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Stability of solitary-wave pulses in shape-memory alloys
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Within the framework of a one-dimensional continuous Ginzburg-Landau theory, pulselike solitary
waves in shape-memory alloys are investigated. By neglecting heat conduction, internal friction, and
external volume forces, but including shear-strain and strain-gradient contributions in addition to the
Landau internal energy, a simple equation of motion is derived for the displacement of the atomic
planes. It is shown that it has pulselike solitary-wave solutions for both the austenitic and the mar-

tensitic phase. The stability of the solitary pulses is investigated by the Liapunov method. Stability
functionals are presented and analyzed. In the parameter regions where they do not satisfy the
Liapunov criteria for stability, instability can be proved by variational methods. Thus, necessary and
su%cient stability criteria are available for the existing pulselike solitary waves in shape-memory al-

loys. The criteria and their physical consequences are discussed.

I. INTRODUCTION

The shape-memory effect and related phenomena such
as pseudoelasticity and ferroelasticity are due to a first-
order martensitic phase transition. ' The latter is a special
type of displacive phase transitions with a significant shear
strain of the unit cell and a rather small change of the
volume, whereas the rearrangement of the atoms within
each cell ("shuIIIe") is secondary. A more detailed
description of the physical phenomena can be found, e.g. ,
in Ref. 2 and the references therein. At high tempera-
tures most of the crystals have a cubic lattice. Typical are
ordered bcc structures such as B2 (e.g. , CuA1, NiTi, and
AuCd) or DOq (e.g. , CuA1Ni and CuA1Zn), but the fcc
lattice occurs also (e.g. , In Tl). This high-temperature
phase is called austenite. The low-temperature phase
(martensite) typically shows orthorhombic (e.g. , for CuA1,
CuA1Zn, CuA1Ni, AuCd, CuAuZnq, NiTi, etc.) or tetrag-
onal (e.g. , for InT1) symmetry. In order that the habit
plane, i.e., the contact plane between martensite and
austenite, is stress free on a macroscopic scale, martensite
occurs in a twinned microstructure. Since in shape-
memory alloys twinning takes place on the scale of the
lattice, a rather complex stacking sequence of close-
packed planes is observed. Due to the extremely fine
twinning, the habit-plane motion is reversible, thus ena-
bling the shape-memory effect.

For the cubic-to-tetragonal martensitic phase transition
Barsch and Krumhansl established a three-dimensional
Cxinzburg-Landau theory which shows kink-type solitary-
wave solutions representing moving plane twin boun-
daries. In their theory, elastic energy depends on ap-
propriate strain tensor components up to fourth order
and, in addition, on strain-gradient terms up to second or-
der. For a square-rectangular martensitic transformation
a Ginzburg-Landau theory was investigated by Jacobs.

His two-dimensional (2D) theory models both cubic-to-
tetragonal as well as cubic-to-orthorhombic transforma-
tions. In order to describe a first-order transition in a
one- or two-dimensional theory, elastic energy has to
comprise strain terms of second, fourth, and sixth order
as well as strain-gradient terms of second order. The
plane domain wall solutions in the 2D theory are essen-
tially one-dimensional, i.e., they are identical to domain
wall solutions resulting from a one-dimensional
Ginzburg-Landau theory. So the one-dimensional theory
yields the most important solutions of the 2D version al-
ready. Furthermore, it allows for pulselike solitary-wave
solutions. A discrete version of a one-dimensional (1D)
theory was investigated by Suzuki and Wuttig. Using for
the energy an even polynomial of the sixth degree they
numerically integrated the equation of motion for a lattice
with periodic boundary conditions to find moving marten-
sitic nuclei in an austenitic matrix.

The purpose of the present paper is to investigate, in
the framework of a 1D continuous Ginzburg-Landau
theory, the pulselike solitary waves in shape-memory al-
loys. Such an investigation requires a thorough discussion
of the relevant physical models and their solutions. Very
important for the development of a possible soliton
scenario is the answer to the question of the stability of
the calculated solitary waves. This topic will be a central
point of this investigation.

The problem of stability of a nonlinear solution can be
attacked in various ways with different pretensions. The
mostly used method is the discussion of the correspond-
ing linearized eigenvalue problem. It is generally simple
but it has the disadvantages of using (often wrong) com-
pleteness arguments and, in addition, of ignoring the
problem of nonlinear (in)stability. The more appropriate
method seems to us the Liapunov method. When sta-
bility functionals can be found (satisfying the Liapunov
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U(e, e,S)= Ut (e,S)+e (2.3)

cr =r)U/Be=BUL IBe=6e —4e +2g(S)e . (2.4)

Because of symmetry and stability, the strain gradient
gives, in lowest order, a positive quadratic contribution.

The nonlinear shear stress o.(e,S) is defined by

ary condition, which requires R (e) to have a double zero
at e [compare Eq. (3.3)].

The total energy of a solitary wave relative to its undis-
turbed value for the crystal is given by

E„,= h x, t dx, (3.6)

In addition there is the couple stress

p(e ) =8 U/c)e„= 2e„. (2.5)

where h is the Hamiltonian density

h = u /2+ U(e, e ) —UL (e „) .

& —ox+pxx =0 . (2.6)

Here we have to use expressions (2.1), (2.4), and (2.5) to
understand Eq. (2.6) as a closed nonlinear partial
diff'erential equation for u (x, t) In additi. on, for an
infinite crystal without external surface forces or surface
moments, we assume the boundary values

p=O for x~+ ao,
o. =O for xi+op .

(2.7)

(2.8)

They induce the following boundary conditions (note
e =u„):

In the following we deal with rapidly moving solitary
waves, so we can neglect heat conduction. Neglecting
also internal friction we end up with an adiabatic motion
where the entropy remains constant. In the absence of
external volume forces the equation of motion finally
reads

Due to the equation of motion for a pulselike solitary
wave, kinetic energy density and strain-gradient energy
density together equal just the Landau part of the energy
density. Hence we have

h =6 +2ex

Taking into account Eqs. (2.1) and (3.1) u can be replaced
by —u(e —e ) if at x = —m the crystal is at rest. Then
the energy is given by

E„,(v, g)= f [v (e —e ) +2e, ]dz (3.7)

T=BU /B S=(dg /d S) e +dU /dS

with e(z;u, g) and e„(g).
Because of energy conservation, E&,&

does not depend
on time. Remaining constant throughout the wave, the
value of the entropy density may be calculated from the
strain and the temperature T at infinity in front of the
wave. T is given by

e =0 for x~+ oo . (2.9) = (gee + U~ ) expS . (3.8)

e= e+„ for x~+ cx)

e for x~ —~, (2.10) A. Soliton in austenite

where e+ and e are the strain values corresponding
to the minima of UL.

III. SOLITARY-WAVE SOLUTIONS OF PULSE-TYPE

Looking for solitary strain waves moving with con-
stant velocity v, we make the ansatz

e =[I—(2u —4g+ I)'~ ]/2 (3.9)

We assume the crystal to be in the austenitic phase with
a moving solitary wave in it, which means e =0. Be-
cause of symmetry the solitary wave can go to positive or
negative strain; let us assume e ~0. The maximum am-
plitude e of the wave is given by that root of R (e )=0
which is closest to e =0. Some algebra yields

e (x, t) = e (x ut) =e (z)— (3.1) or
which reduces the equation of motion (2.6) to the non-
linear ordinary differential equation

u =2g —
—,'+(1—2e ) /2 . (3.10)

2
v e, —o., +p« ——0. (3.2)

Hence the velocity of the wave is determined by its ampli-
tude, which is restricted by

For a pulselike solitary wave the values of strain at
z=+ oo and at z= —oo are the same, i.e., in the bound-
ary condition (2.10) we have

0 & e & —,
' —& I/4 —g

In a similar way we get from Eq. (3.11)

(3.1 1)

e+ ——e =e (3.3) 0&v &2g . (3.12)

Integrating Eq. (3.2) yields after some rearrangements

dez(e)=
&R (e)

with

R (e) = Ut (e) —e u /2+u e e+ C .

(3.4)

(3.5)

2

e (z)=
1+(1—e /e~ ) sinh (e~e z)

with

(3.13)

In the present case, the integral on the right-hand side of
Eq. (3.4) can be evaluated and we obtain

The constant of integration C is determined by the bound- e~ ——1 —e ~0 (3.14)
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tracted the term —'o' e—,o 'e„) to make f nonlinear in G. This
also guarantees that 0 whenever pulselike solitar

for ~x
~

m) exist. Since Eq. (4.3) is
written in the moving frame z =x —vt [see Eq. (3.1), a

the result
as o e ma e in Eq. (4.1) with

u t—t 2vuzt + v uzz + 2uzzzz —CT (uz )uzz —0 (4.6)

The boundar cony onditions can be easily translated from
Eqs. (2.9) and (2.10):

u, e„ for ~z
~

u„O for ~z
~

oo

(4.7)

(4.8)

FIG. 6. Stru cture of the soliton in martensite e (x —Ut) for
different amplitudes.

f p
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be investigated in this paper. We shall use in-
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q, aving, e.g. , the

and all finite times t. Then from Eq. (4.7), or the
equivalent form o (u, )~0 foror z ~+ac we also have

u„O for ~z
~

The latter condition allows onlon y

u, C+ for z +~,

(4.9)

(4.10)

where C+ are constants. Because of the Galilein invari-

it the c
ance u ~u +at ) we can choose, without los f Iss o genera-
'

y, e constants C+ in symmetric form, i.e.,

G=e —e (4.2)
C+=+K . (4. 1 1)

Then G follows from Eq. (3.2) h' h

form
, w ic we rewrite in the

Then it is straightforward to prove that Eq. (4.6) has at
least) two constants of motion. F' t f h yirs, rom t e energy and
momentum we construct

where

Gzz +f(G)+7/ G:0 (4.3) +~E= dz —(u' —K )+u'—
oc

ZZ

2 2
U 2 U, + e

and

f (G) = —,'o (e„+G) —'cr(e —)Goc

tt = —,'o(e„)—
—,
'v' .2

(4.4)

(4.5)

2+v e (u, —e„)+Ut(u, I
—UL(e„)

(4.12)

In the two definitions off and t) we have added and sub-

g=P 0.1

g=0.2

where Ut' (u )=cr(u ).
One finds

dE +~ d=2v dz (u, —K )=0 .

Secondly, for

(4.13)

0.2 3

0.25

.275

+ ooQ= dz[u, (u, —e„)—vu,'+ve +2e„v(u, —e„)
(4.14)

we obtain after some algebra

dQ + d
dz [ Ut ( u, ) —Ut (e „)]=0 . (4.15)

The two constants of motion E d Q,
role in the stability analysis.

'on, an, will play a keey

—0.5 0.5
A. I iapunov functional for stability

FIG. 7. Velocit
'

y of the soliton in martensite as a function of
amplitude for different values of g. 0 t d hu si e t e region limited by
t e otted curves there is no soliton solution. Below the dashed
curves the solution is unstable.

We define the functional

L =E E, +a (Q —Q )— (4.16)

hwhere a is a positive constant to be determined later.
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The index s (on F. and g) should indicate that we evaluate
the corresponding values [see Eqs. (4.12) and (4. 14)] for
u =u, (z —g), where u„(z)—e =G, as determined from
Eq. (4.3). The shift parameter g allows us to take the so-
called closest soliton as a reference state when stability
with respect to form is considered. Still we have

dL
dt

(4.17)

although g=g(t). The integrands in the constants of
motion vanish for z~+ I& and the borders of integration
do not change under the substitution z~z —g.

Introducing the notation

for sufficiently small e&0, P & 1, eP «1, and a e»1.
Furthermore, to estimate the remaining term

(P
I

H P) in o L, we also prove in Appendix A that for

(G IH '
I
G) &0

and even functions a with

(a G)=0,
(a

I

H
I

a » 0

(4.28)

(4.29)

(4.30)

(a IH Ia) &(G IH ' G) '(a
I

G)' (4.31)

holds. Finally, we prove in Appendix A that under the
condition (4.28), but with (a

I

G ) &0, the estimate

u (4.18)

P=u, —e„—G(z —g) =u, —u„,
we write

L =6L+62L +5~3L .

(4.19)

(4.20)

oL=2 f dz p[ —G„+f(G)+il G]=0,
because of Eq. (4.3).

In the second order we have to deal with

(4.21)

2

o'L = f dz g'+p,'+p—' — + —tr'G+e
2

'
2 2

The first term on the right-hand side of Eq. (4.20) con-
tains by definition the first-order contributions in P and g;
the second term contains the second-order contributions,
and so on. For 6L we obtain

(G H ' G) '+2t (G G) ')0 (4.32)

holds.
(iv) Because of relation (4.26) we can rewrite the

sufficient criteria for stability in the simplest form

holds for even functions a.
Using the results (4.27), (4.30), and (4.31) we can draw

the following conclusions.
(i) The odd parts (b) of P make o L positive since the

translation mode P=G, can be excluded by the argu-
ment that we are considering stability with respect to
form.

(ii) The even parts (a) of P lead to sufficient stability
criteria when we calculate the sign of 6 L.

(iii) A sufficient criterion for stability is that under the
condition (4.28)

+a dz G —2U dz G
2

and

, (GIG)&0,
an'

(4.33)

,'&010&+&—0—IH14&+~'(&0
I
G &

—»&&
I

G &)'

Here we have introduced the notation
+ oo

~ ~ ~ dz 0 ~ ~

(4.22)

(4.23)

and the operator

d2
H = — +f'(G)+rj' .

dz2
(4.24)

HG, =0, (4.2S)

H is a Schrodinger-type operator with the following prop-
erties:

U (G G))(GIG), (4.34)
an'

where ( G
I

G ) depends on g and g.
Note that now the criterion (4.34) alone is sufficient as

it stands. From Eq. (4.5) it follows that the derivative

may be replaced by —29/QU', with g and therefore
e fixed. By a straightforward calculation it can be
shown from Eq. (3.7) that inequality (4.34) is equivalent
to

BE,„,(v, g) &0.
BU

Since the velocity U of the soliton is monotonically de-
creasing with its amplitude Ae (Figs. 4 and 7), the stabili-

ty condition may instead be written

H 'G= —G 2=—— G.a
a~'

(4.26)
~Et,t(~e, g)

Bhe

Since G is pulselike, and thus G, has a node, the
Schrodinger-type operator possesses an eigenfunction e
with a negative eigenvalue A, . In Appendix A we shall
derive the auxiliary estimates

—,'&q
I
q&+~'((q

I
G &

—»(y
I
G) )'

&2(1—X.)"&y I

G&'(G
I

G&-'+-,"&y
I

q& (4.27)

So the soliton is stable if its energy increases with ampli-
tude.

(v) For small but finite perturbations the sign of o L
will determine the sign of L; therefore physically it seems
reasonable to abandon the discussion of 6- L.
Mathematically, the estimate of 5- L can be performed
by making use of the Sobolev inequalities.
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B. A variational principle for instability

In this subsection we want to show that in the region
complementary to (4.34) instability occurs. For that pur-
pose we use a method which has been proved already to
be successful in many soliton systems. '

Remember that the basic equation determining the
dynamical behavior of our system is Eq. (4.6). When
linearizing it with respect to the soliton solution and using
the notation (4.19), we arrive at

p„—2UQ„—2 B,H c},/=0 (4.35)

for the perturbations P. Motivated by the search for an
exponential instability [P- exp(yt)], we investigate first a
related model system, where part of the time derivatives
have been simplified by assuming already a time depen-
dence of the form —exp(5t). (Later on, we shall set
@=6.) The model system in mind is

Up) = —0 &Q

with

(4.45)

for a~0, can be used to construct a test function with the
intended result. The function

u=(G, IG, )u+(u, IG)G,

has the property

(u IG, )=0,

(4.46)

(4.47)

—(GIH 'IG)(GIHIG))

which guarantees that H 'u exists. Some simple calcula-
tions yield

u, =(G, G, )f(z) —e(G,
I
G, )f(ez) c(f(ez—)

I
G)G„.

(4.48)

When using this in the numerator on the right-hand side
of Eq. (4.39) for 5=0, i.e., when calculating

(4.37)
+O(e), (4.49)

If we split P into its odd (u) and even (g) contributions

we can determine the sign of the right-hand side of Eq.
(4.49). Namely, in the case (I), Eq. (4.43), we get

g=g+u,
and define

—&u
I

—c)&B, Iu&
h(5 )=, sup '

U' ~ &u Im
—'Iu&

(4.38)

(4.39)

—(u, IHIu, )&0,
since ( G

I
H

I

G ) & 0 and thereby

h(5 =0)&0,
implying instability.

The second case is

(4.50)

(4.51)

(where & is positive for odd functions), then the ex-
ponential growth rate y of the system (4.37) is given by" (4.52)

y =h(6). (4.40) then a calculation analogous to the first case can be per-
formed. Let us choose

) '=h() ) (4.41)

possesses a positive solution. Thus the rest of this subsec-
tion is devoted to the proof that Eq. (4.41) has a positive
solution in the region complementary to (4.34). The gen-
eral procedure is as follows. C)ne can show' that

In Eq. (4.39), the supremum has to be evaluated for all
odd test functions u. It has been further shown' that the
original system (4.35) is unstable with a growth rate y if
the implicit equation

(4.53)

$2

2U (G IH ' IG)
holds. This clearly shows that under the condition (4.52)
and for

(4.54)

and the same definition (4.45) for the localized integral
form of f. In Appendix C we shall show then that for
0~6&&1 the estimate

lim h(6 )=0 . (4.42) (GIH 'IG) '+2U (GIG) '&0, (4.55)

(I) (GIH 'IG)&0.
The localized integral form of

(4.43)

Then by continuity arguments, instability will follow if we
can show (by chosing appropriate test functions) that
h (0) & 0 or h (5)-c5' for 5 «1, with a factor c and an
exponent v such that a solution of Eq. (4.41) exists. Let
us briefly summarize the results for the following cases

(III) (G IH '
I

G)=0. (4.56)

a positive solution of Eq. (4.41) is possible. The reason is
that for (4.55), h (6 ) first grows faster than 5 for
0&52«1, but from Eq. (4.42) we know that this behav-
ior will change later so that instability is possible. Note
that condition (4.55) is complementary to (4.32).

The final case is

i.e.)

f=(G IG)H 'G —(G IH '
I
G)G, (4.44)

The corresponding argument parallels over a wide range
that in the second case (II) when we use
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u = f dg[f(g) e—f(eg)]

+S'"f 'dg[G(g) —eG(eg)] (4.57)

as a test function. The final result is

(4.58)

for 0 & 6 « 1, and this again clearly shows that instability
is possible.

We have thereby arrived at the final conclusion: The
stability conditions as summarized in the formulas (4.33)
and (4.34) are sufficient and necessary. We renounce a
possible calculation of the maximum growth rates y in the
unstable region. The regions of instability are marked in
the corresponding Figs. 3, 4, and 6.

V. SUMMARY AND CONCLUSIONS

Within the framework of a one-dimensional Ginzburg-
Landau theory for the martensitic phase transition it was
shown that in martensite as well as in austenite there exist
solitary-wave solutions of the pulse type for the shear
strain. In both the cases the velocity of the wave de-
creases with increasing amplitude; even a static solution
exists. Static solutions, as well as slowly moving ones, are
unstable in form with respect to perturbations of the ini-
tial conditions. Hence the static solution represents the
critical nucleus. In this paper we did not investigate the
mode of highest growing rate. Nevertheless, a simple cal-
culation shows that a pulse a little bit smaller than the un-
stable critical nucleus has lower potential energy, that is,
it further shrinks. On the other hand, a pulse a little
bigger than the critical one has lower energy too, hence it
will further grow. Thus the static critical nucleus is un-
stable in both directions. Using numerical values for the
parameters involved, e.g. , as determined for AuCuZnq in
a previous paper, the energy of the static critical nucleus
in both cases, martensitic or austenitic nucleus, referring
to the cross-sectional area perpendicular to the stacking
direction, if of the order of magnitude of 0. 1 eV/nm .
The same value applies to moving pulses for not-too-small
amplitudes. The energy mentioned is a result of the one-
dimensional model. Therefore contributions due to elastic
misfit in the plane perpendicular to the stacking direction
are not included. These contributions, however, are pro-
portional to the diameter of the nucleus; that is, they grow
with the square root of the cross-sectional area only.

It was further shown that pulselike solitary waves are
stable if moving faster than some threshold speed, which
in turn is lower than the acoustic wave velocity. In the
present paper, the initial-value problem for the nonlinear

APPENDIX A: SOME USEFUL ESTIMATES

First we prove the relation (4.27). The Schwarzs in-
equality yields

Q) & &Q
~

G) &G
I
G)

We write

(A 1)

—,'&q~q» —,'&q~@&+, ' &q~G)', (A2)

where e is some sufficiently small positive number to be
determined later. Using this on the left-hand side of in-
equality (4.27), we obtain, after some algebraic manipula-
tions,

equations of motion was not solved. This can be done
only numerically.

The current forecasted picture, however, is that soliton
will propagate with unchanging profile in a stable manner.
It may be assumed that initial data near that of the soliton
will produce a soliton plus phonons. Therefore it is
reasonable to predict that a moving soliton can be emitted
by a pulselike shearing force on the surface, even if its
time profile does not exactly meet the profile of the soliton
to be generated. In this way nuclei can be transmitted
through a crystal. For example, imagine a polycrystal
where one grain undergoes a phase transition from
austenite to martensite after a heterogeneous nucleation
process. When the phase boundary reaches the grain
boundary there is a jumping surface force exerted on the
neighboring grain where a stable pulselike soliton may be
generated if temperature and local static stress are favor-
able. A soliton emitted into the untransformed grain with
a temperature gradient in it may run into a region of
slightly different temperature where the soliton becomes
unstable, thus representing a critical nucleus which can
initiate the phase transition in the grain. This may hap-
pen even if the force on the surface was not high enough
to trigger the phase transition directly. Another possibili-
ty for the previously stable soliton to become unstable is
to run into a stress concentration generated, e.g. , by a
dislocation. A stress field reduces the local value of the
shear modulus which is represented by the parameter g.
Therefore the stress concentration influences the stability
of solitons in a similar way as temperature does. As a re-
sult dislocations may serve as soliton-assisted nucleation
centers even if their own nucleation potency is not
sufficient to start the phase transition. Based on these
considerations it is proposed that stable pulselike solitary
waves are important as a new mechanism for autocatalytic
nucleation processes' in shape-memory alloys.

—,'&P~P)+a (&P~G) —2u&P G)) & a + &g~G) —4a u&Q~G)&Q~G)+4a u &P G) + —&P~g)

2U (1 —e)a
&G~G) p 1 —e 1

2 &G~G&

&y~G)'+ —,'&q~q&. (A3)



36 STABILITY OF SOLITARY-%'AVE PULSES IN SHAPE-. . . 3039

Thus for

(X—1)ea'& (1—e)(1 —Xe)/(2& 6
I
G ) ), (A4)

Because of & a
I
G ) =0, Eq. (4.29), we can derive for

F=H 'G (A7)

&. I. )a=, , e +aq ——a +aq .
(e e )

(A5)

which can be fulfilled for sufficiently large a, small e, and
X & 1, the estimation (4.27) follows. Take for examplea-e-' and X axed for a

Next we derive (4.30). Any even function a we can
decompose into a component parallel to e and the rest
being perpendicular to e, i.e.,

the helpful relation

&+ &ai
I

H
f
Fi& =0,

which can be used in the Schwarz inequality

&ai
I
H

I
ai) ) &ai

I
H

I
Fi) &Fi

I

H
I
Fi &

(A8)

Then we have

&a
I

H
I
a) = —

I
A,

I
&a a )+ &ai

I

H
I
ai ) . (A6) Thus, we can transform Eq. (A6) into the form

(A9)

&a fH la» —I~-
I
&a- Ia- &+

I
~- I'&a- Ia- &&F- IF- &&Fi IH IFi&

) A.
I

&a fa )&Fi H IFi) '( —&F fH IF)) . (A 10)

&F
I

H
I
F) & 0, Eq. (4.28), we therefore get the

desired result (4.30) since H is positive definite in the
function space orthogonal to e and G, .

Finally we present the relevant arguments for the esti-
mate (4.31). Let us discuss for that purpose

be evaluated explicitly.
In the present case (e„=O) we use E E, itself as—a

Liapunov functional and vary for 5Q=0 (Q stability).
The first variation vanishes because of the stationary equa-
tion (4.3) and for the second variation we obtain

&g'IH fg)

g even

(A 1 1)
5'E= f dz( ,'P,'+P, HP, ), —

where

(B1)

i.e., the infimum of the right-hand side of (All) when
varied over all possible even test functions g, which exists
because of the foregoing arguments. %'e replace in the
denominator on the right-hand side of Eq. (Al 1) & g I

G )
by & g I

H F ) and introduce instead of the test functions

with the normalization

when

and

d2

dz
+ —'cr'(G) ——'u

P=u —u, ,

G =usz

(B2)

(B3)

(B4)

&F+5 IH IF)=&F IH IF) .

Then the definition (A 1 1) reads

(A13) The subsidiary condition 5Q =0 implies

f "dzg, 6=2u f dzP, G . (B5)

i = inf

6 even-

&F IH IF&+&5IH I5&

&F fH fF)
By the Schwarz inequality

f+"dzy,' dz G & dz (G

= &F IH IF) (A14)
we then obtain from (Bl)

(B6)

Combining the statements contained in (Al 1) and (A14),
it is straightforward to draw the conclusion (4.31). 5 E) 2u &G

I
G) '&P, 6) +&/, IH I P, ), (B7)

APPENDIX 8: STABILITY E)F A SOLITDN
IN AUSTENITE

In this appendix we rederive the stability criterion for
a soliton in austenite although all the calculations of Sec.
IV do apply for this special case. The reason is that (i)
we can easily show the similarity to the so-called Q sta-
bility, and (ii) the stability criteria (4.33) and (4.34) can

when use is made of Eq. (B5). Introducing

we rewrite (B7) in the form

5E)&GIG) '&PIG) 2u + &GIG)
&qf 6)'

(B8)

(B9)
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The estimate (4.31) now immediately leads to the stability
condition (4.32), together with (4.28).

With the abbreviation

(u
~

u ) =O(1/e) . (C5)

Therefore we choose e=5~ with P& —,
' to obtain from Eq.

(C4)
X=&G iG& (810)

Z = —(G ~H
' G)+O(5P, 6 P) . (C6)

and ri = —
—,'v, the stability condition (4.32) can be writ-

ten as Next we calculate N. When doing this we formally
rewrite u, i.e.,

(ND) &0 .
0

dU
(811) u =eF+ui, (C7)

and

X= f "dz q =2 arctanhq
1+(1—q )sinh z

For the solution (3.13) we have

(812)

a=(u
~

G, )(F
~

G, & (C8)

where (ui
~
G, ) =0 by definition and the (yet undeter-

mined) function F should have a component parallel to
G, . Then the coeScient u is

V =2g 2+ 2 1+q

]/2

(813)
Using the Schwarz inequality, we find for odd functions
(u) with the positive-definite operator & ' (for 0 (6),

1 —q2g ——+—
2 2

[(1—q)(1+q)]' '

which reads

dX )X,

where

q=e /e] .

For the explicit evaluation we can use instead of criterion
(811),

1/2

@&a'&F~a-' ~F)

+2a(F (& ' )F)' (ui [A' '
)

ui)'

+&ui ~& '
~

ui& . (C9)

and

&F ~F )
$2

(C 10)

Estimating the terms appearing on the right-hand side of
inequality (C9), one has

(F i% 'F) &(F i( ——,'5'8, ') 'iF)

g&e ei+e ei(ei —e ) arctanh(e /ei) .

The results are introduced in Figs. 4 and 5.

APPENDIX C: INVESTIGATION
OF THE INSTABILITY REGION (4.55)

(815)
(u, ~A '~u, )((u, ~H '~u, )

(ui
~
ui) (il (u

~

u ) —O(1/e) .

(Cl 1)

In this Appendix, we treat the second case (II) [see Eq.
(4.52)] in more detail, i.e., we prove the estimate (4.54).
With that intention, we calculate the numerator

Z= —&u, ~A u, &

and the denominator

Now we can simplify (C9):

X( (u,
~

G) (F,
~

G) (F, ~F, )+O(5 ' +~'
) .

2

(C12)

The choice
X=(u ~&

~

u),
appearing on the right-hand side of Eq. (4.39) for some
test function in the case 0 & 6 « 1. Inserting the function
(4.53) into the definition (4.45) we obtain

F= f 'ds[G(g) eG(eg)—]

leads to

(C13)

u = f dg[H 'G(g) eH 'G(eg)] . —
0

Straightforward evaluation of Z yields

$2Z= —(GiH 'iG)+ (u iu)+O(e) .
2

One should note that

X& (G ~H-'
~

G&'&G
~

G) '+O(n-I'+')" fi-')
$2

(C14)

For P= 1, the use of the estimates (C6) and (C14) immedi-
ately leads to (4.54) for 0 & 5 « 1.
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