PHYSICAL REVIEW B

VOLUME 36, NUMBER 6

15 AUGUST 1987-11

Nonlocal theory for surface-plasmon excitation in simple metals

S. Das Sarma
Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742
(Received 3 November 1986)

A nonlocal theory based on the hydrodynamical model for an electron gas is applied to calculate
the average number of surface plasmons created by a moving external point charge due to its dynami-
cal interaction with a metal surface. In particular, quantitative estimates are provided for the effects
of various parameters—including the speed of the external charge, the hydrodynamic dispersion,
finite impurity broadening, and the r, value of the metal—on the surface-plasmon excitation proba-
bility in simple metals. It is shown that, as expected, the inclusion of nonlocal dispersion corrections
in the theory eliminates the infrared divergence in the surface-plasmon excitation probability that ex-
ists in the local theory for vanishing speed of the external charge. Numerical results are presented
for the average number of surface plasmons excited by slow external protons interacting with the sur-

face.

A point-charged particle outside a semi-infinite metal
which is bounded in the half-space z <0, interacts with
the metal surface through the well-known classical
image-potential formula Vi, (z)= —Q /2z where Q is the
strength of the charge on the external particle located at
the position z >0. In the literature, the expression “‘im-
age potential” sometimes refers to the actual interaction
energy between an external point charge and the surface,
in which case, an additional factor of 1 is required. We
take z =0 to be the plane defining the metal surface and
use a jellium-background model assuming complete
translational invariance in the x-y plane. We also take
|e | =#=m =1 throughout this paper where ¢ and m
are, respectively, the electronic charge and mass. It is
well-known' that the classical formula is valid only ap-
proximately, and it most certainly breaks down as z —0.
In particular, finite screening in the metal, diffuseness of
the surface which is not abrupt on an atomic scale, and
finite velocity of the external particle—all provide some
natural length scales leading to the saturation at small z
of the divergent (1/z) image potential of the classical
formula. For large z the classical formula is valid in an
asymptotic sense. In a recent paper' the hydrodynami-
cal model? for an electron gas was applied to obtain
corrections to the classical image theory, and the roles of
the above three length scales in saturating the classical
image potential were clarified.

The primary motivation of this paper is theoretical—
we want to calculate the surface-plasmon excitation prob-
ability due to interaction with an external point charge
within a nonlocal hydrodynamic (or, plasmon-pole)
response formalism. We find, not unexpectedly, that just
as the image potential saturates at the surface due to non
local effects, the surface-plasmon excitation probability is
also finite for all velocities of the external probe within
our theory. Because we have introduced a number of
simplifying approximations in our model (such as, the
step-density approximation for the surface and the neglect
of lattice effects), we refrain from making any comparison
with experiment except to point out that nonlocal effects
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considered in this paper are quantitatively very important
in situations involving interaction between the surface and
heavier probe particles such as slow-moving (keV) pro-
tons. For fast-electron energy-loss spectroscopy, on the
other hand, nonlocal effects are usually small and can be
neglected.

In this paper we consider the problem of calculating
the surface-plasmon®* excitation probability as the mov-
ing external particle interacts with the metal surface
through the image potential. Specifically we calculate the
number of surface plasmons created in the metal as the
point charge moves from very far away (z =) to the
metal surface (z =0) along a well-defined trajectory, and
is reflected specularly at the surface going back to
infinity again. We treat the external particle classically
and take its trajectory to be normal to the metal
surface—in fact we define the z axis to be the line of
motion of the probe particle. We neglect recoil of the
particle completely since it is not essential to our discus-
sion. However, recoil effects can easily be incorporated
within our formalism. To be specific, we also choose
Q =1 which makes the probe particle an external elec-
tron or proton. The model chosen in this paper for the
metal surface is the so-called step-density sharp surface
model where the unperturbed electron density describing
the metal is taken to be a Heaviside step function
no(z)=nyO(—z). More complicated surface models can
be treated within the same formalism, but the algebra
becomes very tedious without the emergence of any
essential new physics.

We use the nonretarded hydrodynamic theory o
describe the linear response of the bounded electron gas
(which is our model for the semi-infinite metal) to the
external perturbation. The hydrodynamical model has
been used' >~ !9 extensively in the study of surface collec-
tive modes in metals’>~® and semiconductors.!® The par-
ticular formalism we are using has been discussed in de-
tail in Ref. 1 and will not be reproduced here.

We describe the surface plasmons by adopting the
well-known normal-mode analysis in which the two-
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dimensional wave vector q in the x-y plane parallel to the
surface is used as a label. Then the number of surface
plasmons, N,, with a particular wave vector q is given
by,3‘4

Nyos(q)=V, , (1)

where w,(q) is the energy of a surface plasmon with the
wave vector q and V, is the total work done by the exter-
nal charge in moving from z=+ « to z=0 and then
back to z = + o again after being reflected specularly at
the surface. Note that V, is only the total dissipative
work done by the external charge; the conservative work
is automatically canceled since it is equal and opposite
during the inward and the outward paths of the motion.
Obviously the conservative part of the potential energy
does not participate in the creation of real excitations.
Since the hydrodynamical response function is basically a
J

+ o (l'a)
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plasmon-pole approximation to the complete response of
the system, it is sensible to attribute the total potential en-
ergy as due to the collective modes in the system. Hydro-
dynamic approximation thus neglects the electron-hole
pair excitations in the metal. The total number of surface
plasmons, N, is given by summing over all the modes,
N=3N, =3 V,/0,q) . (2)
q q
To obtain N we need an expression for the force acting
on the external charge (due to the metal surface) which
can then be integrated over the whole trajectory to give us
the net work done by the particle. The interaction be-
tween the surface and the external charge is the image in-
teraction which has been calculated! earlier in a nonlocal
hydrodynamical formalism. By a direct generalization of
the result in Refs. 1 and 10 we get the image potential
¢im(z,t;q) induced by the external charge as

_2ql ff) dz’e 91777 n(z") |, (3)

where n(z'), the induced charge density in the metal, is given by

wp(y +qle’?
vig +ia)ay’B+2yqB —w})

n(z')=n(z';q,0)=

t+fa——a}, @)

with w‘f’ v being respectively the plasma frequency of the metal and the velocity of the external charge, a =w /v, and
y=B Yw, +B*q*—w*)"?. The parameter 8 in the theory, the electronic compressibility, is responsible for nonlocal
effects (in a purely local theory S=0). Equation (3) is derived by combining Euler’s equation, the equation of continuity
and Maxwell’s equations. We also use the boundary condition that the normal current density in the metal vanishes at
the surface z =0. The work done ¥, for the gth normal mode during the whole trajectory is now given by

i |

+ |

Vo=["" dro()—"| (5)
t=—w 9z |, i

The particle position is given by z = —uvt for 1 <0 and z =t for > 0. We choose the origin of time such that the particle

starts from z= + « at t = — o0, moves with uniform speed v to the metal surface along the z axis, is reflected specularly

at the surface (which is at z =0), and then moves back with uniform speed to z =+ « at t =+ «. Combining Egs.
(1)=(5) we get for the surface-plasmon excitation strength
e it [— ] . (6)

d 2q 1 + d J —» dw
= dtv(t)— -—
N={ Siled@] fux b1 lf*“ f
It turns out that if we use Eq. (4) for the induced electron-density fluctuation then four of the five integrals in Eq. (6) can
be evaluated analytically and we get (after considerable algebra),

2m
q

fo dz'exp[—q | |vt| —z"| ln(z")

2
N=v2? [“d g . — (7)
Py q[qzvz+wf(q)]2ws(q){l+/3q/[3/32q2+2w;~2[3’q(2a),2,+[3’2q2)”2]'/‘}

where
|
172 In the local limit, 5=0 and Eq. (8) gives
_ |9 B 5 | Be? a1
w(g)= + +Bq + , (8) 2
2 2 2 4 N —020? [* 4 q T
| peo=0"0} . q(q2v2+w2/2)2(w =2

is the surface-plasmon dispersion relation."*° Equation 4 P

(7) is the new theoretical result in this paper and it gives
the average number real surface plasmons created by the
external charge in its interaction with the metal.

9

4 result for the surface-

Equation (9) is the well-known
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plasmon excitation probability in a local theory which was
derived®* a long time ago. The fundamental conceptual
problem of the local theory is its infrared singularity
which predicts that the number of surface excitations
diverges as v—0. This infrared divergence is corrected in
our nonlocal theory, since the low-velocity limit of Eq. (8)
is zero:

N(—0)]p,0=0(* . (10)

Equation (10) is intuitively appealing since nonlocality in
the response should cut off the infrared divergence for
v < f3, the nonlocal theory [Eq. (7)] reduces to the local re-
sult [Eq. (9)] as it must.

In Fig. 1 we show the surface-plasmon excitation
probability N plotted against the velocity v of the exter-
nal charge (with v being measured in units of vg, the
Fermi velocity of the metal) for a fixed metallic electron
density characterized by r, =3.0 where r}=(3/4mngya}),
with ap as the Bohr radius, is the standard dimension-
less number which is used to parametrize metallic free-
electron densities. As one can see from the figure, non-
local effects become important for v Svy and the
surface-plasmon excitation probability goes down for
small v. For large v, N falls off as v ~!. We have chosen
B*=v}E/3 for this figure which is the standard hydro-
dynamic compressibility. Changing 8 to 3*= 3v2/5 [so
as to reproduce the random-phase-approximation (RPA)
bulk-plasmon dispersion relation"°] makes insignificant
change in the depicted result.

Since recoil of the external probe has been neglected
in our theory, it is more appropriate to consider external
probes with very high energy (E >>Er, ®,) so that the
neglect of recoil is a good approximation. We can do
that by taking the external probe particles to be protons
which have high kinetic energy (~ keV range) for the
velocity range of Fig. 1. In Fig. 2 we show (for a fixed
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FIG. 1. Shows the average number of surface-plasmon excita-
tions as a function of the velocity (v) of the external probe with
the velocity measured in units of vr, the Fermi velocity of the
metal (solid line, hydrodynamic nonlocal result; dashed line, lo-
cal result). For v/vr R 10 local results are very close to the non-
local curve.
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FIG. 2. Shows the average number of surface plasmons (in
metal with r,=3.0) excited by external protons with energy E in
keV. Three different approximations are shown: Plasmon-pole
(solid-line), hydrodynamic (dotted line), and local (dashed line).
(a) Linear scale of energy. (b) Logarithmic scale of energy with
energy measured in keV.

ry) the calculated surface-plasmon excitation probability
(when low-energy protons are used as probe particles) as
a function of the kinetic energy E (in keV) of the in-
cident protons. For the purpose of comparison, we have
shown the regular hydrodynamical result (8*=v}/3),
the simple local result (3=0) given by Eq. (9), and a
plasmon-pole theoretic!! result where 32 is chosen to be
a function of wave vector ¢ which reduces to the regular
hydrodynamical result in the long-wavelength limit
(g —0). The particular form for B is chosen according
to the prescription suggested!'' by Lundqvist, and by
Overhauser in the context of bulk self-energy calculation
due to electron-electron interaction. We take,

2 2 2
2oy | VE || L, | 1=g /4kF
A N s
—1
14q/2kp |
S/ oRE 1
xIn g2k | (11

For this form of the electronic compressibility, the hydro-



36 NONLOCAL THEORY FOR SURFACE-PLASMON EXCITATION . ..

0.50 T T T — T T T T T T

0.40

0.30

0.20

1.0 20 30 4.0 50 6.0 70

FIG. 3. Shows the dependence of the average number of
surface-plasmon excitations as a function of the metallic r; value
for a fixed energy (25 keV) of the external proton. The solid and
dotted curves are, respectively, the plasmon-pole and hydro-
dynamical approximation. The corresponding local result is a
constant of about 0.75.

dynamic theory becomes an effective plasmon-pole theory,
and it incorporates in a crude fashion the contribution
due to electron-hole pair excitations. However, in view of
the crudeness of the model, this estimate of the surface
effects due to electron-hole pair excitations should not be
taken too seriously, since electron-hole pair effects would
be strongly affected by the use of a more realistic model of
the surface, which lets the electrons spill into the vacuum.
Thus the rather small difference between the solid
(plasmon-pole) and the dotted (hydrodynamic) curves in
Fig. 2 can be attributed to electron-hole pair excitation
effects. The simple local theory (dashed curve) gives
much higher values of excitation probability except at
very high energies where all three curves converge asymp-
totically.

Finally, in Fig. 3 we show the surface-plasmon excita-
tion probability as a function of the r, parameter for a
fixed value (E =25 keV) of the energy of the external
proton. Results for both the plasmon-pole (solid curve)
and the hydrodynamic (dotted curve) are shown. The
corresponding local result is a constant (for fixed E) in-
dependent of the metallic r, value and, for E =25 keV, is
given by N =0.75 which is the asymptotic nonlocal re-
sult for r,— . Clearly for metallic densities (¥, ~3-5),
the surface-plasmon excitation probability is significantly
reduced (by factor of 3) by nonlocal corrections for
external proton energies around 25 keV.

In a fast-electron energy-loss experiment (which can
directly measure the number N calculated in this paper)
nonlocal corrections are unimportant since v >>vr for fast
electrons with kinetic energy in the keV range. As one
can see from Fig. 1, nonlocal effects show up only when
the velocity of the external probe is comparable to the me-
tallic Fermi velocity. If the external probe is a slow (~
eV) electron with v~vp, then recoil effects (which I
neglect) will also be important in the same range where
nonlocal corrections are significant. On the other hand,
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for heavier probe particles (which have much higher kinet-
ic energy in the same velocity range) recoil effects are
negligible and calculated nonlocal corrections become
significant as shown in Figs. 2 and 3. I would like to
point out that the suppression of the infrared divergence
in N arising in a local theory that is being discussed in
this paper is a direct result of the introduction of a new
velocity scale B(~vg) in the nonlocal theory. To em-
phasize this point, I have also calculated the surface-
plasmon excitation probability N in a local theory by tak-
ing into account a finite broadening I' of the electron gas
(such a finite I' could arise, for example, from impurity
scattering effect and is related to the transport relaxation
time 7 by I'=7/27). The calculation is identical to the
prescription given above, except that one retains a damp-
ing term in the Euler’s equation. The calculation is
straightforward and the tedious algebra is not shown here.
One gets in the local theory (8=0, I's£0):

N=Z1[1-0(T/w)+ -1, (12)
2v

where the ellipsis represents higher-order corrections in
I'/ws, ws=w,/V'2 is the long-wavelength surface plasma
frequency, and I' << w; is the finite broadening. This re-
sult (which is valid for small TI') clearly shows that
N (v—0) goes as O(1/v) even when I's£0 in the local
theory. The main effect of having I's£0 is to quantitative-
ly reduce N without changing its velocity dependence.
Thus, having a nonzero I' (unlike having 3£0) does not
remove the infrared singularity in the calculated surface-
plasmon excitation probability (even though it does reduce
the total number of surface plasmons excited for a partic-
ular value of v). This is not surprising since making I's#0
introduces a new energy scale in the problem (originally
one had only w,) but no new velocity scale. Incorporating
nonlocal effects, however, introduces a new velocity scale
B(~vr) which saturates the effect of the external velocity
v when v Svr and removes the unphysical infrared diver-
gence.

Before concluding, we want to emphasize that in this
paper the average number of rea! surface plasmons excited
by the external charge has been calculated in a nonlocal
theory. This is different from the corresponding calcula-
tion for virtual excitations which are also created during
the interaction between the external charge and the sur-
face. These virtual excitations are, in fact, related to the
conservative part of the work done by the external charge
which vanishes when the probe particle goes back to its
original starting position at infinity. Thus, there are no
virtual excitations left in the system. However, the real ex-
citations calculated in this paper are related to the dissipa-
tive work done by the external probe and can be detected
in an experiment (such as, fast-electron energy-loss experi-
ment). It is well known that the number of virtual excita-
tions is related directly to the image-potential energy
which vanishes when the probe particle is infinite distance
away. In some recent publications'? there is some con-
fusion about this issue and, in fact, some of these papers'?
actually calculate the average number of virtual excita-
tions created by the external probe which, as I have em-
phasized, is not an experimentally relevant quantity.
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In summary, I have calculated the average number of
real plasmons created by an external charged particle in
its interaction with a metal surface by using hydrodynam-
ic (and, plasmon-pole) response formalism. The infrared
divergence inherent in local theories is suppressed by non-
local corrections, and the excitation probability goes to
zero as the velocity of the probe particle vanishes (whereas
in a local theory it diverges as v —!). I show that for low-
energy external protons (=25 keV) interacting with the
metal surface, nonlocal effects are quantitatively very
significant and reduce the excitation probability by about

S. DAS SARMA 36

a factor of 3 compared with the local theory.
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