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A derived generalized Langevin equation for classical impurity diffusion in a lattice is studied in

perturbation theory. Temperature dependence of the activation barrier to impurity motion is absent
for an interaction Hamiltonian linear in phonon amplitudes, but appears for an interaction Hamil-
tonian including quadratic or higher orders in phonon amplitudes. The time integral of the memory
function, known as the friction constant, separates into one-phonon and multiphonon contributions
to dissipation. At low temperatures the friction constant becomes a power series in temperature.
The coefficients of this power series are evaluated for a Gaussian impurity-lattice interaction poten-
tial. When the potential is short ranged, one-phonon acoustic umklapp processes dominate and the
friction constant goes to a constant value as temperature vanishes; otherwise, umklapp processes can
be ignored, and the leading term in the power series is the linear temperature coefficient which, in

lowest order, is dominated by two-phonon normal quasielastic scattering process. Transverse modes
in the two-phonon processes contribute significantly to the latter, but only when the interaction Ham-
iltonian contains terms of at least quadratic order in the phonon amplitudes. Due to the power series
form of the friction constant and the temperature dependence of the activation energy, the diffusion
constant obtained using Kramers's formulas assumes a generalized Arrhenius form.

I. INTRODUCTION

The theory of impurity diffusion in solids has received
much attention in recent years because of the potential
impact in areas of technological interest such as hydrogen
diffusion and superionic conductors. ' Experiments usual-
ly reveal that the impurity diffusion constant D has the
pure Arrhenius form

for low temperatures k~T &&E, , where E, and Do are
two experimentally fitted constants: the activation energy
and Arrhenius prefactor, respectively.

There have been many theoretical attempts to explain
the Arrhenius form. Transition-state theories ' yield (1),
where E, coincides with a real energy barrier to impurity
motion and Do is proportional to a jurnp "attempt" fre-
quency. A microscopic determination of the latter gen-
erally meets with only order-of-magnitude success. This
fact has led others to make more detailed investigations.
Fokker-Planck transport theories ' utilize generalizations
of Brownian motion to include the effect of a periodic po-
tential on a diffusing particle. In these theories E, ap-
pears as a parameter along with the friction constant g.
A more recent theory along this line is an attempt to ex-
tend the usefulness of Kramers's formulas. These
theories contain no method for evaluating any dependence
of E, or q on temperature or potential parameters.

More realistic mode-coupling theories have been ad-
vanced to analyze the effects of lattice vibrations on E,
and g, the diffusion constant, and other functions. Micro-
scopic determinations of q have also been attempted using
other methods including perturbation theory. ' In a
mode-coupling theory single-phonon and multiphonon

processes are all hidden within a relaxation function that
includes conservative and dissipative forces, so that no
clear physical picture of the mechanics of diffusion
emerges. Perturbation theory, on the other hand, yields a
simple physical picture which readily segregates one-,
two-, and higher-order phonon processes. The problem
with perturbation theory, as clearly stated by Kleppman
and Zeyher, is that activated diffusion is ordinarily non-
perturbative in nature requiring the use, for example, of a
mode-coupling approach.

Munakata has solved this problem by separating the
dissipative from conservative forces, thus providing a nat-
ural environment for the use of perturbation theory in a
generalized Langevin approach. The systematic dissipa-
tive term involves the memory function K(t) which is re-
lated to the fluctuation force through a Auctuation-
dissipation relation. The friction constant g then becomes
the time integral of the memory function. Both the
memory function and its time integral are central quanti-
ties in diffusion calculations (cf. Refs. 10—12).

Munakata calculated E, and normal (as distinguished
from umklapp) one-phonon contributions to g and the
memory function to lowest nonvanishing order for the
traditionally analyzed impurity-lattice Hamiltonian. The
latter consists of a harmonic lattice perturbed by an in-
teraction Hamiltonian that retains only those terms that
are linear in the phonon amplitudes. E, in this approxi-
mation does not vary with temperature. The behavior of
q to this order is a generalized Arrhenius form where the
prefactor is proportional to T ' . Using the low-friction
Kramers's formula (in which case the jump rate is pro-
portional to g/T) Munakata obtained a form which devi-
ates from the Arrhenius form (1) in that the prefactor is
proportional to T and the activation energy is in-
creased due to elastic forces by the amount Mco/2, where
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cp is the sound speed and M is the impurity mass.
It was originally believed by the authors that the behav-

ior of impurity diffusion exemplified by the pure Ar-
rhenius form (1) was correctly induced from experiment
and should be obtainable from multiphonon contributions
which were ignored in Ref. 9. It is known that, to lowest
nonvanishing order, classical two-phonon contributions to
kink diffusion, obtained in a perturbation theory where
one expands about free phonons and kinks, give rise to a
linear variation of g with temperature presuming that
Kramers's low-friction formula should apply at
sufficiently low temperature, the two-phonon contribu-
tions should yield (1). The perturbation theory carried
out in this paper suggests, however, that this picture is an
oversimplification.

First, it is shown that when quadratic or higher orders
of phonon amplitudes are retained in the interaction
Hamiltonian, E, becomes temperature dependent. The
quadratic order generally smooths the effective periodic
potential seen by the impurity, thus causing a decrease in
the barrier height.

Second, it is shown that at low temperatures (i.e., where
kii T «Mc p) one-phonon normal contributions to i) are
dominated by one-phonon umklapp and multiphonon
contributions. The form of g becomes the power series

tl=dp +d & kg T +d 2(k i') + (2)

where the d; are constants. "Low temperatures" include
room temperatures for typical impurity-lattice system pa-
rameters.

The first term dp in (2) is entirely due to one-phonon
acoustic umklapp processes. If the impurity-lattice in-
teraction potential is short range (if the range of a Gauss-
ian interaction potential is & —', of a lattice site), then one-

phonon acoustic umklapp processes yield dominant con-
tributions to all the d;. Otherwise, umklapp processes can
be ignored and multiphonon scattering dominates impuri-
ty diffusion. In the latter case the linear temperature
coefficient d

& is, to lowest order, dominated by two-
phonon normal quasielastic scattering of the impurity; the
d, for i ) 2 are then dominated by higher-order multipho-
non contributions. When the low-temperature formula (2)
along with the temperature-dependent E, is used in
Krarners's high- and low-friction rate-theory formulas, a
generalized version of (1) results where Dp is allowed to
vary with temperature and E, takes on its zero-
temperature relaxed value (the temperature-dependent
part of E, being collected into the prefactor).

The dominant two-phonon contributions to d~ do not
arise from interaction Harniltonian terms which are linear
in the phonon amplitudes —they arise from terms which
are quadratic in the phonon amplitudes. The linear terms
give rise to one-phonon contributions of order V, and
two-phonon contributions of order V; the quadratic
terms give rise to two-phonon contributions of order V
and higher. Inclusion of the quadratic phonon ampli-
tudes in the interaction Hamiltonian yields a perturbation
theory correct to order V . Although transverse modes
always contribute to umklapp processes (and thus dp),
normal processes which contribute to d~ do not contain
transverse modes unless phonon amplitudes of at least

quadratic order are included (in which case their contribu-
tion dominates longitudinal modes). This indicates that
mode-coupling and other theories should retain in the in-
teraction Hamiltonian higher orders than linear in the
phonon amplitudes.

Interestingly, it is found that phonon-impurity interac-
tions which contribute to dissipation obey a classical
selection rule. In an interaction between the impurity and
the lattice a net energy AE and net momentum AP are
transferred from the lattice to the impurity. It is shown
in this paper that in any dissipative interaction the follow-
ing equation is satisfied:

vl aP=aE,
where VI is the impurity velocity. The impurity velocities
are distributed according to a Maxwellian so that the
probability for a dissipative interaction is maximized when
the speed Vq is small. The dominance in dissipation of
multiphonon processes and of one-phonon umklapp pro-
cesses at low temperatures is attributable to the fact that
both can take place at any value of VI including VI ——0,
whereas normal one-phonon processes (treated, for exam-
ple, by Munakata ) are likely only when the impurity
travels near the speed of sound.

The paper is organized as follows. In Sec. II the Ham-
iltonian and generalized Langevin formulation derived by
Munakata is stated and generalized to nonlinear Hamil-
tonians. In Sec. III the temperature dependence of the
activation barrier is studied. In Sec. IV the memory func-
tion is described in terms of perturbation theory. In Sec.
V terms calculated to order V (the lowest nonvanishing
order) are discussed, with emphasis on the calculation of
the one-, two-, and three-phonon processes. The lowest-
order contributions to g are also calculated here. Selec-
tion rules for classical phonon-impurity interactions are
derived. A Gaussian interaction potential is introduced in
order to evaluate the memory function and its associated
friction constant. The low-temperature limit of g is dis-
cussed in general terms and studied in the Einstein and
Debye approximations. Mass dependence is discussed.
In Sec. VI is a discussion of higher-order effects. Three
general theorems are stated regarding the perturbation
theory of the temperature dependence of the memory
function from which are deduced consequences at low

temperatures. In Sec. VII the nature of the single-phonon
and multiphonon contributions to the memory is dis-
cussed in quantum-mechanical terms using a classical im-
purity and quantum phonons. The quantum selection
rules derived therein are shown to be an expression of en-
ergy and momentum conservation in interaction events.
Section VIII contains conclusions.

II. THE HAMII. TONIAN
AND THE LANGEVIN EQUATION

Consider the Hamiltonian

H =Hp+P /2M +HI,
where Hp is the lattice Hamiltonian in absence of the im-

purity, P the magnitude of the impurity momentum P, M
the impurity mass, and Hq the interaction which couples
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the lattice to the impurity. The Hamiltonian is assumed
to be purely classical. The interaction is assumed to
occur via a pair potential

Hr= g V(ri),
I

where rl =R~ —X, where R~ and X denote the 1th lattice
atom and impurity positions, respectively. V(r~) can be
expanded about the lattice sites x~ = g& al;b; in small dis-

placements uI to yield a power series in the components
of ui, where the b; are the primitive lattice vectors and the
aI; are integers.

The generalized Langevin equation for an impurity in a
lattice is

P(t)+ f ds K(t —s) P(t)= —VxU+. g f~(t), (4)
0 I

where K is the memory function (a matrix), U(X) is the
effective periodic potential seen by the impurity —it is ob-
tained from the lattice at equilibrium with X held fixed,

monic and by truncating the interaction Hamiltonian to
quadratic order in the phonon amplitudes. Using the
standard normal-mode transformation,

ui =(Nm) ' g e~g~e
Cu

where e is the normal-mode polarization vector with
complex amplitude Q& for wave vector q and branch j,
the lattice Hamiltonian becomes, in the harmonic approxi-
mation,

Ho= —,
' g (~qrr qr+to~g~g~), (7)

q,j
where P~=g~ and co~ are the eigenfrequencies of the
lattice.

In order to perform the integration in (5) it is simpler to
deal with matrices and vectors for terms involving Q~.
Thus, let the vector Q be constructed from elements Q~.
In order to deal with just Q in (5) rather than both Q and
its complex conjugate, a matrix B0 is defined such that

—pU(x j 1 —~~Ho+~r '
e =— duldp~e

I

(5) Q Bo Q=——,
' Q ~o~gqr Qqr

where P= I/k~T, and Z is the partition function for the
free-lattice atom coordinates and momenta; f~(t) is the
random force contributed by the Ith atom; the memory
function K(t) is related entirely to the random forces
through the fluctuation-dissipation relation" '

K(t)= —g (f((t)f(),1

MkaT
1 r

where ( ) denotes a canonical ensemble over the total
system.

Equation (4) is approximate, where a small memory
term in the periodic potential has been ignored. The ap-
proximate form has been proven only to second order in
the interaction potential for an interaction Hamiltonian
that is linear in the phonon amplitudes. This approxima-
tion is generalizable to all orders for any Hamiltonian (see
Appendix A).

III. THE TEMPERATURE DEPENDENCE
OF U(X) AND E,

The temperature-dependent activation barrier may be
obtained from (5). This is possible without resorting to
perturbation theory by assuming that the lattice is har-

Noting that

one can see that B0 is a rearrangement of the normal diag-
onalized form into an "antidiagonal" matrix of 3&& 3 diag-
onal submatrices with elements co /2, j= 1,2,3.

It is convenient to deal with the system at time t=0.
The interaction Hamiltonian then can be expressed as

Hr = g V(xi —Xo)+ g av
u (I;0)

I I r x( —Xp

1 8 V+ g — u (I;0)up(l;0)+
2 Br Br@

=—H' '+H"'+H' '+ .

where it has been assumed that RI ——x~ +ui, and the
Cartesian component of ui(t) is denoted by u ((;t). Ein-
stein summation is assumed, but only in repeated Greek
indices, where Greek characters are reserved to indicate
Cartesian components and l, I', etc. , are atomic indices.

By transforming into reciprocal space, the HI' may be
expressed in terms of reciprocal-lattice vectors Cx as

Hr '= y V(CJ)e
U0

Hr"= —g, g (q+Cx).e~ V(q+Cs)e Q~ ——C.Q,
q, uo(Nm)'r

g (q+q'+Cx) e~(q+q'+Cx) eqr P(q+q'+C'r)e''g~gqr'—:—Q B&.Q,
o Nm)
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p[HI +Q'(Bo B1)'Q+C'Q]
d e—/3U(Xp)

e —PQ. Bp Q
(8)

where Uo is the volume of the primitive cell, and the vec-
tor C and matrix 8& are defined by their respective equa-
tions.

Inserting the above expressions into Eq. (5) and in-
tegrating over the momenta yields

where Tr denotes the trace. This is just a constant, so
that from (13) it can be seen that E, is linear in T for the
quadratic interaction Hamiltonian.

For acoustic phonons with co~ =qci (j =L, T) (L for
longitudinal and T for transverse) in a simple-cubic lattice
with lattice constant 6, this can be simplified to

6~m CL2 c T2
P

where dQ= ii dg~. Equation (8) is just a gaussian
quadrature. The integration yields

—/3U (Xp) —P[ Ug (Xp)+ kp TU'(Xp)]
e =e (9a)

or

U(Xp) = Ug (Xp) + ke TU'(Xp) (9b)

where

U'(Xo) = ——,
' ln(detR) (10)

and

UR (Xp) =HI —
& g g 2 CqjR~ q'i'C q j

q.i q .i
(12)

is the statically relaxed potential (temperature indepen-
dent).

The activation barrier E, is obtained by comparing the
U at saddle-point position Zo with the U at the minimum
position Yp [for a simple-cubic lattice Zp=(b/2)(0, 1, 1),

Y=p( b 2/)(1, 1,1)]. Thus, from (9)—(12) one obtains

E = U(Zp) —U(Yp)=E +kg T lnE'(T) (13)

where

E, = Uz (Zo) —U~ ( Yo )

1nE ' = U'( Zp ) —U'( Yp )

where E,' is nondimensional and, in general, a rational
function of T. When the interaction Hamiltonian is linear
in the phonon amplitudes, Bi =0. From (11), R = 1.
Then, from (10), U'=0, so E,' =1. Thus, in this case,
E, =E, , which is a constant. E, is the statically relaxed
value of E, to this order (cf. Refs. 7 and 9). The tempera-
ture dependence of E, comes in, therefore, through E,',
which requires phonon amplitudes of at least quadratic
order in the interaction Hamiltonian.

One may in general expand Uz and U' in powers of the
potential. For example, the quadratic interaction Hamil-
tonian yields

R=(1—Bp 'Bi)

has elements R~ q J' (so there should be no confusion with
the lattice atom position RI ), and

Thus, the effect of U' is to increase the minima of Uq and
not significantly alter U~ at the saddle point, unless in the
neighborhood of the saddle point one constrains the im-
purity motion to move along a trajectory connecting the
minimas (as in Ref. 3), in which case U' will also depress
U~ significantly at the saddle point.

To estimate the extent of the deviation of E, from E,
take the first term of Hl ' along a line connecting two en-
ergy minima; in this case the Laplacian of Hi ' just be-
comes roughly the second derivative of the E, /2 times
the cosine of 27TXp/6 Then, to lowest order
lnE,' = —2~E, /mco, where c, =cL =c~ is assumed. Typ-
ical values (cf. Kleppman and Zeyher in Ref. 7) are
E, -200 K, and mco —10' K, which yields a linear tem-
perature coefficient lnE,' of -0.12. For room tempera-
ture k~TlnE, ' is —36 K, which is roughly one-sixth of
E, . Since E., to this order, is linear in T, inserting E.
into (1) just rescales D, by the factor E,'.

To include higher-order terms in HI, it is best to find
the true equilibrium positions yi(Xp) for each impurity
position (e.g. , numerically) and to expand the total Hamil-
tonian around such positions perturbation theoretically,

H = gH'i',
J

r)/(HI+Ho)H'i'=
~+/iai ~+I a yl(X )

Xg (1]',t X )o' g . (1 it;Xp)

By definition, around y/ there arises no linear term, i.e. ,
Ht''=0. Therefore, in Eq. (5), exp( PH ' — ) can-
be expanded into a power series in phonon amplitudes,
leading to Gaussian integrals of polynomials. Every pho-
non amplitude introduces a factor T', so (9a) becomes
multiplied with a power series in T which, at zero temper-
ature, reduces to 1. Therefore, U(Xp) is of the form (9b),
where U' is, in general, the logarithm of a power series in
T. This makes E,' a rational function of T.

It is interesting to note the implications that the
temperature-dependent activation energy has regarding
the form of (1). Inserting (13) in (1), one obtains

—F. /I& TD =DoE,' ( T)e
U' = ——,

' Tr( Bp 'B
i ) +0( V )

Cx-e~ G.e
UQXm

(14)

Thus, the temperature dependence of E, leads to a prefac-
tor of Do multiplied by the temperature-dependent factor
E,' and an exponential factor where the activation barrier
is the statically relaxed value E, . For a linear interaction
Hamiltonian there is no change from (1) (E,' is unity); for
a quadratic Hamiltonian the prefactor is simply rescaled
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(E,' is a constant); including higher orders introduces a
temperature dependence into the prefactor —a rational
function in T which multiplies Do.

IV. THE MEMORY FUNCTION
IN PERTURBATION THEORY

Normally the time integral of the memory function is
used to calculate the diffusion constant directly. ' ' "
However, the form of (4) is strongly suggestive of a
Fokker-Planck approach (in the spirit of Kramers) where
a Markov approximation yields a friction constant and the
activation eff'ects [e.g. , the exponential factor in (1)] are
extracted nonperturbatively. A perturbation theoretical
calculation of a diffusion constant using Kramers's formu-
las [see (36)] must, therefore, exclude the nonperturbative
effects of the activation barrier from a calculation of the

g f(= —Vx„[Ht —U(XO)],
1

(16)

where Xo is the initial impurity position; thus, the random
forces are just due to lattice vibrations. In light of the
preceding remarks, the time evolution of f~ is taken as

friction constant [see (19)). To be consistent with the
Fokker-Planck approach the projection operator is ig-
nored in the time propagator for time-evolving dynamical
variables. " This approximation is tantamount to allow-
ing, for example, the random force to evolve mechanically
(see Appendix B). In fact, the perturbation theoretical
calculation of (6) requires this in order to exclude nonper-
turbative activation eff'ects (Appendix B).

At time t=o the random forces have the periodic po-
tential subtracted out and exactly satisfy

, —X(t)
[u (I;t)—(u (l;t))(„„„]

a'v
+ ~x

~r p x( —x(t j

[u (l;t)up(l;t) (u (1;t)up(l—;t))(„„„]+

where

/3U(x j
P(HO+Hi )

( & )(.((...= J / «/d p(e
I

ft(t)= —Vx
dr x, —x[~)

u (l;t)

are static terms due to the effective periodic potential.
Note that the static contributions (the averaged terms)

are subtracted out and do not contribute to the dissipa-
tion, as only time correlations of f((t) are important in (6).
These correlations contain the static contributions [cf.
(C2)], so that the static contributions need not be retained
explicitly. Thus, the fluctuating force is written as

from Kramers's formulas.
At this point notation is introduced that will be used

extensively below. Let y; =1,2,3 denote a particular com-
ponent of a vector, where i may take on any integer value.
Then let

W)'(")(1 t)—
BL n! fjr z,

. dr],

a ((I y( )),—x(t)BL n! (20)

Letting y(n)=y(. . . y„ in (20), a component of f( in (18)
may be written

f, = —WP(l;t)up(l;t) WP~(l;t)up(l;t—)u, , (l;t)

1 0 V+
~r/3 „, x(t)

+ ~ ~ ~

u (l;t)up(l;t)

(18)

(21)

From (4), (6), (20), and (21) one can see that the scalar
quantity K in (19) is a sum of contributions of the form

dt's t,
0

(19)

where K p is an element of K. This quantity is used in
Sec. V to calculate the Fokker-Planck diffusion constant

The lattice is assumed to be isotropic, with lattice con-
stant b In this case, fr. om (6) one can see that K is diago-
nal, all elements being equal. The time integral of these
elements is termed the friction constant,

g ( W ' '(1';0)up( )(I',0) WP'"'(1;t)up(„)(l;t) ),
3Mkg T

where the following shorthand notation has been used:

up(„)(l;t)=up, (l;t) up (1;t) .

Note that Wp' "'
up(„) is contracted over all p( n )

=P), . . . , P„ indices.
For any correlation function ( A (t)A), (0)), the canon-

ical ensemble is
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( A. (t) A, (0)) = '—f ' f f + du)dp(Z Zg Zp

Xe ~ A (0)e' 'A (0),

LI about Lp gives rise to the following series:

e' '= 1+i f drLt(r)+i f drLt(r) f dr'Lt(r')
0 0

iLpt+ ~ ~ ~

(22)

where P= 1/ks T, Zx and Zp are the partition functions
for the impurity coordinate and impurity momentum, and
L is the Liouville operator.

To perform the perturbation expansion, first let
L =I p+LI, where L p and LI are the free and interaction
Liouville operators, respectively. Expanding in orders j of

A) (t) e
j=0

Now, let

A (t) At '(t)—= W'r( )(1;t)ur( )(l;t) .

Then, (22) becomes

T

A( '(0)e 'T exp i f dr Lt(r) A)'"'(t)
0 free

(
—t3HI

)
free

(23)

where T is the time-ordering operator and the subscript
"free" denotes an average taken about the free Hamiltoni-
an and the motion obtained therefrom. The lowest non-
vanishing order in perturbation theory is, therefore, V
(one power from each A) ). Expanding in powers of PHt
and in LI yields higher powers in V. In general, the
terms in (23) take the form

time t in (24), while the PHt contributions represent only
time-0 (static) quantities.

V. THE LOWEST NONVANISHIXG ORDER

A. The memory function and the friction constant

3Mks T

( f3Ht)"A (t)—
X g A,:(0) ' A((")(t)

11' free

(24)

where now the average is taken over connected diagrams
only (cf. Ref. 14). The A~ (t) contribution represents
dynamical processes which take place between time 0 and

One goal of this paper is to calculate the various contri-
butions to dissipation and thus the memory function. The
number of genuine phonon contributions in (24) is deter-
mined by the number of time correlations in the displace-
ments uI that exist within the term. The time dependence
arises from either A~ or directly from u)(t) in (24). The
simplest terms occur for j=0. It is instructive to look at
the lowest non vanishing order of these terms, i.e.,
(jk)=(00). Suppressing the superscript for these terms,
one may write

dXp
K „(t)= g f ' f" e ~'" W)'( '(l';0—)W"")(l;t)(u ( )(l';0)u („)(I;t)), ,

3Mk~ T, , z~ zp

and the ( )0 denotes a canonical ensemble taken over the
free lattice alone. Odd correlations in components of uI
vanish, so that only when m + n is even do terms contrib-
ute.

The diagonal terms E„„represent the lowest-order n-
phonon contributions to the memory function K(t). K))
is the lowest-order one-phonon contribution, which was
calculated in Ref. 9. The off-diagonal terms (i.e., where
m&n) are simply static corrections to the m-phonon pro-
cess which multiply the diagonal uu term by a power of

T l

—
l where iL) is the lesser of the two values m and

n. The off-diagonal terms are "virtual" phonons (nonpro-
pagating diagrams), whereas the diagonal terms belong to
the set of "genuine" phonon processes (propagating dia-
grams).

Virtual-phonon contributions are uninteresting at low
temperatures as they are dominated by the genuine pho-
non contributions. Thus, the only terms considered in
lowest order here are the diagonal terms, which may be
written with a single subscript
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K„(t)= g e Wr" (l;0)W " (1';t)( ur~„~(l;0)ur j„)(l',tl)p .
1 dXp dP

3Mkg T ( ( Zg Zp
(25)

In three dimensions Z~ =Nup, where N is the number of particles in the lattice, and Zp =(2vrMks T) . Now, (21) be-
comes, in lowest order,

rl= grl„:—g f K„(t) .
n n

(26)

The most interesting results of this paper are found when the interaction Hamiltonian is limited to quadratic order in
the phonon amplitudes; thus, anharmonicity in Hp (i.e., higher orders than quadratic) is neglected. Using the argument
in Appendix C, the one-, two-, and three-phonon memory functions can be written

—r'g', k, T/2M +rs(rU)
(27)

kgT }K (t)= ggg I

Wr [Q /K ]Wr [Q /K ]I ' icos(Q t), (28)

k T
, & & g g I

W'"[Q3/Kpl@''"[Q3/Koll
(Kpvp) (Nm) q, q, q

~ /' o

—t Q 3k~ T/2M +rr ql +'ss' q'j +- (q"I
Xe —,

' g cos(A3t)
COqJ' COq'J'COq "J"

(29)

where co is the jth branch of the dispersion relation for
the lattice vibrations in the harmonic approximation, 8' is
the Fourier transform of W [cf. (Dl) and (D2)], Kp is a
parameter used later in the evaluation of a Gaussian in-
teraction potential,

0 p(qL)=q qt3!q, q/ tt(qT)=5 p —4 g(qL)

are the longitudinal (L) and transverse (T) contributions
from the polarization vectors in an isotropic lattice (5 p is
the Kronecker delta), and

jj] CO 9 A2 COqj +COq J 7 0 3 CO~ +COq J +COq J

Ql =q+& Q2=q+q'+& Q3=q+q'+q" +&
where Cx is a reciprocal-lattice vector and the + is taken
over all possible combinations (note that the sum Q„of
wave vectors or its magnitude Q„should not be confused
with the vector Q or its normal mode elements Q& used
in Sec. III). In deriving Eqs. (27)—(29) it has been as-
sumed that V(r) is an even function, and (29) is obtained
by using the symmetric properties of the sum over q, q', q"
and ignoring the virtual-phonon corrections to K~ that

arise from the first term in (C3).
Thus, to lowest order, the memory function consists of

a sum over types of impurity-phonon interaction "events"
whose memories oscillate in time with frequency O, „and
are damped by Gaussians of variance 2M/(Q„ks T). The
oscillatory nature arises directly from the sinusoidal varia-
tion of the phonon correlation functions. The Gaussian
form of the damping arises from the expansion about the
free motion of the impurity. Later, the time dependence
of the K„will be analyzed for a particular model to reveal
the long-time inverse-power-law behavior of both K] and
K2.

At high temperature the variance of the Gaussians are
small. This maximizes the relative contribution of high
frequencies 0,„, because at lower temperatures the sum
over these rapidly varying processes tend to cancel so that
low-frequency processes dominate. Note from the
definitions of 0, that "low frequency" does not necessari-
ly mean low to~ (except for n= 1). In the two-phonon
process, for example, it may mean low

I
co& —tpq/'

I

.
The n-phonon contributions to the friction constant g

may be evaluated from (27)—(29), yielding, for example,

77

2M
( k T) —1/2

3(Kpvp )2 Nrn
I

Wr. [Qi/Kp]Wa[Q1/Kp] I Prs(ql) E,/kgT—
I Qi I CO~

(30)

1/2

1//2

(ks T)'/ [Q2/KP] + [Q2/Ko 1 I Prr (qj)q'ss (q'j') —E /k

3(Kpvp) (Nm)
I Q2 I CO~ COq'J'

(ks T) /
I

Wrs [Q /K ]Wr" [Q /K ]I'
3(Kpup) (Nm) X X X X

(31)

rr (qj)q'ss (qj''')'Pu. (q"'j "), E, /k Tx
COqJ COq'yCOq "J" E3

(32)
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where Then it may be shown that

E, —= —,'M ~

kr " [Q„ /K ] ~
=, VoQ„Qr'"'e " ', (35)

The form of (30)—(32) is that of a sum over scattering
form factors multiplied by Arrhenius "activation" factors,
whose "energy barriers" are E„. The Arrhenius factors
tend to make the largest contributions to impurity scatter-
ing when the E, are smallest. This corresponds to the
vanishing of the oscillatory nature of the contribution to
the memory function.

As of yet, the power-series formula (2) for g is not
readily apparent. The form of (2) emerges upon upon
consideration of low temperatures, which is found in sub-
section C.

A more revealing method of calculating (30)—(32) is to
integrate over time before integrating over momentum (see
Appendix D). This method yields the selection rule

VI Q„=A,„. (33)

This is a generalization of one-phonon selection rules for
the excitation of phonons by dislocations and kinks. '

Later, in Sec. VII, (33) will be shown to be equivalent to
(3).

Note that since II„and Q„ involve sums of n frequen-
cies and wave numbers, respectively, the interaction be-
tween phonons characterized by these properties can only
take place with an impurity traveling at speed VI calcul-
able from (33) as Q, „divided by the component of Q„
parallel to VI. Examination of (31) in light of a Debye
approximation reveals that both normal and umklapp
multiphonon events can readily take place when VI ——0;
one-phonon normal events (30) can take place only at
high impurity speeds (near co, the sound speed), whereas
one-phonon umklapp events can take place when VI ——0.
For choices of the impurity-lattice and lattice
atom —lattice atom interaction potentials which make E,
small compared to the impurity-lattice interaction poten-
tial height Vp, there is a range of temperature for which
one-phonon umklapp effects will be damped out (see Sec.
V C 3). In this case, one expects multiphonon processes to
dominate disspation unless the thermal velocity of the im-
purity (k~ T/M)' -co.

In cases where one may ignore the one-phonon um-

klapp eff'ects, multiphonon effects generally dominate.
For example, if one takes TR as the ratio of the actual
temperature to room temperature, and MR as the ratio of
the impurity mass to the electron mass, cp —10 cm/s re-
quires MR -4.5&(10 TR for one-phonon processes to be
important. This requires an atom the size of helium at
room temperature, or nitrogen at 5 times room tempera-
ture.

where

Qr t n) g )'i. . . g )'n

in the same manner as u&[, ) was defined previously, with
Q„' taken as the y; component of Q„.

C. The low-temperature limit

2 ~ A~B —Ea/kB T
Dhigh q

—z~ e, g ))2coB
27771

2 IEa —E /kg T
D) q =zb e, g «2mA

kBT

(36a)

(36b)

where z is a geometrical factor and cuA and coB are fre-
quencies characteristic of the curvatures of the minimum
and maximum of the periodic potential, respectively.
Since the solid considered here is isotropic, Eqs. (36a) and
(36b) apply in three dimensions as long as E, is measured
from the saddle-point configuration.

Of course, Kramers's formulas were derived for a fixed
periodic potential, i.e., where E, , coA, and coB are con-
stants. In light of Sec. III this constraint should be re-
laxed. Thus, although their values may be well approxi-
mated by their zero-temperature relaxed values, they
should be allowed to vary with temperature.

1. The one-phonon normal processes

When (35) is inserted in (30), the Debye model yields,
for the first Brillouin zone (see subsection C 3 for a discus-
sion of umklapp processes),

Equations (30)—(32) can be evaluated numerically for
any given dispersion relation co and for any temperature;
however, analysis leads to interesting results in the De'bye
and Einstein models, especially at low temperature. In
particular, it is shown that for low temperatures g takes
the form of the power series (2) in temperature.

In the Debye model the transverse dispersion relations
are taken as coqr =cr q ~, and the longitudinal as
coqr =cL

~ q ~, whereas in the Einstein model co~ ——coo,

j =T,L, where cT and cL are the transverse and longitu-
dinal sound speeds in the lattice, respectively.

By making a Markoff approximation of (4), Kramers's
high- and low-fiction formulas for the jump rate over an
activation barrier may be used to yield the diffusion con-
stant

B. The Gaussian potential
7T

2M

1/2 2~Vp

3KpvpmcL2 2

—McL /2k& T2

Qk~ T
Evaluation of (27) —(32) requires the specification of the

interaction potential V. One of the simplest forms for V is
a Gaussian, and since it is also used in other theories (cf.
Refs. 7 and 9) it will be used here. Thus, let

x „ dqfq[e
iSt aZ

(37j

—e'r'
V(r) = Vpe (34)

The last term in large parentheses is equal to 1 if the in-

tegration limits are extended to infinity. In this case the
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result is the same as Munakata's acoustic-phonon result,
except for a factor of 4 that resulted from an erroneous
factor —,

' in his Fourier transform of the Gaussian poten-
tial. '

The Einstein model yields, after extending the first Bril-
louin zone to infinity,

T

V co
7/1

Einstein ~ M
@

o QM /k T
3 2 3

3 2 Kouo (ka T)

Thus, in both the Debye and Einstein models the trans-
verse modes do not contribute, which is, as will be seen in
subsections 2 and 3, a peculiarity of the single-phonon
normal process. Also, in both models, the one-phonon
term decreases more strongly than a power of T. The De-
bye model yields an additional activation energy McL/2
when gt is inserted into (36b), as has been noted else-
where.

(38)

where N, is the modified Bessel function (K in Abro-
mowitz and Stegun' ) of order v.

Taking the low-temperature limit does not change (37),
but (38) becomes

~
1/2

Einsteinlim 'g1
T 0 6 a@Up

—(tntt/Ko )QM/k~ T
Xe

2. The two-phonon term

The low-temperature behavior of the two-phonon term
is surprisingly difterent in the classical low-temperature
regime and dominates the normal one-phonon behavior
(37). This is due to the fact that the phonon-scattering
"activation" energies E2 ~ (to~ —coq/ ) vanish rapidly as
q'j'~+qj giving rise to strong scattering in processes
which involve two phonons with nearly identical energies.
To see the results of this, use (35) in (31) to obtain

1/2

Debye

12 2M

3
Einstein

7l2
12

(Kouo) (Nm) E~

1/2
~kg T
2M

(39)

where in Eq. (39) tp is the matrix composed of the components tp p. In the low-temperature limit one can see that the
exponential dependence on temperature vanishes compared to 1 in the Einstein model, and that

Einstein ~ 1/2im X/2
T 0

e Einstein result is, however, somewhat misleading. To see this, consider the even-valued frequency dispersion

2 2 2 2co ——cop+c& q + ' '

(40)

(41)

which approaches the Einstein model in the limit where c~~0. Then note that one of the two temperature-dependent
exponentials in (31) dominates the other one when co~ =cuq/', so let e—=co~ —coq/' with @~0. The exponential in (28) is

approximately equal to 1 in this case. Performing the time integration of (28) yields

—g / [Q ' qj 'Q ][Q ' q~J 'Q ] y g(~ ) k T
o 12M (Nm) (Kouo) q/ q /

where dtt ' is the two-phonon contribution (in lowest or-
der) to the linear temperature coefficient di in (2). Note
that (41) is entirely proportional to T. The apparent con-
tradiction between (40) and (41) is resolved by noting that
the low Tbehavior of (4-1) is approached only when
ks T 5 Mc/; when c/ is exactly zero the low Tlimit of (41)-
is never reached, and only then does (40) hold. It can be
deduced that k~T &&Mcp at room temperature for sound
velocities cp = 10 cm/s and for impurities of M ~ 20 amu,
so practically speaking (41) is the interesting result.

The linear variation of g2 with T dominates the one-
phonon normal term as well as higher-order terms for
weak coupling (see below). This seems to imply pure Ar-

1/2
1 w &0 &p 8 7s+ s48 2 m M cT cl

(42)

rhenius behavior in the low-friction limit [insert (41) into
(36b)] or non-Arrhenius behavior in the high-friction limit
[insert (41) into (36a)]. This conclusion must be
reevaluated in light of the one-phonon umklapp contribu-
tions discussed in subsection C 3.

Note that (41) consists of umklapp and normal contri-
butions. Ignoring the umklapp contributions, the Debye
limit of (41) yields the following approximate contribution
from the quasielastic normal two-phonon processes:
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Note that the transverse modes yield the term 8/cT in
(42), which is normally larger than the longitudinal con-
tribution 7/cz. That transverse modes contribute to the
dissipation is a property of interaction Hamiltonians that
retain higher orders than linear in the phonon amplitudes;
as will be seen in Sec. VI, transverse modes do not con-
tribute to normal processes at any order of perturbation
theory for interaction Hamiltonians that are linear in the
phonon amplitudes.

3. One-phonon umklapp terms

In subsection C 1 it is shown that the normal one-
phonon contribution is exponentially damped with tem-
perature at low temperatures. This is not the case for um-

klapp processes. Indeed, it turns out that they dominate
diffusion for sufficiently low temperature.

Analogously to Eq. (41), one obtains, as the low-
temperature limit for the Gaussian potential (34),

(43)

2y2 2 2p 1 1 +(G2)2
—G /2Ko

18KovoMm cT 2cI
(44)

Note that transverse modes do contribute to umklapp pro-
cesses. In a similar manner, the one-phonon umklapp
contribution d ~"' may be calculated. d ~"' is calculated for
the special case cz =cT ——cp as only the order of magni-
tude will be of interest:

do
d one

2Mc o

G2 1 G4
gG 14—5, + — „e

Ko 3 Ko

4 —G /2KO
G e

—G /2KO

Note that the power expansion (43) in T is only valid
for

where dp is the leading term of (2) and d ~"' is the one-
phonon umklapp contribution to d~ in (2). Evaluations of
the various terms are made to yield

tio r decreases rapidly with increasing range,

6r —= 1/Ko,

and varies linearly with m /M when two-phonon umklapp
processes are neglected. For example, assuming
ct =cT=cp one has r = 0 08 5(m. /M) for 6r=0.9b,
whereas r =0.009(m /M) for 5r =b.

The ratio do/d'~ 'k~T determines the overall impor-
tance of one-phonon umklapp processes relative to two-
phonon normal processes in impurity diffusion. From
(44) and (42) one may write

dp tr(2~)' m T+ 2~L G —G'z2z,'3 l 3

e
d')"'kg T 3k' T Kpvp 1/cT+ 8cz ~ Kp

For 6r ~0.5b one can neglect reciprocal-lattice vectors of
length G &2m/b, simplifying the ratio to

3 l 3
dp m /cr+ TcL (2')" t2~/z b—

5 5
e

dP~'k~ T ktt T 1/cr+ ,'ct' (Epb)—
or ~0.5b . (45)

2
Kpb

kg T ((—,
' Mc~ 2~

For impurities of M ~ 50 amu, sound velocities
c~ ~ 3&&10 cm/s, and Kpb ~ 1, this inequality is always
fulfilled at room temperature, but for smaller impurity
masses one has to determine more carefully when the
power-series expansion in (43) breaks down.

From (41) and (43), it may be noted that the linear tem-
perature coefficient d~ consists of one- and two-phonon
contributions, so

d one +d two

and (2) becomes

2) =dp+(d )"'+d')"')ktt T+ .

The importance of one-phonon umklapp relative to
two-phonon contributions to the linear temperature
coefficient is measured by the ratio r =d i"'/d'&"'. The ra-

This ratio is very sensitive to 6r. Setting cz =cT ——cp the
ratio in (45) is equal to 3 Xmcp/kg T, with 3 =1.1 for
6r=0. 5b, 3 =0.18 for 6r=0. 67b, 3 =0.002 for
6r=0. 88b, and 3 =0.00005 for 6r =b. At room tem-
perature, therefore, one-phonon umklapp processes dom-
inate the two-phonon contributions for short-range
impurity-lat tice interactions, i.e., for 6r 0.88b. For
longer ranges, i.e., 6r ~0.88b, the two-phonon contribu-
tion becomes dominant.

One may also note that, if one neglects lattice relaxa-
tion effects, the right-hand side of (45) is proportional to
E, /( V~pb), so that for values of activation energies large
compared to VQ umklapp processes dominate.

4. The mass dependence of the diffusion constant

From (42) and (44) it is clear that, to order V dp and
d', ' both vary as 1/M. When they are inserted into (26)
and (36a) and (36b), assuming o2~ and o2~ are —1/&M,
then Dh;gh„does not vary with M and D~, „—1/M. An
"intermediate-friction" system presumably interpolates
between this constant and 1/M behavior, which may be
interpreted, over a limited parameter range, as being con-
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sistent with 1/U'M behavior characteristic of the
transition-state theory. It turns out that higher-order
corrections cause d ~ to have a more complex (and
stronger) variation with mass, so that the diffusion con-
stant has a correspondingly complex mass dependence (cf.
Sec. VI B).

5. The time dependence of KI and K2

From Eqs. (27) and (28) it is immediately seen that the
long-time behavior of K] and K2 is dominated by contri-
butions from the first Brillouin zone. Only the Debye
model will be considered here, as the Einstein model does
not seem to be of relevance at low temperatures. For
analysis the summations in (27) and (28) are transformed
to integrals over q (large-X approximation). Through re-
scaling of the integration variables q~y=tq in Eqs. (27)

2 kgTa=—— t +
2 M

(46)

At low temperatures the main contribution to K2(t) at
large times comes from the integration region where
Q)q ~ Q)q Using

and (28), the large time dependence is readily obtained.
Asymptotically, K~(t) behaves as r and K2(t) as t
More explicit formulas can be obtained. Using (35) in

(27), the Debye approximation yields 4 times Munakata's
result [formula (47) in Ref. 9], the factor of 4 being of the
same origin as in Eq. (37). The time dependence of K2(t)
is more involved. For the sake of simplicity it is assumed
that transverse and longitudinal sound velocities are the
same: cT ——cL =—cp. Let

cos(Slt)= f '+'
ds exp(s

~

fl
~

) ~ f" dx exp(ix
~

0
~

)
—(1+x It + . )

27Tl E' —I oo S2+t2 t'

1 1
1 —— 6'(/0/), taco (47)

where 6 (
~

0
~

) is the derivative of the 5 function, one obtains, in the Debye limit for K2(t),

Vpkg TK2(t)-—
8~ ~(mc')'K'c'r' aa

3
a2f dz f dq f dq'5lq' —q) 1 — +—1 0 0 2t2

—a(q +2zqq'+q' )

aq'
(48)

K, (r)=—

It follows that only the seventh and higher derivatives
contribute in (48), with the result

kg T 264 Vp2

8 2M%6 12 +0 (49)
pep

u~, etc. , as in (6). Let

(r) ~ (r) (r)
gmn = dt +mn ~ +mn =

0 j, k

(j+k =r)

K'&„"'(r) .

Equation (49) gives the coeKcient of the t term only up
to the first power in T. There are corrections with higher
powers in a.

VI. HIGHER-ORDER CONTRIBUTIONS

A. General results

The higher-order contributions [(jk )&(00)] contribute
significantly to diffusion, especially at high temperatures.
It will be seen in this section, however, that their contri-
bution to low-temperature behavior can also be significant,
especially when V/mc 0 —1.

The interaction Hamiltonian, and therefore also the
corresponding Liou ville operator, consists of a Taylor
series expanded about X(t),

H, = y HP'.
j=0

Thus, for example, Hi ' is the washboard potential, fol-
lowed by terms linear and quadratic in the components of

From perturbation theory three theorems can be proven
(see Appendix E).

Theorem 1': If only Hl" is taken into account for
higher-order contributions in the 13HI and A~ terms in
(24), disregarding also contributions of Hq" to U(Xo) as
in (12), the low-temperature behavior of K'"„' and
goes as T, where a =

~

m +n r —2
~

I2, and wher—e
m +n +r has to be even (otherwise, K'"„' =g'"'„=0).
When umklapp processes are neglected, the following spe-
cial cases arise at low T: g' n+n '-T, with the excep-
tion g'11'=g1, which vanishes exponentially in T.

Corollary: In the special case where the total interac-
tion Hamiltonian is linear in the phonon amplitudes (i.e.,
where HI contains only HI ' and HI"), and contributions
from U(XO) and LII ' are neglected, then, at low tempera-
tures,

T" for r even .

As an example to make the corollary of theorem 1 more
concrete, one might note that for the gaussian interaction
potential the r =0 contribution, when integrated over
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time, yields Tt& =d p+d 1"'kz T in (43). For the special
case in the corollary, the r =2 contribution, when in-
tegrated over time is—apart from d1"'—the only contri-
bution to di in (2) [the lowest-order processes described
by (41) occur only for interaction Hamiltonians that in-
clude phonon amplitudes to quadratic order].

Theorem 2: The higher-order contributions of any
finite sum in the interaction Hamiltonian with HI ' ex-
cluded and effects from U(Xp) neglected yield the follow-
ing low-temperature behavior for the memory function
and the friction constant,

a (=0) a (=0)

where genuine n-phonon processes contribute to constants
and B with a ) n —1. Although genuine one-

phonon normal processes contribute to all of the 3, they
do not contribute to any coefficient B; the genuine one-
phonon normal contribution decays exponentially at low
T as in (37).

Theorem 3: Inclusion of U(Xp) and higher orders of
Lt' does not destroy the dominant behavior of K'"„I(t)
and g'",' at low T. All higher-order corrections from
exp[ —/3U(Xp)] take a simple form at low temperatures
and do not change the power laws of theorems 1 and 2.
The higher-order corrections from the Liouville operator
LI ' vanish at least linearly in T at low T, regardless of
the number of involved genuine phonons, and resulting
deviations from the power laws in theorem 1 and 2 are of
the order V(G)/Vpvp, where G&0 is a reciprocal-lattice
vector, and powers thereof.

These theorems yield rich information about the low-
temperature behavior of K(t) and q. Consider, for exam-
ple, HI truncated to linear order in the phonon ampli-
tudes as in the corollary of theorem 1. Aside from one-
phonon umklapp processes and corrections from U(Xp)
and LI ', the low-temperature behavior of g is dominated
by the single linear temperature (a= 1) term g'liI. This
term is of fourth order in V. Still disregarding U(Xp) and
LI, but including single-phonon umklapp processes, the
friction constant becomes dominated at low temperature
by the behavior of the single contribution g1 ——g1i ', which
does not vary with temperature [thus, is the main contri-
bution to dp, given by (44) for the Gaussian interaction
potential] and is second order in V. When the full in-
teraction Hamiltonian without effects from U(Xp) and
LI ' is considered, theorem 2 tells us that, disregarding

single-phonon umklapp processes, there is an
infinite

number of higher-order processes contributing to linear T
behavior (i.e., to the linear temperature coefficient di),
each of which involves a genuine two-phonon process
with virtual-phonon corrections of order Vp/mc 0. All
higher-order genuine multiphonon processes contribute
only terms with higher powers in T. Considering also
higher-order single-phonon umklapp processes, infinitely
many corrections to dp of (44) are introduced through the
nonlinear, especially the quadratic, terms of the interac-
tion Hamiltonian. Finally, if the corrections from U(Xp)
and LI ' are also taken into account, then according to
theorem 3, there are infinitely many additional contribu-
tions to d1 coming from all kinds of single-phonon and
multiphonon process, each of which are of order
V(G)/Vpvp and which multiply together to yield a power
series in V(G)/Vpvp. It should be noted that contribu-
tions to dp come only from the static part exp[ —/3U(Xp)]
and not from the Liouville operator LI ', contrary to what
one might expect. Further, these static contributions can
be easily calculated at low temperatures, according to
Eqs. (E10)—(E13). One consequence is that for tradition-
ally studied purely linear interaction Hamiltonians the ex-
pression (44) for dp is readily generalized to a form valid
to all orders of perturbation theory:

~2 Vp
dp—

3 +
18KpvpMm cT 2cL

2 2

( 1
)cr Yo/7r(G G )P

—IG|+G~ I/4KD

GI, G2

where G=Gi —Gq and Yp=(b/2)(1, 1,1). Note that al-
though d p appears to be from terms limited to order Vp, it
includes contributions from all orders of the static part
exp[ —/3U(Xp)], which gives rise to the double sum over
reciprocal-lattice vectors. The static part leads to higher
orders in Vp only in the coefficients d1, d2, etc. Other
higher-order corrections to dp can only arise through a
quadratic term in the Hamiltonian.

For Vp/mcp «1 and E, « Vp the main contribution
to g at low temperature comes from normal genuine two-
phonon processes with zero virtual phonons, i.e.,

I11 + f12 + j21 + f22
(2) (1) (1) (00)

Using the methods in Appendix D the following formulas
may be derived, ' neglecting umklapp contributions,

f11(2)

1//2

~Mkp T
2

z'
'

l
V(q)

l

V(q') g Re f"dyy exp[/I+]
72M vp (Nm) qq cvqL, tvqL 0

(50)

(1) (1)
f12 f21

1/2
~Mkg T

2

1 1

12M vp (Nm) qq

(q+q') q(q q')(q+q') q'lq+q'l
2 2,

COqL COq'L

&& V(q+q') V( —q) V( —q') g Re f dyy Re[A+]
0

(52)
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where

k T
Xq

~
+y(q+q) [q~qL+q~q, ]+ [~zL ~q, ](q+ q')~ 2M 2 g T

Note that g „=g„, in general. Furthermore, although
there are apparently resonant contributions in g'~]' and
viI2', when q and q' are parallel (divergent contributions
are cancelled by genuine one-phonon processes), they do
not contribute to the low-temperature behavior. Also,
even though g]2 is negative it will be shown below that at
least at low temperatures the sum go+g']~'+2g']2'+q2 is
always positive. Finally, note that for normal processes in

g] &' and g']z' only the longitudinal modes contribute. This
is due to the fact that all the involved phonons originate
from or end at vertices described by the linear Hamiltoni-
an HI". This leads to the following conclusion: For an
iteration Hamiltonian which is linear in the phonon ampli-
tudes the transuerse modes do not contribute to the friction

constant in the first Brillouin zone to any order of pertur
bation theory. This statement is inclusive of a similar con-
clusion of Munakata s which is limited to the lowest non-
vanishing order. For interaction Hamiltonians that in-
clude terms at least quadratic in the phonon amplitudes,
the case is quite different, as the lowest-order result (42)
has indicated.

B. The low-temperature limit in the Debye model

In addition to g2 which varies linearly with T in the
low temperature limit, g'&']' and g']z' also vary linearly with
T, thus also contribute to d ~. In particular,

&™o 72qr M m Uo o o)q
~

dcoq/dq
~

12 V 2

lim q)Iz' ———k~T, J "dq J dzz(1+z)'V(q/2[1+z]),
48vr M m v() o (oq ~dcoq/dq

V(q) =
Ko

—q /4K 0Vpe

and for the Debye limit coq —cLq. Then,

(2) 2 (t. ) 2lim 7J/( —— —
g2 Ct

T~O 7
Debye

lim ri42'= ——'28 (11&3—19)q)2( )a,
T~O
Debye

where

V K0 p 1
k Tm'M cL

(L)
48 2

' 1/2
1 ~' Vo la=—
4 3 McL Kpvo

Thus, g2
' is the longitudinal-mode contribution to gq'

in (42). Therefore,

+(L)+ lim ( (1)++() ) ++(2) )
T~O
Debye

1 ——2', ( l l)/3 —19)a+ a &0 .

a is a measure for the importance of higher orders due

where the substitutions V(q)~ V(q) and coqL ~coq have
been made. For the Gaussian potential

3/2

to the linear term compared to the quadratic term in the
interaction Hamiltonian. If Kpvo —1 and M-m, it is
clear from the condition Vp «mcp that the quadratic
term yields the dominant contribution, whereas for
M «m it is the linear term that dominates. Both cases
lead to different impurity-mass dependences of the prefac-
tor Dp.

C. The long-time behavior of K((' and K')q'

The long-time behavior of K'~~' and K']2' can be evalu-
ated exactly as for K2 and one readily obtains

KPj'(t)+ 2K )'2'(t)+Kg(t) -K2(t)(C) a —C2a+ 1),
with some positive numbers C] and C2. The situation is
therefore similar as at low temperature.

VII. A CLASSICAL IMPURITY
IN A QUANTUM LATTICE —A DISCUSSION

A rigorous quantum-mechanical treatment is not ap-
propriate here. It is expected that the most interesting
quantum effect is the tunneling of small-mass impurities,
an issue of quite a different nature than the scattering
effects of concern here (for a treatment of quantum tun-
neling of an impurity, see Ref. 19). Nevertheless, for
pedagogical purposes, one can formally quantize the pho-
non coordinates and momenta and use them to calculate
the memory function from (20) for a classical impurity.
The classical picture is naturally recovered in the limit as
A~O, but, more importantly, the physics of the dissipa-
tion process becomes clear. Phonon quasiparticles collide
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with the impurity, being scattered, emitted, or absorbed,
and conservation equations for energy and momentum
can be written to describe the kinematics. This quasipar-
ticle picture reveals the collision events which contribute
most to the memory function. In particular, it is found
that two-phonon processes which classically yield dl are
actually due to quasielastic scattering events that nearly
conserve the phonon energy from Ac@& to Acoq~'.

As is normal in the quantum treatment of lattice vibra-
tions, one defines the phonon creation and annihilation
operators a and a, respectively, in terms of the normal
coordinates. Then, following the procedure of Appendix
C, the correlation functions corresponding to (27)—(29)
can be written and the dissipation can be evaluated for
equations corresponding to (30)—(32).

The quantum selection rule can be derived in an analo-
gous manner to the classical selection rule (33). Letting
b,E =fiA„and AP =

~

b,P
~

=
~

fiQ„ I, one obtains

AP
~ QP —QQ

2M
(53)

initial final

where P; and Pf are the impurity momenta before and
after interaction, respectively, and the sums are taken over
initial and final phonon states with wave vectors q;„and
q,„„respectively. There are L phonons going in and L'
phonons coming out of the interaction, and L +L'=n in

an n-phonon process. Then,

p2

2M

p2 L'

g Rcoq / —g ficoq, ——fill. „,
initial final

Pf —P; = Q A'q;„—g fiq„„,—fiG—:fiQ„,
initial final

which are, respectively, the energy transfer and momen-
tum transfer to (i.e. , recoil of) the impurity. Then,
AP /2M in (53), absent in the classical equation (3), can
be identified as the recoil energy. The recoil energy is lost
whenever inherently quantum-mechanical scattering
events are approximated by a classical scattering treat-
ment, and can often be added on as a quantum correction
to the classical result (cf. Ref. 20).

To illustrate, consider the one-phonon process in which
the two types of interactions for a given wave vector q are
phonon absorption (L= 1 and L'=0, q;„=q) and phonon
emission (L=O and L'=1; q,„,=q). In the two-phonon

By dividing (53) by fi and letting A'~0, the classical selec-
tion rule (33) is obtained, which is equal to (3). This im-

plies that in (3) the term AP /2M is neglected.
AE and AP are the energy and momentum transfer to

the impurity, respectively. To see this, consider the kine-
matics of the impurity-phonon interaction. The equation
for the conservation of energy is

p2 p2 L'f
initial final

The equation for the conservation of impurity and "crys-
tal" momentum is

L'

P;+ g A'q;„=Pf+ g A'q, „,+fiCr',

So, for the Debye approximation, Vl obtained from this
equation deviates only slightly from the classical result
[obtained from (33)].

The selection rule for normal two-phonon scattering
events, where q;n=q and q,„,= —q', yields

VI (A'q+Aq') = [%co~ ficoq—) ]- &' q+q'
I

'
2M

For j =j' these events become elastic in the limit that

~ q ~

=
~

q' ~, in which case the momentum transfer can be
maximized at 2A'q. Classically, Vq~O for

~ q ~

=
~

q' ~,
which is a maximum likelihood event, at any temperature.
An analogous situation exists for all higher-order multi-
phonon contributions.

VIII. SUMMARY AND CONCLUSIONS

The results of a classical perturbation-theory analysis
reveals that activated difFusion is not necessarily of the
pure Arrhenius form. The prefactor must be generalized
to vary with temperature. The need to generalize the Ar-
rhenius form arises from the evaluation of the friction
constant in perturbation theory, and its use in Kramers's
high- and low-friction formulas. Using the perturbation-
theory formula (2) (truncated to linear order in T) in
Kramers's formulas (36a) and (36b) yields

~A~B —E /k~ T

2~(do+d ) kg T)

z (do+d~kBT)E~ E Ik&T
Dl, „——Zb Yf ((2' A

kBT

(54)

(55)

where the values of do and dl are calculated from pertur-
bation theory [cf. (41) and (43)] and E, is determined
from (13). This result is valid when k~T &&Mco. For
long-range interactions (larger than —', of a lattice site for a

Gaussian interaction) multiphonon effects dominate
difFusion so that do and umklapp contributions to dl can
be ignored. Otherwise, the more general forms (54) and
(55) obtain.

It should be noted that E is a temperature-dependent
quantity whose zero-temperature value is the statically re-
laxed value E, [see (13)]. The static value is obtainable
from the linear interaction Hamiltonian, the linear tem-
perature coefficient from the quadratic interactions, and so
on. To retain a temperature-independent parameter in the
exponential of (54) or (55), one may collect the
temperature-dependent part of E, into the prefactor as in

(15); but as the linear temperature coefficient of E, is typi-

process the four types of interactions for a given pair of
wave vectors q, q' are two-phonon absorption (L=2 and
L'=0; both q and q' are q;„), two-phonon emission (L=0
and L'=2; both q and q' are q,„,), and two scattering
processes, one equivalent to absorption then emission
(L= 1 and L'=1; q;„=q, q,„,=q'), and the other to emis-
sion then absorption (L= 1 and L'=1; q,„,=q, q;„=q').
Similar explanations can be made for higher orders.

The selection rule for normal one-phonon processes is

Rq
VI Aq=Aco~+

2M
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cally -0.1, then except for very high temperatures (many
times room temperature) one may safely ignore the tem-
perature variations due to higher orders than quadratic in
the interaction Hamiltonian, thereby taking into account
only the rescaling of the prefactor that the linear tempera-
ture coefticient introduces.

Although formally the generalized Arrhenius forms
(54) and (55) differ significantly from the pure Arrhenius
form (1), it should be emphasized that when (1) and (54)
or (55) are plotted on the same graph on a logarithmic
scale over a temperature range limited to l and 2 orders
of magnitude the curves can be made to look virtually
identical by allowing the activation energy in (1) to differ
from the activation energy used in (54) or (55). Thus, if
one uses the pure form of (1) to fit data instead of one of
the generalized forms, erroneous estimates of the activa-
tion energy may result. One can satisfy oneself that
fitting an Arrhenius form with a constant prefactor is in-
distinguishable, for limited ranges of temperature, from
fitting an Arrhenius form with a temperature-dependent
prefactor by simply adjusting the parameters (including,
for example, E, ). It is estimated that errors of the order
of 10% in E, may be incurred by fitting to the wrong
form.

The perturbation theory has provided much insight into
the physics of dissipation. Selection rules are found to
place constraints on which impurity-lattice interactions
may contribute to dissipation. The most significant two-
phonon effects, as well as higher-order one-phonon um-

klapp effects, are found to arise from an interaction Ham-
iltonian which includes terms quadratic in the phonon
amplitudes. In addition, as soon as one includes these
terms, and/or umklapp process, transverse modes are
found to contribute significantly to dissipation. A con-
sideration that should not be overlooked, is that a
diffusion-constant calculation using the theory outlined in
this paper is significantly simpler and more straightfor-
ward than a mode-coupling calculation which typically re-
quires a numerically intensive iteration procedure.

There are obvious drawbacks to a perturbation-theory
calculation, mostly having to do with the complexity of
higher-order calculation. This is especially true when one
considers orders higher than quadratic in phonon ampli-
tudes in the impurity-lattice interaction since, in order to
make a consistent perturbation theory, one must include
anharmonicities in the lattice Hamiltonian of at least the
same order as in the interaction Hamiltonian; lattice
anharmonicity is not a critical issue in this paper since the
main results arise from interaction terms which are only
up to quadratic order. When complexity of calculation
becomes prohibitively different (beyond the lowest orders
calculated here) mode-coupling theory with (at least) a
quadratic interaction Hamiltonian may provide better re-
sults, especially at higher temperatures. The latter is par-
ticularly valid when Vo) meo, where perturbation theory
converges extremely slowly or not at all. A calculation of
a spatially varying friction constant was not attempted
here for similar reasons. A translationally invariant fric-
tion constant is a somewhat restrictive assumption for this
problem (cf. Ref. 7).

In spite of these limitations, however, it would be in-

teresting to compare the results of the perturbation theory
and mode-coupling theory against simulation results util-
izing the Gaussian interaction potential. This would be a
test of the accuracy and usefulness of the relatively simple
perturbation theory of Arrhenius diffusion described here.

a '(G, G')=n fdXpe

PU(Xp) i (6—G'j.Xpf d Xoe e

Together with (20) and (22) of Ref. 9, it is now easy to
show that (ice A)p, = —Vx„U(Xp). Since this does not

involve truncation or any assumption about Ht, (4) of the
text is va1id generally aside from the neglected retarded
periodic force term [cf. (28) of Ref. 9].

APPENDIX B. THE TIME EVOLUTION
OF THE RANDOM FORCES

The time evolution of the random forces in (4), which is
used in the calculation of the memory matrix from (6), is
correctly obtained from its initial value using the propaga-
tor exp(iIILt), where L is the Liouville operator, and
where H is the projection operator which projects any
dynamical variable onto the space orthogonal to the vec-
tor A used, for example, in Ref. 9. In (17) and (18) of
the text, however, it has been assumed implicitly that the
time evolution of f~ is described by the mechanical propa-
gator exp(iLt). It is the purpose of this appendix to com-
ment on this approximation. The notation of Ref. 9 is
used in part.

Let the correlation matrices be defined as

%(t)=(A(t)A*(0)) N

B(t)= ( A(t) A*(0)).N
C(t)=(A(t)A*(0)) N —',
K(t) = ([IIA](t)[II A]*(0)).N

(Bla)

(Blb)

where the correlation functions are normalized by the ma-
trix

N = ( A(0) A*(0) )

APPENDIX A: GENERALIZATION
OF THE LANGEVIN EQUATION

In Ref. 9 a linear Hamiltonian has been assumed and
(4) of the text was shown to be valid only up to second or-
der in the potential. This result may be generalized, mak-
ing (4) correct to within the approximation described by
Munakata to any order of perturbation theory and for
any Hamiltonian. The notation in this appendix largely
follows that of Ref. 9.

Equations (14), (16), (20), (22), and (23) of Ref. 9 are
valid generally. Equation (16) of Ref. 9 is simply a state-
ment that y(G) is the Fourier coefficient of
exp[ —PU(X)]. Because of the periodicity it is assumed
that the integration over the impurity coordinate runs
only over the primitive ce11. The crucia1 point for the gen-
eralization is to find the inverse of the matrix a(G, G ).
The inverse is
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and where the dynamical variables A are the vectors of
Ref. 9.

The quantity of central importance in the generalized
Langevin equation is the memory matrix M (cf. Refs. 11
and 12), which fulfills

[s —e(0)+M(s)] )Il(s) =1, (B2)

where P(s) denotes the Laplace transform of a matrix
P(t) Th. e direct calculation of M(0) to obtain the
diffusion constant in the impurity diffusion problem [cf.
(B6) below] is nonperturbative in nature due to the activa-
tion effect of the periodic potential seen by the impurity.
Any successful perturbation-theoretical approach must
separate this effect out from the dissipative effects that are
perturbative in nature.

To accomplish this separation Munakata splits A into
two contributions: the impurity momentum P and the
impurity density vector AG, where G are nonzero
reciprocal-lattice vectors and the mean value (due to the
periodic potential) is subtracted out. Thus, all the correla-
tion functions [for example, those in (Bla) and (Blb)] take
the form of

~(pp)

-(GP)

-(PG)

-(GG)

-p
-(pp)
laaerl 03x

—G

x3

03x3

x3

x

—(GG)

Thus, in (16) the effective periodic potential is subtracted
out from the impurity-lattice interaction. What remains
at time t=p is just the random force which is [II A]p.
Noting the form of K(0) from (Blb), one can write

where 03x3, 03x, 0 x3, and 0 x are zero matrices of
dimensions 3&(3, 3&& cx, , ~ &&3, and ~ && ~, respectively.
The subrnatrices " ' and:-' ' on the diagonal of:- are
real symmetric matrices. The off-diagonal submatrices

and:-' ' of:- are purely imaginary. One can
define the real matrix = —= —'(:-+"+)=:- += consist-
ing of the diagonal submatrices and the imaginary matrix
:-oD=—'(:- —:-+)=:"—:- consisting of the of-diagonal
submatrices.

From Appendix A and Ref. 9, it can be noted that

[H A]p —[ A —ice A]p= —Vxo[HI —U(Xo)]

ing II in the propagator in (B5) is tantamount to replacing
M(t) with K(t). In other words, by subtracting the
periodic potential from the initial interaction [e.g. , as in
(16)] and propagating the random forces forward mechan-
ically in time, the memory term K is extracted from M.
Arguments are given below to show that the perturbation
theoretical treatment of K (0) can be used to evaluate a
friction constant appropriate for use in Kramers's formu-
las.

First, in the text it is shown that the perturbation-
theoretical (PT) value K Pi (0) for K' '(0) has a low-
temperature behavior that is convergent in all orders of
the lattice-impurity interaction Hamiltonian due to the ex-
clusion of the conservative periodic force from the ran-
dom forces [cf. (4)—(6) of the text]. Perturbation-
theoretical values for the other correlation functions, (Bla)
and (Blb), all have time integrals that diverge at low tem-
peratures, so Mpi (0) will also diverge [consider, for ex-( pp)

ample, (B8) below]; this occurs, however, only at higher
orders as K f ' and Mpz ' are equivalent up to the lowest
nonvanishing order.

Second, in the exact theory, the real part of
)Il(0) N/M is the diff'usion constant matrix D, where M
is the impurity mass. Noting N =N, then
D=+ (0) N/M . By letting s=o in (B2), the following
can be written:

D= [(M(0)—e(0)) ] (B6)

K(s)=M(s) —M(s) 4'(s) M(s) . (B7)

This can be rewritten by using (B2) in the second term on
the right-hand side of (B4) to obtain

K(s)=M(s) [I+e(s)—%(s).e(0)] . (B8)

Then, from (B2) and (B8) evaluated at s=o, and using the
fact that 1+e(0)=0, one obtains

M(0) contains all the information for the diff'usion con-
stant. For impurity diffusion, therefore,

M ' '(0) —F( T)exp(E, /ki) T)

at low T, where F(T) is some rational matrix function of
T Thus, M . '(0) contains information about the activa-
tion barrier which should be excluded from a friction con-
stant to be used in Kramers's formula (where the effect of
the periodic potential has already been extracted).

Third, note that the formal relation between K and M
1s]2

K' '(0) = ( [H A(0)] [H A(0)] ) .N

=g(f)f)) N

(B3)

(B4)

K(0)= —e(o) —e(o) ~(0) e(o) .

Computing the submatrix K( '(0) then yields

(PP)(p) e(PG)(0). qp (GG)(p) e(GP)(0)

(B9)

M(t)= ([e'" 'II A(0)][H A(0)]).N (BS)

The relationship of K to M then becomes clear: neglect-

Now, if one forms the time correlation function of (B3) by
just inserting the mechanical propagator into (B3) and
(B4), one can identify K '(t) as the correlation function
calculated in the text from (6).

Consider now the memory matrix M. It turns out that
M can be written' as

f dt(VU(X )e' 'VU(X ))
0

1 oc d P p( p2/'2M)dt
M 0 Zp

dX0 PU(X )0 —PU(xP)~ t'I t~ ~(X )

(B10)



36 PERTURBATION THEORY OF IMPURITY DIFFUSION 305

where Zp and Z~ are the partition functions of the im-
purity coordinate and impurity, respectively, and where L
is defined by e' '= (e' '))a((ice. If only the free part of l. is
retained, one obtains a K( '(0) which diverges at low T
and which contains contributions from the periodic poten-
tial. Of course, this is precisely what one does not want
to do for low temperatures [i.e., the difFusion constant cal-
culated using k' '(0) just becomes a power series in tem-
perature and one loses the exponential activation effect—
this is due to expanding about a free motion when the im-

purity is basically trapped at low temperatures]. This ap-
proach may be used somewhat more effectively, however,
for k~ T ~ E„where the impurity moves more freely
through the lattice (cf. Ref. 10). On the other hand, the
text shows that the perturbation-theoretical calculation of
KpT (0) directly from the definition in (Blb) does not
diverge at low T. Therefore, KpT(t) has different long-
time properties than the exact correlation function K(t),
i.e. , in KpT(t) the nonperturbative effects of activation are
separated out (cf. theorem 3 in Sec. VI).

Finally, in the derivation of (4) of the text, the subma-
trix M' ' has been neglected. The neglected part is a
memory effect due to the periodic potential. Omission of
this term in (B8) and the off-diagonal part i' ' '(0) leads
to

K' '(0)=M' (0) [I+6 (0)]

In the text the dominant contributions to KpT(0) come
from processes which fulfill the selection rule (3). In-

elusion of epT '(0) causes the violation of the selection
rules due to contributions of virtual processes. ' This is
unphysical for low temperatures as phonons have perfect-
ly well-defined energies and momenta, and impurity-
phonon collisions should conserve energy and momen-
tum. In a perturbative treatment, therefore, these terms
should be ignored.

Summarizing, in this work the friction-constant matrix
obtained in the Markov approximation of (4) is K' '(0).
A perturbative treatment works because it does not con-
tain nonperturbative activation effects. This makes it a
suitable choice for calculating a friction constant to be
used in Kramers's formulas. In another context (soliton
diffusion in nonlinear Klein-Gordon theories ') it has also
been shown that in perturbation theory K(0) is the ap-
propriate friction constant. Note that .the second and
third points above show that in the exact theory of impur-
ity diffusion neither K(0) nor M(0) can be used as friction
constants in Krarners's formula, as they contain too much
information about the activation barrier. In Sec. 3 of Ref.
12 one finds a discussion of the differences between M
and K in the exact theory (denoted in Ref. 12 by (t) and
4, respectively).

APPENDIX C: DERIVATION
OF THE MEMORY FUNCTION

For simplicity anharmonicity in Hp is neglected. In
this case small fluctuations are linear, and the phonon
correlation function in (25) for n = 1 becomes

kti T cos( tpqt t) (q(x( x), ){u (r;t)ur(I';0))o —— g 4 ~((U) e
Nm

(C 1)

Higher-order correlations are treated in the normal way. Thus, for example,

{u,(l;t)u, (l;t)u (rl';0) u(rr';0))p= g {u . (l;t)ur, (l';0))o{u, (l;t)u) (I';0))p,
j =1,2

(C2)

3/ u . (I;t)u . {I',0) = y (u„,(r;t)u, (l';t)) p( u,, ,
(l; 0) u, (l'; 0)) p( u, (l;t) u, (l', 0}) oj J pj=1 9

+ g (u, (l;t)ur, (r', 0) )o(u, (l;t)ur, (l', 0) )o{u, (l;t)u~, (l';0) )(),
6

(C3)

p =Kp(x) —Xp), d Xp = —dp/Kp

where gk indicates that there are k similar terms ob-
tained by combining the e s with different y's and the
static correction term in (C2) has been omitted [see (17)
and discussion in text).

To be consistent in the perturbation theory (which is to
order V —weak impurity-phonon coupling), it is assumed
that X=Xo+(P/M)t in (25), so the following change of
variables is made:

P Mg=Ko x( Xo t, —d P =——dgM '
Kpt

Note that 1/Kp is the length scale of the potential. It is
assumed that V(r}=V[/], where g=—Kor, so that
W'(I;t)~ IV[/]. The inclusion of Kp facilitates the evalu-
ation of the memory function and the friction constant.
For example, explicit evaluation of the g; is made in the
text for the Gaussian potential Vpexp( —%or ).

Now, (25) may be written

3
—P - M/2r&n(t)=

6 f dg' Wr'"'[g'] f dtu Wr'")[P] g e " (ur(„)(1;t)ur(„)(I';0))o,
3Mkp T Zg ZpKp I, I'
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where

Z( I =X~ —Xt + p-
Kp

[p]= [ II (~ r)]x) —x=jz/KQ

Now, using the following formula,
2 2

e
—x /4a

(& /~)3/2 dr e
—ir ze —ar

and the fact that

g e ' ' =(2n) g 5(r —q —G),
I, I' Vp

(C5)

(C6)

(C7)

can be obtained using (C2) and (C3), respectively, to ob-
tain (28) and (29) of the text.

APPENDIX D: DERIVATION
OF THE SELECTION RULES

The basic method outlined here has been used to study
kink diffusion in polyacetylene and can be found in Ref.
22. First compute K)(t). Start from (C5) and define

[~ (I r)] i
—x=«/K =~ [C]

fdre "«ky "'[r], (Dl)
(2vr)'

where the sum runs over all reciprocal-lattice vectors Cx,

Eqs. (C6) and (C7) can be inserted in (C4) to yield the
one-phonon contribution (27) of the text. This method
was devised to study kink transport in the ))) theory. ' In
a similar fashion, the two- and three-phonon memories

where 0' is the inverse Fourier transform

gr y(n)[ ] f dg ir «~.y(n) [g]

This yields

(D2)

3Mkj) T ZKzp (277) i i,

dx]W 'x~e ' ' dr2W 'r2e

kj) T cos( coqj r) i q (xi xi., )

&& g 'P„y(qj), e ' ' . (D3)
cVm COqj

Note that in (D3) g)(t)—=Ko(xi —X(t)), and gp(0)=Kp(xi —Xo). When the sum over I, l' is performed, one obtains two
sums over reciprocal-lattice vectors,

(2~) g 5(Kor), 2+(q+ G),2)),
Up

where the + is taken for r) and r2, respectively. Expand cos(co~t) into exponentials, use the perturbation approximation
X(t) =Xo+tP//M, perform the integral over Xo yielding the equality of the G( 2 vectors, and take the real part of the
time integral of the result to obtain

y), =R f drK, (r) =,, fdP ~ ' gg W ' W '
3~ Zp NmK U Kp Kp

q/y, y, (qj)

2'
P

5 co~+ .(q+G) +5 co~ — .(q+G)P

APPENDIX E: PROOFS OF HIGHER-ORDER
THEOREMS 1, 2, AND 3

1. Proof of theorem 1

The object is to prove that the low-temperature behav-
ior of the higher-order terms,

K( /Kmn r

where 6 is the Dirac delta function. This yields the selec-
tion rule (33) in the text, and upon integrating over
momentum yields (30) of the text. Similar treatments
yield the selection rule for the multiphonon interactions.

obeys the power law in T indicated in the text when only
the linear term in the interaction Hamiltonian is con-
sidered. Thus, the evaluation of the behavior of the
operator

[ PHj(0)] A&(t)—
needs to be made, for j +k =r [see (24) in text]. This will
be done below for r =2 as an example.

First, note that Hp(', j& I, consists of products of the
jth derivative of the potential (the potential part) and the
jth power in the components of the displacements u~ (the
phonon part). Then, the Liouville operators in Eq. (El)
are expressed as a sum of two operators,

j, l.

(j+ I. =r) Ljj'(y) =L I"(y)+L j (r), (E2)
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where Lzj)(r) involves the Poisson bracket of the potential
part of Hz"(r) with the potential part of Ht at other
times, and Lz"(r) involves the Poisson bracket of thepho-
non part of Hz'J)(r) with the phonon part of Ht at other
times; all cross terms in potential parts and phonon parts
vanish. For convenience, make the following definition:

j,k

(j+k=r)

[—Pat(0)]"
Ai(t).

Then, for r=2 the following is true:

2

I 2
—— d~iI.I" w d~iLI'' ~ —HI" 0 d~t'I. g" ~ + HI" 0

0 7 0 2

= f'd~iLt'(~) f'd'iLt"(r') P f—'dr ~ V~[x( —X(r)][u~(l;r)}g f dr'iLt'(r')
0 7 0 7

2

pat"(0) —f driLt"(r)+ [Ht"(0)]
0 2

where the decomposition(E2) has been used, Vz[xL —X(r)] denotes the partial derivative of Vwith respect to uz(l), and
thenotation [ }R~ is used to signify that the phonon amplitudeswithin the curly braces should be correlated only with
phonon amplitudes to its right(R) or left(L). Use has been made of formula(13) in Ref. 13 which introduces the time
derivative[i. e., u~(l)]. Partial integration yields

r2= f driLt"(r) f dr'iLt"(r')+p f dr/ [u~(l;r)}g V~[x( —X(r)] f dr'iLt'(7)
0 7 0 a7-

2—p[at'(0)}L f driLt) "(~)+ [Ht) "(0)]~.
0 2

By executing the derivatives with respect to r, the derivative of the potential yields a factor of —pP/M, which results
equivalently from

—PP /2Mvpe

and this fact can be used to write

r, = f'd. (L("(~) f'dr'iL", (r') f d—rg [u (l;z)} V [x —X(w)] f dw'iLI'(7')
7

2—p[aj (0)}g f driLt (r) p f dr[at —(w)}giLt (r)+ [Ht (0)]
0 0 2

The same procedure can now be applied to the second Liouville operator. It has to be noted that if one replaces the
factor —pP/M by the derivative of the exponential exp( pP /2M), one—has to take care because of the noncommuta-
tivity of P with the Liouville operators and with the derivative Vp. But these contributions cancel each other.

This method works to every order of r. The general result is

dXo P pa'r2MK"„'= f e ' ~(8'r"'(l;0)u~(„)(l;0)IR'r' '(I';t)u~( )(l';t))t„„,
X P 1,1'

where I is the following operator:

(E3)

(j+k&r)

—.
,

( —pIa,"(o)},vi'- +",( —p[a,")(t)},)',k! (E4)

where I' '=1 for M=O, and otherwise is the sum of time-ordered terms,

M am M —mmI' '=, T g — f d L')"( ) g'g f d [ s(l; )}gVs [ ( —X( )],
=0 aPr[

(E5)

for M) l, where T is the time-ordering operator and where

aPr[ ] =a~r, aI'r.
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in a manner similar to uz~„~ and Q~'"' in the text. Equations (E3)—(E5) can be used in actual calculations, and are the
main results of this Appendix.

Theorem 1 is a simple corollary of (E4) and (E5). First, note that correlations among pHI "(0) factors in (E4) are
terms coming from exp[ —pU(XO)] and are excluded. Further, the result of contracting the terms Wi'I"'(I', 0)u&I„~(l';0)
and W~' (I;t)uz~ I(l;t) completely with PHJ" factors, as in

( W~(-I(i;0)u„,(i;0)[—PH,"I(O)]- &,

has also to be excluded for all m ) 1, because such static contributions are also included in the periodic potential U(X).
Assume now that r )I +n —2. Then, the low-temperature behavior is dominated by the terms

( ) p dXod P }it2~2M

3M Z~Zp

Wr'"'(1', 0)u („)(1',0), ( p[HI—'(0) j L,
)"1

1, /' (n —1)~

~ I(r+2 —m —n)
( —pI HII "(t)I R )

' W~ ' (l; t)u~ ( )(1;t)
m —I! free

(E6)

which, at low temperatures, behave as

TI ~ +2 —m —n I»

In the special case I +n =r +2, the above contribu-
tion gives rise to a genuine one-phonon process which, in
the first Brillouin zone, yields a friction constant which is
exponentially damped at low temperature. Therefore,
disregarding umklapp processes, the main contribution
comes from at least one correlation with pHII'I less lead-
ing to linear-T behavior from a genuine two-phonon pro-
cess.

If r & m +n —2, then it is even simpler, since correlat-
ing the phonon fields from the border terms
W~'" (l';0)uz~„~(l';0) and Wr '(I;t)uz~ ~(l;t) with r

.phonon fields from PHI' '(0)L and PHI "(t)q with
m + n —r phonon fields remaining yields a dependence

T m+n —r —2 /2

2. Proof of theorem 2

The goal of this section is to prove the power-law be-
havior in T of the memory function for a general interac-
tion Hamiltonian at low temperatures. The low-
temperature behavior of K'"„' is dominated by the contri-
butions from the linear term HL" and the quadratic term
Hq ' since the higher orders introduce more than three
phonon fields which do not bring the behavior of g below
the linear dependence upon T. This is in spite of the pre-
factor of p multiplying Hp, j& 3, which is overcome by
the phonon fields that introduce factors which vary at
least as P

From the proof of theorem 1 it should be clear that the
main contribution at low temperature for r ) rn +n —2 is
from terms like (E6), where the operator I which includes
only linear terms HI"' is replaced by an operator J, say,
which includes all orders of HI. For r &m +n —2 the
dominant contributions come from terms where as many
phonon fields as possible are correlated with phonon fields

from the pHII" factors; in this case the operator J= 1, and
comes within the bounds of theorem 1.

In the case where r )m +n —2 the operator
J'"+ "' involves at least r +2 —m —n "internal"
phonon fields which have to be correlated among them-
selves and with the two remaining "external" phonon
fields from the border terms W~'"'(I';0)urI„~(l';0) and
W~ ' '(l;t)uz

~
~(l;t) in (E3). The internal phonon fields

come from Liouville operators iLq" I and from PHII"',
k ) 1. If k )2, then one does not miss any inverse
powers of T by counting the contribution as T" '

( —1

from p and k/2 from the phonon fields). If k= 1 still no
inverse power of T is introduced because such inverse
powers can only arise from terms coming from
exp[ —PU(XO)] which are excluded. This shows that the
operator J in the worst case gives rise to a constant at low
temperature. It remains to show that genuine n-phonon
processes always reduce at least n —1 factors of p, leading
to T" ' behavior of E'"„' at low T.

The origins at time 0 of additional genuine phonons are
either the border term or pHI~ factors, or they come from
the lower integration limits of the Liou ville operators
iLI '. There might be some intermediate scattering with
other phonons, but the ultimate origins are always the
border term or a PHI' factor and a Liouville operator
iLI' in both of which all the phonon fields have to be
correlated to the right. In the first case there is one PHI'I
factor less and therefore one power of T more. In the
second case the P factor can again be reduced quite in

analogy to the proof of theorem 1. Although one deals
here with different kinds of Liouville operators, not just
with iLI', the cancellation mechanism works by summing
over all possible orderings of these Liouville operators,
due to the following commutation property.

Let in both HP'(0) and in the corresponding Liouville
operator iLI '(~) all j phonon fields be correlated with
phonon fields at later times. Then by using formula (13)
of Ref. 13 and by performing partial integration as in the
proof of theorem 1, one obtains, for a typical combination
with some other Liouville operator LI ', k ) 1,
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d~iL ' ' ~ d~'iLI ' ~' —HI ' r~ d~'ILI ~ = d7 Uy()) l;7 Vy()) X( —X 7 d7
7 7

XJ g VJ
T

(E7)

where VrI„~ is given in (6) of the text. The derivative of the potential leads to a term proportional to P which can be re-
duced to a derivative with respect to P without the P factor in front, as in the proof of theorem 1. The derivative of the
integral yields a term like

—P f ' dr HrI'(r)tL, '"'(r), (E8)

which cancels against a term from the commuted version of the first term in (E7),

dwiLI '
w d~'iL ' ' ~' = d~iLI' '

w H' ' ~ — dwiLI '
w HI ' t (E9)

where the last term again involves derivatives with respect
to ~' of the potential and of integrals having ~' as integra-
tion limits. The factor PP/m coming from the derivative
of the potential can be commuted through LI ' and re-
duced to a derivative with respect to P. The contribution
from the commutator can be cancelled by applying the
same procedure to LI ', again similar to the proof of
theorem 1.

Finally, if several genuine phonons have the same ulti-
mate origin, then interaction Hamiltonians Hq ' with
k ) 3 are involved, giving the appropriate power in T.

3. Proof of theorem 3

Equation (23) of the text can be written in the form

K(t)=
(e ') (E10)

where B (Xo) comes from the sum of contributions as in
Eq. (24) and is a periodic function of the lattice. It can
therefore be represented as a Fourier sum over the
reciprocal-lattice vectors:

B (Xo)= g B(G)exp(iG Xo) .
G

U(XD) itself is, of course, also such a Fourier sum,

(El 1 )

U(XD)= g U(G)exp(iG Xo),
Vp

(E12)

K(t) = g B(C')( —1)
G

(E13)

As an illustration, assume that the dominant contribu-
tions to U(XO) come from the boundary of the first Bril-
louin zone:

3

Ht '= —U(0)+ g U(G;)cos(G;.Xo),
b

(E14)

where U(q) is the Fourier transform of the effective po-
tential in Sec. III. At low temperatures the dominant
contribution comes from Xo=Yo——(b/2)(1, 1,1) in the
middle between two lattice sites in each direction, where
exp(iG Xo)=( —.1)", n =G.YO/~, so that

where G, is a reciprocal-lattice vector in the ith direction
of length

~

G;
~

=2m/b. Then,

PO(G, )
3 Vp

K(t)= gB(G)( —1)

Io /3U(G; )
Vp

(E15)

where the n; (i = 1,2,3) are determined from
G = (2w/b)( n ~, n q, n q ), and the I„are modified Bessel
functions. ' As these functions have the same asymptotic
behavior for larger arguments irrespective of the order,
the same result as before is obtained for low temperature.

It remains to show that the inclusion of the Liouville
operators HALI

' does not affect the linear low-temperature
behavior of terms as in Eq. (24). Because of Poisson
brackets derivatives of HI will be taken and powers in
the reciprocal-lattice vectors will appear. If one considers
only normal (as opposed to umklapp) processes, one does
not get any contributions from such Liouville operators
and, therefore, any changes in the temperature behavior
will be proportional to V(G)/Vovo, where G&0 is a
reciprocal-lattice vector, or products of such elements.
After performing all Poisson brackets, the low-
temperature limit can be obtained by setting the impurity
position Xp everywhere equal to Yp, except in

exp[ —PU(Xo)], and the momentum P everywhere equal
to zero, except in exp( PP /2M). Th—is procedure will
neglect single-phonon normal processes which vanish ex-
ponentially at low T, but the indicated limit will at least
take care of the dominant low-temperature behavior of
single-phonon umklapp and multiphonon processes.
Then, from the commutation property (E7)—(E9) proven
in the proof of theorem 2, it is seen that iLI ' factors
would not affect the low-temperature behavior at all un-
less they prohibit cancellation mechanisms which work
without their inclusion. Unfortunately, this actually hap-
pens. Setting k=O in (E7)—(E9) the emerging factor
PP/M in (E9) gives as the argument of Lq I a contribution
which does not get cancelled because the "partial-
integration" procedure cannot be applied to LI '. What
one can still assert is that in order to get a nonvanishing
contribution in the low-temperature limit indicated above
(XD~Yo, P~O), some Poisson bracket has to be applied
to the first appearing Lt ' in Eq. (24) (otherwise, one
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would have a sum over an odd power of reciprocal-lattice
vectors), reducing at least one P factor. Therefore all con-
tributions vanish at least linearly in T at low T.

It can be noted that the effect of the time evolution due
to HI ' can be taken into account by solving the equations
of motion for such a potential iteratively and by replacing
in Eq. (24) with all contributions from Lq ' excluded the

zero-order solutions X(r)=XO+Pr/M by these iterative
solutions.

Also note, the generalization of the proofs for anhar-
monic effects of a lattice is trivial since there is no X
dependence in the anharmonic terms (which may be gath-
ered into Ht, for example), so that the proofs are quite
general for any lattice Hamiltonian.
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