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We consider a two-dimensional periodic array of dielectric spheres placed on a flat substrate and
calculate its response to an incident electromagnetic wave. A remarkable feature of this system is
the presence of electromagnetic resonance modes, which are shown to be closely related to the local-
ized modes of a dielectric slab. When the resonance mode is excited, the local field near the sphere
and consequently various electromagnetic quantities are enhanced. Enhancement factor of the Ra-
man spectrum by adsorbed molecules is calculated and an optical bistability at a low laser power is

predicted.

I. INTRODUCTION

Observation of surface-enhanced Raman scattering
(SERS) (Ref. 1) has stimulated activity in surface elec-
tromagnetic (EM) theory.? By now it is widely accepted
that excitation of surface plasmon polaritons (SPP’s),
which enhances the local-field intensity near the metal
surface, is the main origin of SERS. The SPP mode has a
dispersion relation outside the light cone and is not excit-
ed by the incident plane wave. When the momentum con-
servation parallel to the surface is violated by the surface
roughness, however, the SPP mode is excited and the local
field is enhanced. This SPP mechanism is confirmed by
the observation of SERS from a smooth surface in at-
tenuated total-reflection geometry,> where evanescent
waves from a prism can excite SPP modes. Furthermore,
observation of enhanced second-harmonic generation* ver-
ifies the enhancement of the local field on roughened met-
al surfaces.

A few years ago, we pointed out another mechanism of
the local-field enhancement in terms of a two-dimensional
array of dielectric spheres.” Due to multiple scatterings
between spheres, the spheres respond to the EM field col-
lectively and the system is simulated by a thin dielectric
slab with periodic modulation. The dielectric constant of
the slab being larger than that outside, the slab works ef-
fectively as an attractive potential for the EM field and
localized modes exist. Periodic modulation on the slab al-
lows umklapp processes to occur, and these localized
modes form energy bands in the Brillouin zone. Thus,
some branches lie inside the light cone, which shows that
they can be excited by the incident field. In this paper, we
call them resonance modes. When excited, the resonance
mode enhances the local-field intensity near the spheres
and an anomaly appears in the reflectivity spectrum.®

A system of two-dimensional periodic array of spheres
is rather artificial and is difficult to realize. In real sys-
tems, such as the crystalline phase of a monolayer of po-
lystylene particles floating on water’ or microstructures
fabricated on a crystal surface,® spheres are placed on a
certain substrate which interacts with the resonance mode
of spheres. Thus, the purpose of the present paper is to
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clarify the character of the resonance mode for a more
realistic system of arrayed spheres placed on a flat sub-
strate.

When the substrate is made of a dielectric material of
dielectric constant larger than that outside, the substrate
is equivalent to an attractive potential for the EM field.
Then we expect that the criterion for the presence of lo-
calized modes is more stringent and the envelope function
of the localized mode extends toward the substrate. The
latter effect reduces local-field intensities. Therefore, it is
important to clarify the substrate effect. On the other
hand, if the substrate is made of a metal, the interaction
between the resonance modes and the SPP modes of the
substrate is an interesting problem.

In the next section, basic formulas are given and expres-
sions of local-field intensity, Raman enhancement factor,
and energy flow of the EM field are derived. Numerical
calculations are presented in Sec. III and the results are
summarized in the last section. We point out that if we
use the resonance modes, an optical bistability is realizable
at a low laser power.

II. FORMULATION

The geometry of our system is shown in Fig. 1. We
consider a square lattice structure in the x-y plane with
lattice constant d. The radius of the sphere and its center
to substrate-surface distance are denoted by a and Z,,
respectively. The positive z direction is chosen from sub-
strate to sphere. Therefore, for the incident wave vector,
which has a negative z component, a superscript minus
sign is added.

9The integral equation for electric field of frequency w
is

EN=E°"+3 [Glr—ru(rE(rdr,

0)2 2 2
vi(r) =" [eo—€(N] =k —kDB(r) , (1)
c
k="L(€)!"? and k;=(¢;)!"?,
c c
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FIG. 1. Configuration of the system.

where €, €|, and €, are the dielectric constant of the vacu-
um, the sphere, and the substrate, respectively. ©(r) is a
step function equal to one inside the material and zero
outside. For a material with a larger dielectric constant,
the effective potential is more attractive. This € depen-
dence determines the essential features of the resonance
mode. G(r—r') is a tensor Green’s function defined by

Gi, G(r“rl),

, 1
j(r—r ): [8,,1+7V,V1

G(r—r')= -;ei“"_"‘ .

4 |r—r'|
To solve Eq. (1), the most important step is to find a con-
venient expression for the tensor Green’s function.

The difficulty of the present system comes from the
fact that we need two kinds of basis functions, that is,
vector spherical waves for a scattering by spheres and vec-
tor plane waves for a scattering by substrate. In a system
with spherical symmetry, vector spherical waves'® are
convenient basis functions, which are defined by

0
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sin@ BE
9
- 26
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where f is a spherical Bessel or a spherical Hankel func-
tion of the first kind and L(=/,m) denotes both angular
momentum and magnetic quantum number. A general-
ized spherical harmonic for a complex vector k is de-
fined'! for m >0 by

Y, (k)=Y"(k)
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The tensor Green’s function is then given'? by
Ga,a'(r‘rl):%s(r—rl)sa’rSa'r
—ikPE Ly———FE7, '
ikPEq(f K, T+ D 2 &KLY,

(5)

where fi(kr)=j;(kr), gi(kr')=h;(kr') for r<r', and
fiter)=hy(kr), g;(kr')=j;(kr') for r >r. Here and here-
after, the summation over B(=M,N) and L(=I[,m) is un-
derstood. Due to the periodic structure of the array, the
electric field takes the following form inside the nth
sphere:

E(r)=PE(j,kry,L)a?(i)e’d Rn | (6)

where we put r=r,+R, and k;=wV € /c is the wave
vector inside the sphere. a(i), an expansion coefficient of
the electric field inside the sphere, is independent of R,
and the site dependence is described by the phase factor
explig "R,). By expanding an incident vector plane wave
by a linear combination of vector spherical waves of wave
vector K,

E%r)=PE(j,k,r,L)a%(0),
Eq. (1) gives

vPaf (i)=(t="'—T)"'a(0), (7)
where

oM =ix[xj;(x)j)(z) —zj(x)j](2)] ,

v =ix zj,(z)%[xj,(x)]'—xj,(x)%[zjl(z)]'

’

uM=ix[zh)(x)j{(z)—xh](x)j(2)] ,

u,N=ix xh;(x)%[zj,(z)]’—%[xh,(x)]’zj,(z)
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X =ka, z=ka ,
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From the vector-translational theorem,!3 we obtain
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Cllymy [ lymy,13my)

=47i'1=273 [ Y/ (@)Y, (@)Y, (9)dQ2 .
We used the Ewald’s method!* to evaluate the structure
factor I, which describes multiple scatterings between
spheres.

On the other hand, in a system with a flat surface, vec-

tor plane waves are convenient. The transmitted and re-
flected waves of a semi-infinite substrate are given by

E(r)=E(k)e* ™" forz<—2,,

where
E{(k)=T;(qE],
2 2yq; (y—v")
T,-j(q): 7/ ,Si,j— ] 5 , 3 6‘,"7_ ,
Y+v (y+y'Nk“+yvy' —y°)
and

E(r)=E%r)+ER(r) forz>—-2,,

8ij— F%’qj‘

where

qi"-:(qH, i?/), 222'

which is an integral over the wave-vector component
parallel to the surface. When the magnitude |q, | is
larger than «k (=wV €y/c), the z component of the wave

1
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are the z component of the wave vector outside and inside
the substrate, respectively, and k| =g, is the wave-vector
component parallel to the surface. The origin of the coor-
dinate is taken at the center of a sphere and the factor
exp(2iyZ,) gives an additional phase change of the re-
flected wave which propagates a distance 2Z, between the
sphere and the substrate. To derive these, we used the
transversality of the electric field and the following ex-
pression of the tensor Green’s function

eiq(r—r’)dq

qirqu ’eiqi{r-r'qu“ , 9)

r
vector is pure imaginary and the Green’s function
represents a propagation of evanescent waves.

In our geometry of spheres on a substrate, there occurs
a multiple scattering between a sphere and the substrate.
To describe this process, we must rewrite the vector
spherical wave emitted from a sphere as a linear combina-
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tion of vector plane waves. This is performed by intro-
ducing a new vector £(q), which is a function of wave vec-
tor and angular momentum, and is defined by

0 0
_ 3
EM(q)= V) |, Elg=4| - Vil |,
.0 . m
—igg Y9 ~sing Y119
and
g |, =AmY,(g),
N — A <ing) S
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In terms of these vectors, the Green’s function is written
as
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which represents a conversion of the vector spherical wave
into a sum of vector plane waves of both propagating and
evanescent, and vice versa. Finally, by taking into ac-
count multiple scatterings both between spheres, and
spheres and the substrate, we obtain for z > a.

E(=E%r)+Ee"" + 3 F(G)e"
G

where

E=R(q)E°

)—L—[aqc )+ R(gg)s(ge NI+,
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d=vali)=t""'-T'-T)"'a(2), (12)

a(2)=a(0)+£1(gT)R(q)E°,
F=3%ad R %—é‘qg WI+1) .

Here, T describes a multiple scattering between a sphere
and the substrate. The diffracted waves are proportional
to the sum of the incident wave and the reflected wave
from the substrate. The electric field inside the sphere is
given by Eq. (6) with a(i) replaced by the present expres-

sion. Due to the periodic structure of the spheres, the re-
flected wave is given by a linear combination of diffracted
waves, both propagating and evanescent, whose wave-
vector components parallel to the surface are shifted by
the reciprocal- lamce vectors. When the determinant of
the matrix (t—'—T—T) approaches zero, the electric
field around the sphere is enhanced and an anomaly ap-
pears in the reflectivity spectrum. This is the mathemati-
cal description of the resonance mode. We have used the
following relations

b kDR,

(27 )2.[ qH’

where N and s are the number of the spheres and the unit
cell area, respectively.

The electric field intensity averaged inside the sphere
and its normal component averaged slightly outside the
sphere are given by
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I—vf |E(r)|2dr

=N 8(g—k—G),
G

ql‘

———f |PEL (j,k,r,L) | 2| & (i) | %dr

—foilaf(i)l2 ,
T
where

=311+ VKD —j1 (@)1 1(D]

f,N—_—l(l+1)-17j1(z)(zj,(z))'+f1M, (13)
z

for real k, and
=10+ D[z*)(2)ji(z

UES!
= (, Jr];,_)ll 2)[ji(z*)+2%ji(z

for complex k

*)—zj[(2)j(z*)] /(22 —2z*?) ,

]+—f1 ,

1 2
1,=Ef | E,(a +0)|2dQ

2
=Zl; % |E,(a—0)|%dQ
1 |z !
=7 | f | NE(j,ky,a,L) |2 | af(i)|%dQ
4
= | 2| [HE e

The continuity of the normal component of the displace-
ment field €E is used for the latter expression. Both M
and N fields contribute to the average intensity, while
only N field contributes to the normal component.

The flow of the EM energy is described by the
Poynting’s vector. The total energy absorbed inside the
metal substrate is given by integrating its z component
over the x-y plane above the substrate. The result is
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E(r)=E%"4 "y Eeid"r 4 zF(G)equh ,
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The first two terms give the energy flow of the incident wave and the reflected wave from the substrate. The third term
gives the energy of the diffracted waves. The sum over the reciprocal-lattice vectors is restricted such that the diffracted
waves have real wave vectors. The last term is a cross term of the reflected waves.

Lastly, we consider that some molecules are adsorbed on the spheres uniformly and calculate an enhancement factor F
of the Raman scattering intensity. The Raman tensor of the molecule is assumed to be diagonal and have nonzero ele-
ment only in the direction normal to the sphere surface. Raman shift is neglected and the scattered light is calculated in
the direction of the specular reflection. After some calculation, we obtain
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The factor ay(i) comes from the local field at the ad-
sorbed molecules and the factor 775 1, gives the second-
stage enhancement, i.e., enhancement of the dipole radia-
tion of the molecule by the excitation of the resonance
modes.

III. NUMERICAL RESULTS

First we neglect the substrate and show various features
of the resonance modes.

Figure 2 shows integrated density of states (IDS) (Ref.
14) for the EM field, specular reflectivity, electric field in-
tensity averaged inside the sphere, its normal component
averaged slightly outside the sphere, and the Raman
enhancement factor. The average intensities are scaled by
the incident field intensity I,. Solid curves are for p po-
larization and dotted curves are for s polarization. The
incident wave vector lies in the x-z plane and the in-
cidence angle is 20°. The dielectric constant of the sphere
and its radius are chosen as €;=3 and a/d =0.4, respec-
tively. The frequency of the electric field is scaled as
Z =d /M =dw\V €y/2mc ); the lattice constant divided by
the wavelength in vacuum. A sharp increase in IDS
means that there exists a sharp resonance level at that fre-
quency. We call it a resonance mode. An important fact
is, when the resonance mode is excited, the local-field in-
tensity is enhanced and its peak value approaches to al-
most 10%. It is to be noticed that, a large enhancement of
the electric field is not necessarily associated with a large
signal in the specular reflectivity. In fact, the dominant
peak in I/I, at Z =0.87 gives only a small dip and a

14+ DI+ DaY D[ (D152 Clyymy | 1, ma,1,0)

(15)

f

hump to the spectrum. In these cases, anomaly appears in
the intensity of diffracted waves. The singularity at
Z =0.74 comes from the first multichannel threshold,®
and diffraction occurs at higher frequencies. Below this
frequency, a complete reflection is realized when the reso-
nance mode is excited. This comes from the fact that
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FIG. 2. Integrated density of states, specular reflectivity,
electric field intensity averaged inside the sphere, its normal
component averaged slightly outside the sphere, and enhance-
ment factor of the Raman intensity emitted by molecules ad-
sorbed on the sphere. Solid curves are for p polarization and
dotted curves are for s polarization. The abscissa is a scaled fre-
quency defined by Z=d /A. The incidence angle is 20° and the
dielectric constant of the sphere is chosen as €,=3. a/d =0.4.
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there exists only one mode in both the transmitted and the
reflected waves which are connected to the localized mode
of the spheres. The anomaly of the normal component is
characterized by the polarization of the incident field and
appears at the same frequency as the anomaly of the aver-
aged intensity. This point is different from the case of a
single sphere; only the N field determines the former
while the M field dominantly contributes to the latter and
their resonance frequencies are different in general. The
Raman intensity reflects the enhancement factor of the
normal component. However, in the second stage, the di-
pole field emitted by the molecule has both s and p char-
acters and so, the Raman spectrum is peaked at both reso-
nance frequencies. The peak value of the Raman
enhancement spectrum is of the order of 10*, which is
comparable to that realized by roughened metal surfaces.
Next, the dielectric constant dependence of the reso-
nance mode is shown in Fig. 3. A larger dielectric con-
stant is equivalent to a deeper attractive potential for the
EM field. Therefore, with the increase of the dielectric
constant, the resonance modes shift to the low-frequency
side monotonically. On the other hand, the change of the
spectral shape is not simple; some modes narrow and the
associated intensities increase but other modes broaden
and their intensities decrease. This point is also different

100
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FIG. 3. Dielectric constant dependence of local-field intensity
spectrum.

a/d=048

05 06 07 08 0S 10 1

FIG. 4. Radius dependence of the resonance modes. The lat-
tice constant is fixed.

from the case of a single dielectric sphere, where spectrum
sharpens and intensity increases with the dielectric con-
stant. The radius dependence is shown in Fig. 4. The lat-
tice constant is fixed and €;=3. At low densities (the
cases of small radius as shown at the bottom of the fig-
ure), the frequency of the resonance mode is close to that

o | 1
05 06 07

] | |
08 059 2 10

FIG. 5. The incidence angle dependence of the resonance
modes. €;=3 and a/d =0.4.
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of a free photon and singularities appear near multichan-
nel thresholds which are shown by arrows in the figure.
With the increase of the radius, an attractive potential re-
gion increases and the resonance-mode frequencies de-
crease. When a/d is increased from 0.3 to 0.4 (0.4 to
0.48), the number of the resonance modes increases
abruptly at Z=1.06 (Z =0.74) for the both polariza-
tions. That is, new resonance modes appear at multichan-
nel thresholds. Lastly, the incidence angle dependence is
shown in Fig. 5. The frequency of the lowest resonance
mode shifts about AZ = —0.3 when the incidence angle is
increased from zero to 6=60°. The behaviors of high-
frequency modes are complicated. Although resonance
frequencies depend on these parameters, the intensity
enhancement factor is of the order of 10? except at large
incidence angles or at low density of spheres.

The resonance mode is closely related to a localized
mode of a thin dielectric slab with the same dielectric con-
stant. With increase of the dielectric constant or thick-
ness of the slab, the localized modes make low-frequency
shifts and an excited state starts its dispersion curve on
the line w=ck,. Figure 6 shows an empty lattice band
structure of the lowest localized mode of a slab, whose
thickness L is chosen such that its volume is equal to that
of the arrayed spheres with a /d =0.4. The abscissa gives
the parallel component of the wave vector in units of

0.0 5

0
ki

FIG. 6. The empty lattice band structure of the localized
mode of a thin dielectric slab.

2m/d. The solid bold line shows the dispersion relation of
the incident wave with 6=20°. The crossing of these two
curves indicates that the localized modes are excited by
umklapp processes due to the periodic structure. The fre-
quency and the number of the resonance modes are ap-
proximately reproduced by this model. Furthermore, the
following features of the resonance modes are reproduced,
(1) with increase of the dielectric constant or the radius of
the sphere, resonance modes make low-frequency shifts,
(2) with the incidence angle, the lowest resonance mode
shifts to the low-frequency side, while high-frequency
modes form complicated band structures, (3) a new reso-
nance mode appears at multichannel thresholds. Thus,
the nature of the resonance modes of a two-dimensional
array of spheres is close to that of the localized modes of
a dielectric slab with appropriate thickness and is quite
different from that of a single sphere. This comes from
the collective response of the spheres brought about by the
multiple scattering of EM waves between spheres.

Next, substrate effects are investigated. Figure 7 shows
the average intensity inside the sphere as a function of the
substrate dielectric constant €, and the distance Z,. The
dielectric constant of the sphere is fixed at €,=4 and
a/d=0.4. For the curve at the top of the figure, sub-
strate is not present. With increase of €,, the resonance
modes are broadened and the peak intensity is reduced by

Zo=d

I |

I L
05 06 0.7 0.8 (OR) 7 10

FIG. 7. The resonance modes of the arrayed dielectric
spheres placed on a dielectric substrate of €,.
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an order of magnitude at Z,=d /2. The effective poten-
tial of the dielectric substrate becomes more attractive
with €, and the envelope function of the resonance mode
extends toward the substrate. This effect reduces the
local-field intensity, though the resonance frequencies de-
crease only a little. As shown at the bottom of the figure,
the curve for Zy=d is almost the same with the curve
without substrate as shown at the top. An exception is a
sharp peak for p polarization near Z=0.94. This peak
originates from an excitation of a resonance mode by a
diffracted wave which is reflected back to the array by the
substrate. From these results, we can say that the en-
velope functions of the resonance modes are confined
within the thickness of z =d. This fact is consistent with
the slab model. The parallel component of the incident
wave vector is Z sin(6) in the unit of the reciprocal-lattice

100
U [ S
2
10 G
[
0
1]
1 10™
1072
1 | i |
06 07 08 09 10
1 d-O.Sl/tm Ag substrate 1
1 1
06 07 08 09, 10

FIG. 8. Average intensity inside the sphere, EM energy ab-
sorbed in the metal substrate and enhancement factor of the Ra-
man intensity observed from the direction of specular reflection.
Silver is assumed as the substrate. 8=20°, a/d =0.4, d =0.5
pm, and Zy=d.

vector K =2m/d. The z component of the wave vectors
of the evanescent waves are then given by
y={Z?—[Zsin(0)—n]*—m?}'/? with integer m and n,
because the parallel components are shifted by reciprocal-
lattice vectors. For m =0 and n=1or m =1 and n =0,
the magnitude of y is about 0.6 for Z =0.6, which gives
exp(— | ¥ | ZoK)=0.15 for Z,=d/2 and 0.022 for
Zy=d, i.e., overlap is appreciable in the former, but is
negligible in the latter. Therefore, the dielectric substrate
gives an important modification to the resonance mode
when Z, is less than the lattice constant.

The situation is quite different for a metal substrate. In
addition to the resonance mode of dielectric spheres, there
exists SPP mode localized on the metal surface and their
interaction is expected to modify their characters. Figures
8 and 9 show the effects of the silver substrate for d =0.5
pm, a/d=0.4, €,=3 and 6=20°. For the present param-
eters, Z =1 corresponds to #iw=2.45 eV, which is well
below the surface plasmon energy of silver and a flat sub-
strate shows an almost complete reflection at the frequen-
cies investigated. Zy=d in Fig. 8 and Z,=d /2 in Fig. 9.
In addition to the intensity enhancement factor, we show
the energy absorbed in the substrate, which comes mainly
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L
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FIG. 9. The same as in Fig. 8 except that Z,=d /2.
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from the excitation of SPP modes in the substrate. Re-
flectivity is given by subtracting absorption from unity.
When Z,=d, the coupling of the two modes is expected
to be small. In fact, the enhancement spectrum is almost
the same as that obtained in the case without substrate
and the sharp peaks in the absorption spectrum at
Z=0.73 and Z =1 are interpreted as resonant excitation
of SPP mode. Figure 10 shows the dispersion relations of
the SPP mode and evanescent waves from the arrayed
spheres. The abscissa gives the parallel component of the
wave vector in units of 277/d. Corresponding reciprocal-
lattice vectors are inserted. The crossing of these curves
occurs at exactly the same frequencies as the absorption
peaks. That is, SPP modes are excited by evanescent
waves emitted from the periodic array through the um-
klapp processes.

On the other hand, when Z, is reduced to d/2, the
coupling of the two modes modifies their characters and a
low-frequency shift at Z =0.64 and splittings around
Z =0.86 and Z=0.98 are observed. Further enhance-
ment of the local-field intensity and the Raman scattering
efficiency are realized. As the SPP mode is p polarized,
interaction is strong for p polarization. These features of
the resonance-mode frequencies are again reproduced by a
localized mode of a dielectric slab placed on the metal
substrate. In Fig. 11, the dispersion relation is shown for
p polarization. A dielectric slab of thickness L is placed
on a silver substrate with spacing D. The imaginary part
of the dielectric constant is neglected for the metal sub-
strate. The bold curves correspond to the present parame-
ter. At low frequencies, the two dispersion relations, the
dispersion relations of the SPP mode and the localized
mode of the slab, are close to each other. Due to their
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FIG. 10. The dispersion relations of SPP mode and evanes-
cent waves emitted by the periodic array of spheres.
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FIG. 11. The dispersion relation of the localized mode in a
thin dielectric slab, which interacts with the SPP mode of the
metal substrate.

repulsive interaction, one of the modes is pushed up
beyond the line Z =k and disappears and the other
mode is pushed down. This strong coupling at low fre-
quencies comes from the fact that the envelope function
of the SPP mode extends deep into the vacuum and over-
laps largely with the localized mode of the slab: The
damping constant of the SPP mode is given by
¥ =1(€,+ 1)/€,x, which approaches k =27 /A at low fre-
quencies (6,— — ). At high frequencies, there exists a
SPP-like mode. The low-frequency shift of the low-lying
modes and their splittings at high frequencies are thus ex-
plained.

The character of the localized mode depends on the dis-
tance D. At D=2500 A, the two modes preserve their
original characters of the SPP mode and the localized
mode of the slab except at low frequencies. When the two
dispersion curves approach to each other, anticrossing
occurs at around k;=1.8 and Z =1.4. Decreasing the
distance, dispersion relation of the lower branch is pushed
down below the line z=kH/\/?1 at k;;>1.25 as shown
by a dashed curve for D =0; the dielectric slab is in con-
tact with the substrate. As the dispersion relation of the
localized mode of the slab lies above this line, this fact
shows that the lower branch is SPP-like which exists near
the boundary between the metal substrate and the dielec-
tric slab. At low frequencies, however, the envelope of the
SPP mode extends far into the vacuum penetrating
through the dielectric slab. Then the effect of the dielec-
tric slab becomes negligible and the dispersion relation ap-
proaches the line Z =k, instead of Z=k /v €,. High-
frequency mode is localized mainly in the dielectric slab.

IV. SUMMARY AND DISCUSSIONS

In this paper, various features of the resonance modes
are clarified for a two-dimensional array of dielectric
spheres placed on a flat substrate. When excited, the reso-
nance modes enhance local-field intensities by 2 orders of
magnitude. With increase of the radius or the dielectric
constant of the sphere the resonance mode shifts to the
low-frequency side. The lowest resonance frequency de-
creases monotonically with incidence angle, while, high-
frequency modes show complicated band structures.
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These features are closely related to those of the localized
mode of a dielectric slab. If the substrate is a dielectric,
envelope of the resonance mode extends toward the sub-
strate and the peak intensity is reduced by an order of
magnitude at Zy=d /2. That is, the substrate effect is
crucial at short distance. When the substrate is made of a
metal, the interaction between the resonance mode and the
SPP mode changes their characters and frequency shifts
or splittings occur at short distances. In this case, local-
field intensity is enhanced further by excitation of the
SPP mode.

Lastly, we show that we can use these features of the
resonance modes to realize optical bistability at a low laser
power.'® Assume that the dielectric constant of the
sphere has a third-order nonlinearity as

(=€, +47X°I ,

where we put X>=10"5 esu. Then we fix the laser fre-
quency at slightly below the resonance frequency. A
schematic diagram of optical bistability is given in Fig.
12. First consider the intensity enhancement factor I/1,
as a function of the dielectric constant. Increasing €;, the
resonance-mode frequency decreases (see Fig. 3) and 1/1
at a fixed frequency w first increases, attains its peak
value of the order of 10%, and then decreases. On the oth-
er hand, the dielectric constant increases linearly with the
internal intensity I. Therefore, in a certain region of I,
the two curves have three crossing points. This indicates
optical bistability. As an illustration, we consider the case
shown in Fig. 9. We use the enhanced local field by the
lowest p-mode and fix the frequency at Z =0.635. Stable
states as a function of incident intensity are calculated nu-
merically by iteration. Bold solid curves in Fig. 13 show
specular reflectivity versus incident laser power and thin
solid curves show their corresponding nonlinear dielectric
constant. With increase of the laser power, the high-
reflectivity branch jumps to the low-reflectivity branch
and with decrease of the power, it jumps back to the origi-
nal branch. Even when €, has an imaginary part, as curve
B shows, optical bistability is realizable. Here, the optical
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FIG. 12. A schematic diagram illustrating optical bistability.
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FIG. 13. An optical bistability realized by the resonance
mode. Reduction of the laser power comes from the local-field

enhancement.

bistability at a low laser power is realized both by large
enhancement of the local-field intensity and the sensitive-
ness of the resonance-mode frequency to the dielectric
constant.

We have replaced local-field intensities by the average
intensity in the nonlinear Maxwell equation. Figure 14
shows position-dependent intensity inside the sphere. Ex-
cept the fourth direction, perpendicular to both the in-
cident electric vector and the incident wave vector, unifor-
mity is quite good. Thus, our approximation of replacing
the local-field intensities by the average intensity is shown
to be rather good. Furthermore, as the resonance-mode
frequency is a macroscopic quantity determined by the
collective nature of the spheres, inhomogeneity of the lo-
cal field is expected to be unimportant.

We have shown that the local-field enhancement real-
ized by the excitation of the resonance mode can be used
to observe enhanced Raman scattering from adsorbed
molecules, and a possibility of optical bistability is
predicted. Furthermore, the Raman scattering from in-
side the sphere is expected to be enhanced. This
phenomenon is useful for the investigation of surface

10°
Z=064
1 k
IE12 st pea
p pol.

Zo=0.5 d
a=02um d=05um
l

1
100.0 05 10

FIG. 14. Position dependence of the electric field intensity in-
side the sphere for the p polarized lowest resonance mode.
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modes of fine particles. As the excitation of SPP-like
mode is possible, second-harmonic generation at a metal
substrate is also expected.

The merit of this system is that the resonance-mode fre-
quency can be controlled easily by (1) the lattice constant
(the resonance-mode frequency is scaled as Z=d /A), (2)
the radius of the sphere, and (3) the incidence angle. This
point is useful for the experiments. We used a specific
model of an arrayed dielectric sphere. However, as we
have shown, essential features of the resonance modes are

reproduced by localized modes of a thin dielectric slab.
This suggests the generality of the features obtained.
That is, arrayed spheroical particles or even a grating of a
dielectric material coated on a metal substrate is also ex-
pected to have similar features. Thus, we can conclude
that the local-field enhancement by the resonance-mode
mechanism is a general phenomena in microstructures fa-
bricated on crystal surfaces and hope that it will find vari-
ous applications in surface nonlinear optics.
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