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Saddle-point excitons in solids and superlattices
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A new method has been developed to study saddle-point excitons in solids and semiconductor
superlattices. Interband absorption spectra of solids within simple tight-binding models are calcu-
lated with the inclusion of the electron-hole Coulomb interaction. Absorption spectra associated
with saddle-point exciton resonances in superlattices are also studied as functions of the layer
thickness.

In the past, excitonic effects associated with singulari-
ties in the density of states of solids have attracted a great
deal of interest both theoretically and experimentally. '

One of these singularities is associated with the M~ saddle
point in the band structure. Several authors have previ-
ously studied the absorption spectra of systems with such
a singularity by approximating the electron-hole Coulomb
interaction with a contact potential. ' The adiabatic ap-
proximation has also been used to study the saddle-point
excitons with Coulomb interactions. In superlattices, the
zone-folding effect of the band structure can lead to a
series of M~ saddle points at the minizone boundary. The
Coulomb interaction between electrons and holes associat-
ed with these saddle-point states gives rise to exciton reso-
nances below the energy of the saddle point. Semiconduc-
tor superlattices are ideal materials for studying the struc-
ture of saddle-point excitons because the band parameters
near the saddle point can be tailored by varying the layer
thicknesses and band gaps of the constituent materials.
Experimental techniques (photoabsorption, excitation
spectroscopy, and resonant Raman scattering) for probing
the line shapes of saddle-point exciton resonances in su-
perlattices are readily available. With the aid of modern
computers, we have performed quantitative calculations
for the line shapes of photoabsorption (or excitation)
spectra associated with saddle-point excitons in a two-
dimensional (2D) and a three-dimensional (3D) tight-
binding model for bulk materials and in a Kronig-Penney
model for semiconductor superlattices. We have com-
pared our results for the tight-binding model systems with
those obtained by using a contact potential. We find
that the results calculated with the contact potential agree
qualitatively with our results if a proper strength of the
contact potential is chosen. For superlattices, we calcu-
late the change of line shapes of the absorption spectra
from three-dimensional-like in the ultra thin barrier case
to two-dimensional-like in the wide-barrier case.

We shall consider the absorption coefficient of a solid
including the electron-hole Coulomb interaction. The ab-
sorption coefficient for interband transitions can be writ-
ten as

a(E) =g I%(0) I 8(E; E), —

where N;(r) is the wave function of the ith excitonic
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for a 3D system,
2tt e k —k'

for a 2D system,
2tre k —k'

where e is the static dielectric constant of the solid. For a
superlattice, we write k = (k~~, q), where k~~ is the projec-
tion of k in the plane normal to the growth direction and q
is the projection of k in the growth direction. The
Coulomb matrix element for superlattice states is given
by9

2

v (k, k') = g F, (q, q
' —lK) Fh (q, q
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where

1

lktt-ki'i I '+(q —q'+«)' ' (3)

F, (q, q') =g„f(q+nK)f(q'+nK)
and f(q+nK) is the projection of the superlattice wave
function y~(z) for the electron in the plane-wave basis
e'('t+"+1' K=tr/d, .where d is the length of the superlat-
tice unit cell. Fp, (q, q') is similarly defined for the hole.
In the same spirit we shall make the following approxima-

states with an energy eigenvalue F;. Here the label I'. runs
through discrete states as well as the continuum states.
The Schrodinger equation for an excitonic state @ can be
written in k space as

dk'(k
I
H

I
k')P(k') —EP(k) =0, (1)

where @ Jdkp(k) I k) and
I
k) denotes the electron-hole

product state at k with the orthonormal condition
(klk') =b(k —k'). The wave vector k is confined to the
first Brillouin zone of the crystal system. The Hamiltoni-
an H in k space is given by

k') + (k
I

v
I

k'&

where E,„(k) is the energy diA'erence between the
conduction- and valence-band states at k and v denotes
the electron-hole Coulomb interaction. Neglecting um-
klapp terms, we can approximate the Coulomb matrix
elements by
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g H), y(k, ) Ey(k, ) =0—, (5)

with

H. . =
J J

J dk„' dk'H(k, k')
J

where AJ denotes a volume (area) centered at kj. After
some mathematical manipulations, the multidimensional
integral in Eq. (6) can be reduced to a one-dimensional
integral involving special functions, which is then per-
formed by numerical methods. Equation (5) can then be
diagonalized to give the energies and corresponding wave
functions for a few low-lying discrete exciton states and a
good sampling of the continuum states.

We can derive Eq. (5) from a different point of view
which adds some insight into our approach. Consider a
set of basis states defined by P~ f&.dk

~
k)/JZ. Expand

the excitonic state @ in terms of the basis states P~. , i.e. ,
C =g y(kj. )PJ and then substitute the expansion into the
Schrodinger equation for N, we again obtain Eq. (5).
Thus the method can also be viewed as a variational
method for obtaining the low-lying discrete exciton states.
In addition, because the basis set chosen is a good sam-
pling of all continuum states, we also obtain information
about the perturbation of the continuum due to the
electron-hole Coulomb interaction.

To minimize the size of the matrix to be diagonalized,
while maintaining high precision, we shall fully exploit the
symmetry of the system. Note that the absorption spec-

tion:

N(0) =„dky(k)(0 ~
k) = „dkP(k) .

To solve the integral equation (1), we divide the first
Brillouin zone into small equally sized subregions with
volume (or area) 6, each centered at a point denoted k~. .
We then replace the integral over the continuous variable
k by a summation over the discrete mesh points kJ. Equa-
tion (1) is then converted into a matrix equation

[E,(k ) —E]y(k )+g(k i
v ik. )y(k') =0, (4)

J

where y(k~ ) =p(kj )JX. However, the above method
would encounter a difhculty when the potential v has
singularities in k space, as it does in the present case. To
circumvent this we integrate the potential function over
each small subregion, awhile ignoring the weak k depen-
dence of the wave function p(k) in that subregion. This
will eliminate the singularities and we Anally arrive at a
simple eigenvalue problem:

trum only depends on @(0), which is nonzero only for
states with the full symmetry of the system (namely, s-like
states for a system with rotational invariance, or A~-
symmetry states for a system invariant under some point
operations). Thus, for a cubic system, we can divide the
first Brillouin zone into 48 equivalent segments. We
define symmetrized basis states as Pz g&P~J/48, where
R runs over the 48 point operations of the group O~, j
runs over mesh points kj in a given segment, and P~J is PJ.
transformed by a point operation R. If (2n) mesh points
in the entire Brillouin zone are to be used, then the sym-
metrization procedure reduces the number of basis states
to n(n+1)(n+2)/6 (almost a factor of 48). Similarly,
for a 2D system with square symmetry, we can reduce the
number of basis states from (2n) to n(n+1)/2. In our
calculations, we have used n =16 and 40 for the 3D and
2D models, respectively. We have tested the numerical
results by using n =10, 12, and 15 for the 3D model and
found that the results are insensitive to n when n ~ 12, in-
dicating that convergence is achieved. For the 2D model,
we found that it converges when n & 15.

For superlattices, we are interested in states with q in
the entire minizone and with k[~ near the zone center. We
approximate the band structure in the parallel direction
by a parabolic expression. Thus the system has a circular
symmetry in parallel directions and a reAection symmetry
in the growth direction. Symmetrized basis states are la-
beled by the radial component of k~] and q. A cut-off A is
introduced for the sampling of k]~. The final results for en-
ergies near the saddle point are insensitive to the choice of
the cutoF, as long as A is large enough (about 20E~,
where E~ is the bulk exciton binding energy).

In order to obtain a smooth absorption spectrum, we re-
place the 8 function in Eq. (1) by a Lorentzian function
with a half-width at half maximum I, viz. ,

b(E; E) = r/~[(E, —E—) '+r']
The magnitude of I is roughly equal to the energy spacing
of the eigenstates. To examine the level of accuracy of the
present method, we have calculated the absorption spectra
for ideal 3D and 2D exciton systems (with parabolic
bands) using the method described above. The results are
found in excellent agreement with the analytical results
which are already available for these systems. ' "

We have used the k-space sampling method to calculate
the absorption spectra in a tight-binding model for a 3D
system with cubic symmetry and a 2D system with square
symmetry. We assume that the energy difference between
the conduction band and valence band at wave vector k
can be written in the following tight-binding form:

E,„(k)=' ED[3 —cos(k„a) —cos(k~a) —cos(k, a)] for a 3D system,

ED[2 —cos(k„a) —cos(k~a)1 for a 2D system,

where Eo is a measure of the bandwidth and a is the lat-
tice constant. A Bravais lattice is assumed; however, the
extension of the present theory to lattices with a basis is
straightforward. Figures 1 and 2 show the calculated ab-
sorption spectra for the 2D and 3D model systems, respec-
tively, for various values of a =e /eaEO, which is the ratio

I

of the Coulomb interaction strength (e /ea) to the band
parameter (Eo). For comparison, we have also plotted the
analytical (dashed) and numerical results (dotted) for the
system with no Coulomb interaction. In the 2D system,
the density of states has a logarithmic singularity at the
center of the band. Because of the broadening introduced
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2D Tight-binding Model
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FIG. 1. Absorption coefficient of a 2D tight-binding model
for various strengths of the Coulomb interaction (a 0, 0.12,
0.24, and 0.48).

in the numerical method, this singular structure becomes
a broad peak. We can see from Figs. 1 and 2 that except
near the singular points the numerical results agree with
the analytical results very well. For realistic experimental
data the broadening is always present due to the finite life-
time of the excitonic states and the resolution of the ap-
paratus. Because of the sum rule, the total integrated
area of the absorption curve is the same for any interac-
tion strength. As the interaction becomes stronger (com-
pared to the bandwidth), more states are pulled down to
lower energies. For the 2D system, the saddle point with a
logarithmic singularity is located at the center of the
band. The peak structure is shifted to the lower-energy
side when the Coulomb interaction is turned on, which is
interpreted as a saddle-point exciton resonance. In addi-
tion, a bound-state peak appears below the lower edge of
the band (onset of the band-to-band transition) due to the
Coulomb interaction. The bound-state peak becomes
more and more prominent and the resonance peak be-
comes weaker and weaker as the strength of the Coulomb
interaction increases. As the interaction further increases
(e.g. , a =0.48), a shoulder appears at the lower edge of
the band while the peak corresponding to the saddle-point
exciton disappears, resulting in a gradual falling off of a.
It is not clear whether the shoulder near the lower edge of
the band is associated with the excited bound states or
with a pure resonance due to the nature of the numerical
method. For the 3D systems, the interaction has to be
strong enough for the system to have a bound state. A
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FIG. 2. Absorption coefficient of a 3D tight-binding model

for various strengths of the Coulomb interaction (o =0, 0.24,
0.48, 0.72, and 0.96).

FIG. 3. Absorption coefficient of a series of GaAs-
AlQ p5GaQ 75As superlattices with GaAs width L 80 A and

AlQ75GaQ75As widths L77 15, 28, 35, 42, 70, and 100 K.
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bump appears below the first saddle point which can be
identified as saddle-point exciton resonance. The results
here bear some remarkable resemblence to the results ob-
tained by using a contact-potential interaction. Howev-
er, in Ref. 3, the peak structure near the band edge is due
to the resonance effect, whereas the similar structure ob-
tained in our calculation is due to the bound state of the
exciton. Furthermore, in the 2D model, the contact po-
tential calculation predicts a vanishing a at the center of
the band and our calculation shows no such behavior.

We have also calculated the absorption spectra for
GaAs-Al Gai As superlattices in which M i saddle
points exist at the minizone boundary whenever the ener-
gy dispersion as a function of q is a maximum there. Fig-
ure 3 shows the absorption spectra associated with the
saddle-point exciton in GaAs-Alo 25Gao 75As superlattices
for a number of Alo2sGa075As layer thickness (Lg). The
width of the GaAs layer (L~) is kept at 80 A. All spectra
are broadened by a Lorentzian function with a width of
1.2 meV. The dashed curves are the absorption spectra in
the absence of the electron-hole Coulomb interaction. Be-
cause of the finite number (around 800) of basis states
used in our calculations, the absorption coefficient tends to
drop below that of the noninteracting case (dashed curve)
as the photon energy goes above the saddle point. If an
infinite number of basis states were used, the absorption
coefficient for energies above the saddle point should de-
crease slowly, but remain slightly higher than the nonin-
teracting value for all finite energies. ' This discrepancy
is present only at the high-energy side of all curves shown
in this figure. For the thickest-barrier case (Lg =100 A)
the band structure is dispersionless in the growth direction
and our resulting absorption spectrum is similar to that of
a quantum well (a quasi-two-dimensional system) at the

low-energy side. For the thinest-barrier case (LB =15 A)
the dispersion in the growth direction is large and our re-
sulting absorption spectrum for energies below the saddle
point is similar to that of bulk GaAs. For energies near
the saddle point the absorption coefficient dips down and
smoothly joins a curve appropriate for a two-dimensional
system. In the intermediate regime (Lg =28-70 A), we
find prominent structures between the main exciton peak
and the saddle point, indicating a redistribution of the os-
cillator strengths of the continuum states by the Coulomb
interaction. These structures may be interpreted as exci-
ton resonances. High-resolution excitation spectroscopy
measurements for a large number of GaAs-Al„Gai „As
superlattices (including part of the series of samples
adopted in Fig. 3) have recently been performed. ' Varia-
tion of the line shape of the absorption spectra due to the
change of barrier thickness is apparent. We find qualita-
tive agreement between our theoretical predictions and
the experimental data. However, because of the difficulty
in preparing precise superlattice structure, the inhomo-
geneous brodening tends to smear out the structures asso-
ciated with the saddle-point excitions. Detailed compar-
isons between the theory and experiment will be reported
elsewhere.
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