 (1985).

S5F. Falk, Z. Phys. B 51, 177 (1983).

OF. Falk, Z. Phys. B 54, 159 (1984).

7T. Suzuki and M. Wuttig, Acta Metall. 23, 1069 (1975); T.

Suzuki, Metall. Trans. A 12, 709 (1982).

8V. I. Zubov, Methods of A. M. Lyapunov and their Application
(Noordhoff, Groningen, 1964).

9E. W. Laedke and K. H. Spatschek, in Differential Geometry,
Calculus of Variations and their Applications, edited by Th. M.
Rassias and G. M. Rassias (Dekker, New York, 1985), Chap.
20; E. W. Laedke and K. H. Spatschek, in Advances in Non-
linear Waves, edited by L. Debnath (Pittmann, London, 1984).

I0E. W. Laedke and K. H. Spatschek, Physica 5D, 227 (1982).

E. W. Laedke and K. H. Spatschek, Phys. Rev. Lett. 41, 1798
(1978).



