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Elastic properties of charge-density-wave conductors
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The sound propagation in a charge-density wave (CDW) in quasi-one-dimensional systems is

studied theoretically within the mean-field approximation. We find that the sound velocity is

unaA'ected by the CDW transition in the absence of CDW pinning. However, in the presence of
CDW pinning the sound velocity increases upon entrance into the CDW state. The present result
oAers a simple interpretation of the field dependence of Young's modulus observed in a CDW of
TaS3.

The nature of charge-density-wave (CDW) config-
urations in quasi-one-dimensional conductors is currently
being studied rather extensively. ' Recent elegant experi-
ments by Brill and co-workers and by Mozurkewich,
Chaikin, Clark, and Gruner show that not only the elec-
tronic properties but also the elastic properties depend
sensitively on the CDW configuration.

Within a model used by Lee, Rice, and Anderson
(LRA) we study the elastic properties of a CDW. As is
well known, the longitudinal sound velocity is expressed in
terms of the polarization operator II(q, cp) as

c =co[1 —g'II(q, 0)] 'i',
where co is the bare sound velocity and g is the electron-
phonon coupling constant. Since II(q, co) is the density
correlation function and the density fluctuation couples to
the sliding motion of the CDW, II (=([n,n])) is given
within mean-field theory

([n, 6a])p2
([n, nl) =([n, n])p —g'Dp(co)

1+g Dp co ( 8A, 6h
(2)

and

([n, n])p(q, cp) =2Np[1 —(2A) F]j (g —cp )

([n, 8A]) p(q, cp) =2J2NpghF

([S~,S~])p(q, ~) =N, [1/~ —(g' —~')F],
where F has been defined elsewhere

(4)

F=(g —
cu ) I dE(E —6 ) ' tanh(2 PE)—J p D

((2 co2) 2 4E 2(to2+ (2) +4P2g2

D N2 64E 2g2cp2(E 2 g2)

is the bare phonon propagator with momentum Q =2kF
and ()p means the thermal average taken when the in-
teraction between fluctuations is neglected. We note that
in Eq. (2), 6A is essentially the component of n with the
momentum +' Q. Following LRA we obtain

where

Dp(N) =cog(Qp Cog) (3)

and X =g Np, g=vq, U is the Fermi velocity, and q is the
momentum parallel to the chain direction. Substituting
Eq. (4) into Eq. (2) we obtain

1— Xpf
H(q, cp ) = ( [n, n ] ) =2N p j +(' —cp' ) nfl' —(1+Xnf) (co' —cop')

(6)

where Xp=k(cog/2h), f=(2A) F, and to~ is the CDW
pinning frequency, which we have introduced by hand
since the new mode below T, is identified with the LRA
sliding mode if co~ =0. For example, such a modification
is justified from the phase Hamiltonian by Fukuyama and
Lee. Equation (6) contains two poles; the first pole de-
scribes the density fluctuation in the normal conductor
while the second pole is the pinned sliding mode.

First let us consider the longitudinal sound velocity.
Making use of Eq. (1), we find

where we made use of the fact that cp/j=c/v && 1. Here

f= lim f=p, (T)/p, —
u 0

and p, (T) is the superfluid density in a BCS superconduc-
tor. In the absence of CDW pinning (co~ =0) Eq. (7) be-
comes

c =cp(1 —2X) 'l'

The sound velocity is unaff'ected by the CDW transi-
tion. On the other hand, when the CDW is pinned, Eq.
(7) yields

c=cp 1 —2X 1 — +
) Qg + (1+Af)tpop,

(7)
c =c,[1 —2~(1 —f)] '", (10)
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since in most cases g« rp~. The sound velocity c increases
upon entrance into the CDW state. Equation (10) may be
compared with the temperature dependence of Young's
modulus Y in a CDW of TaS3, which is shown in Fig. l.
Within the present model Y~c, which gives

(hY) Y„'=- f,

(hY) Y„'= fP(E), (i2)

where P(E) is the pinned portion of CDW; P(E) is unity
until E =ET. For E & ET, P(E ) decreases monotonically
from unity and vanishes at another critical field E, when
all parts of the CDW is sliding. However, at the present
stage it is difficult to predict the functional form of P(E),
since P(E) arises most likely from the spatial inhomo-
geneity in m~.

where h, Y= Y —Y„and Y„ is Young's modulus in the nor-
mal state. Figure 1 shows that a choice of 2=0. 062
gives a fair description of the observed change in Young's
modulus, although the experimental result exhibits more
curvature in the vicinity of T = T, whereas the theoretical
expression is quite linear in T, —T. Perhaps the inclusion
of the thermal Auctuations in h, eliminates this discrepan-
cy, since the temperature dependence of Y just above
T = T, indicates the presence of such Auctuations.

The present model provides a simple interpretation of
the observed field dependence of Young's modulus.
When E )ET, the threshold electric field, we may think
of the Young's modulus in a partially pinned CDW, when
a portion of the CDW starts sliding. Then Eq. (11) is re-
placed by

P(E) =1 for E & ET

=(E, —E)/(E, —ET) for E, & E & ET

=OforE &E, . (i 3)

Substituting P(E) thus constructed into Eq. (12), Eq.
(12) describes the main feature of the observed field
dependence of Young's modulus. [Y—Y(0)1/Y(0)
will decrease above ET and the eA'ect is stronger at lower
temperatures. Here Y(0) means Yat zero field. Further-
more, if we assume that the CDW current IgDw associat-
ed with a domain with local ET(x) is proportional' to
E —ET(x) when E & ET(x), we will obtain

IcDw =0 for E & ET
=

2 A(E —ET) /(E, —ET) for ET & E & E,
=4 (E —

2 (ET+E,)l for E & E, , (i4)

where A is a temperature-dependent constant independent
of E. Equation (14), together with Eq. (12), gives the ob-
served lcnw dependence of Y(0) —Y(E) (Refs. 2 and 3)

Y(0) —Y(E) (Ic,w) '" (is)
for ET &E &E,.

In order to describe the field dependence of the dissipa-
tion it is necessary to incorporate the quasiparticle damp-
ing which is beyond the present analysis.

Second, making use of the charge conservation the
frequency-dependent conductivity is obtained from Eq.
(6) as

cr(rp) = (ico)
e W

To make the theory more concrete, we assume in the
following that a CDW splits into domains with individual
(or local) threshold fields. Furthermore, the local thresh-
old field is distributed uniformly between ET and E,.
Then we will have

where

COx fp —1 —fp(1+Ap 'fp ')
P

(i6)

3 A P'

0.5 'l. 0

FIG. 1. Temperature dependence of Young's modulus. The
crosses are experimental values taken from Ref. 3. The full line
corresponds to Eq. (11) with 22. =0.062.

fp(co) = lim (2a)'F
q 0

= (2h) dE tanh +E
2

(E 2 g2) —1/2 (4E 2 ~2) —1

For co~ =0 and T =0, Eq. (16) reduces to the classical
result of LRA. Furthermore, Eq. (16) allows us to define
m*/m for TWO as

m*/m =1+kp 'fp '(0),
which again reduces to the LRA result for T=O where

fp (0) = l. On the other hand, in the vicinity of the tran-
sition temperature the phason mass m*approaches rapid-
ly the electron mass where Eq. (18) is approximately
given by

m */m = 1+16Th(T)/rrkrog
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