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We study the validity of the third law of thermodynamics and the occurrence of a nonzero residual

entropy in discrete spin systems. For a general classical spin system on a d-dimensional hypercubic
lattice with isotropic, translationally invariant, nearest-neighbor interactions, we establish the follow-

ing. (i) The necessary and sufficient condition for the third law to hold. (ii) A lower bound on the

residual entropy when the third law is not valid. It is also established that the residual entropy is

nonzero for all d, if it is nonzero in any dimension d & 1.

The third law of thermodynamics states that the entro-
py of a physical system vanishes as the temperature ap-
proaches absolute zero. One important problem in statist-
ical physics has been the consideration of the validity of
the third law and its relation with the ground-state degen-
eracy. ' While progress has been made in affirming the
third law in specific systems such as ferromagnets, it is
also known that there exist notable exceptions, mostly in
spin systems, where the residual entropy does not van-
ish. ' It is therefore natural to inquire whether one can
determine a priori the validity of the third law, given the
Hamiltonian of a physical system, and, in case the third
law does not hold, whether there exist a priori bounds on
the residual entropy. These are difficult questions that are
of fundamental importance.

In this paper we provide some answer to these ques-
tions. We consider a very general class of classical
discrete spin systems and, using a graph-theoretical ap-
proach, obtain the necessary and sufficient condition for
the third law of thermodynamics to hold; we also estab-
lish a lower bound for the residual entropy when the third
law is not valid.

Consider a system of N classical spins on a hypercubic
lattice in d dimensions. The spins can be in one of q )2
distinct states, and interact with a nearest-neighbor in-
teraction, which depends on the spin states as well as on
the direction along which the two spins are placed, i.e.,
the interaction is asymmetric with respect to the spin
states. Considerations of systems with such state-
dependent and asymmetric interactions are not without
physical interest. Models with interactions of this type
have been used, e.g., in discussions of commensurate-
incommensurate transitions occurring on surfaces, "'

and in descriptions of domain walls in adsorbed layers of
krypton on graphite. ' ' A polychromatic Potts model
with state-dependent interactions, which encompasses the
correlated polychromatic bond percolation and the dilute
branched polymer problems as special cases, has also been
proposed. ' To properly describe this asymmetry, we as-

sociate Cartesian coordinate n=(n, , n2, . . . , n~),
n; =1,2, 3, . . . , to lattice sites, and write the interaction
energy between two neighboring spins, one at site I in
state a and the other at site n in state Ii, as

E(m, n)=J t3,

where

m;(n; for i=1,2, . . . , d .

The asymmetry in spin states is then rejected by the fact
that J ts&J& . Note that the interaction (l) is translation-
ally invariant, and isotropic in the d positive (or negative)
spatial directions. We shall further restrict our considera-
tions to systems whose ground states are attained, as in
antiferromagnetic Potts models, ' when all neighboring
pairs interact with the same energy J;„.This restriction
effectively excludes the consideration of frustrated sys-
tems. However, it makes possible to relate the zero-
temperature entropy S to the degeneracy of the ground
state configurations 8'& by taking the limit:

where

3 p
——1, if Jap Jmin

(4)

=0, otherwise .

Here, the summation in (3) extends over all q spin
configurations and the product is taken over all nearest-
neighboring pairs. Our goal is to determine, for a given
spin system and the associated 3 p, whether S vanishes,
and to determine a bound on its numerical value if S does
not vanish.
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The q X q matrix 2, whose elements are 2 &
——0 or 1,

can be considered as the adjacency matrix' of a directed
graph G consisting of q vertices numbered from 1 to q.
The directed graph 6 can be constructed from the matrix
3 by drawing, for each 3 p

——1, an arc pointing from the
vertex a to the vertex P. For example, the graph G for
the adjacency matrices

0 1 1

1 0 0
1 0 0

0 1 1 0
0 0 0 1

0 0 0 1

0 0 0 0

are shown, respectively, in Figs. 1(a), 1(b), and 1(c).'

It is convenient at this point to adopt the graph-
theoretical language and consider Wz as the number of
distinct q colorings' of the d-dimensional hypercubic lat-
tice under the coloring rule specified by the adjacency ma-
trix A. That is, if a site at m bears a color a, then the
neighboring site at n, m, &n; for all i, can be colored f3

only if 3 &
——1.

We now state our results as a theorem.

1S& —ln2, for d=1,
q

S& ln2, for d &2 .1

q+1

(6)

(7)

Corollary 2. If the residual entropy is nonzero in any
dimension other than d =1, then it is nonzero in all di-
mensions.

Note the following remarks.

Theorem. In a q-component spin system, q &2, on a
d-dimensional hypercubic lattice with nearest-neighbor in-
teractions described in the above, there exists a nonzero
residual entropy, i.e., the third law of thermodynamics
does not hold, if, and only if, the graph 6 constructed
from its adjacency matrix A contains, (i) for d = 1, a sub-

graph consisting of two circuits' having at least one ver-

tex in common, (ii) for d ) 2, a subgraph isomorphic to
Fig. 2 (Ref. 21).

Corollary 1. The nonzero residual entropy has the
lower bound:

d and, consequently, S &0 for all 6 except when 6 con-
sists of disjoint subgraphs of one or two vertices, for
which we have S =0.

(2) For d =1, S is given by the logarithm of the largest
eigenvalue of A.

(3) At first sight, it might appear puzzling that the
bounds in corollary 1 decrease with increasing q. While
the residual entropy for a given type of interaction, such
as that in the antiferromagnetic Potts model, is expected
to increase with q,

" corollary 1 bounds the lowest possi-
ble residual entropy among all types of interactions and,
as more types of interactions become accessible when q in-
creases, this bound is actually lowered.

(4) Corollary 2 is a quite remarkable result. While a
simple argument establishes the fact that if S &0 in a
given dimension, then it is nonzero in all lower dimen-
sions, it is not intuitively clear why this should also hold
for any higher dimension.

Now we prove the theorem.

(i) d = l. It can be seen that for a one-dimensional lat-
tice we have, for N & q,

=0 if G contains no circuits,

& q if 6 consists of isolated circuits,
W~

'

&N~ if 6 consists of simply-connected

circuits without common vertices .

It follows that, if S &0, G must contain at least two cir-
cuits having at least one vertex in common.

Conversely, if G contains two circuits of lengths r and s
each and having at least one vertex in common, then, by
regarding the r +s —1 vertex colors as being all distinct,
we obtain a lower bound to S by evaluating the largest ei-
genvalue of its adjacency matrix [Cf. remark (2)].
Straightforward algebra leads to the characteristic equa-
tion

Using the Perron-Frobenius theorem, the largest eigenval-

(1) For symmetric interactions, J ~=Jp, the adjacency
matrix is also symmetric, and there is a circuit between
any pair of vertices whose corresponding 3 p is 1. Then
the condition of the Theorem is satisfied for q & 2 and all

1
iE ~ 4L

(a) (c)

FICx. 1. Directed graphs associated with the adjacency ma-

trices given by (5).

FICs. 2. A directed graph in which colors may be repeated
(Ref. 21). Colors 2 and 3 are always distinct and colors 4 and 1

are connected by a directed path running through a sequence of
p distinct colors (which may include colors 2 and 3) that are
different from 1 and 4 (p (q —2).
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ue of the adjacency matrix (whose elements are nonnega-
tive) is positive. Now the magnitude of the positive solu-
tion of (9) decreases with increasing r and s; a lower
bound of this positive solution is therefore obtained by
considering the case r =s =q. This leads to (6), thus
completing the proofs of the converse and the d = 1 part
of corollary 1.

(ii) d)2. We first establish that the existence of the
subgraph Fig. 2 in G leads to S & 0. '

Divide the X lattice points of the d-dimensional hyper-
cubic lattice into parallel (hyper)planes such that the coor-
dinates of all sites on a given plane P„satisfy

d

g n; =d+p, )Lt=0, 1,2, . . . (10)

S) ln2) ln2&0 .
1 I

p+3 q+1 (12)

Thus these planes are perpendicular to the main diagonal
of the lattice. We now proceed to color the d-dimensional
hypercubic lattice by following the rule specified by Fig.
2.

Color the lattice site at (1, 1, . . . , 1) on the plane Po
with the color 1. Then, proceeding in a diagonal direction
and following the rule imposed by Fig. 2, each of the
neighboring sites on the next plane P& can be colored with
the color 2 or 3 independently. However, all sites on
each of the succeeding p+2 planes, P2, P3, . . . , Pp+3,
can be colored by the respective colors 4, . . . , 1 by sim-
ply following the rule specified by the path running from
color 4 to 1 in Fig. 2. After the plane Pp+3 is colored by
the color 1, we can repeat the above process by coloring
each point of the next plane, Pp+4, independently with the
color 2 or 3, et al. In this fashion we eventually succeed
in coloring the whole lattice with colors fixed at all sites
except those sites on one of every p +3 hyperplanes,
which can be colored independently with either the color
2 or color 3. It follows that, for large %, we have bound-
ed 8'~ by

) 2N/(P + 3)
cV

leading to, after using p & q —2,

Since the proof in the above depends solely on the fact
that colors 2 and 3 in Fig. 2 are distinct, and, further-
more, the proof can be carried out in an obviously similar
fashion if G contains any subgraph isomorphic to Fig. 2,
we have proved the if part of the theorem. The inequality
(12) also establishes the d ) 2 part of Corollary 1.

The proof of the converse of above, that S & 0 for d & 2
necessarily implies the existence of a subgraph isomorphic
to Fig. 2 in G, is more delicate, and is outlined in the fol-
lowing. First, subgraph isomorphic to Fig. 1(c), with
colors 2 and 3 distinct and residing in the same hyper-
plane P„, must appear in some coloring of the lattice, for,
otherwise, all sites in P„bear the same color, and, as a
result, the lattice is colored in a one-dimensional fashion
along the main diagonal direction. Using the fact that
there are dN' hyperplanes perpendicular to the main di-

dX '~"
agonal, we obtain the bound 8'z (q, which implies
S=0 for d )2, thus contradicting the assumption of
S)0.

Next, divide the lattice into r" cells of equal size and
consider the r cells along the main diagonal direction.
For r, large but finite, and provided that X is sufficiently
large, one such subgraph, say, Fig. 1(c), will appear in two
different cells along the diagonal in some coloring of the
lattice. It follows that there exists a route, tracing in
directions of increasing coordinates from the vertex
colored 4 in one subgraph Fig. 1(c), to the vertex colored
1 in the other. This route can be contracted by deleting
all steps between any two identically colored sites along
the route, resulting in a contracted route going from color
4 to color 1 and containing at most q —2 distinct colors
in between. This establishes the converse we seek to
prove, after identifiying this contracted route as the path
illustrated in Fig. 2.

Finally, corollary 1 has already been proven; corollary
2 follows directly from Ref. 24 for d =1, and the fact that
if the condition (ii) of the theorem holds for any d )2,
then it holds for aO d )2.
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Two graphs are isomorphic to each other if they are identical
topologically, except colorings.

'To facilitate discussions, we adopt in Fig. 2 a slightly expanded
graphical notation by permitting repeated colors, except that
colors 2 and 3 are always distinct, a key fact used in the proof.
We can reduce Fig. 2 to graphs containing only distinct colors
by coalescing repeated colors into a single vertex. For exam-

ple, if colors 1 and 4 are identical, by coalescing vertices 1 and
4, Fig. 2 is seen to contain the subgraph Fig. 1(b).
One example of S=O with symmetric interactions is the fer-
romagnetic Potts model for which 3 ~

——6 ~ and G consists of
disjoint circuits, each containing a single vertex.
This can be seen by considering 3 as a transfer matrix and for-
mulate (3) as W~;=Tr[A' ], assuming a periodic boundary

condition.
"The value of W~ must increase if we remove coloring restric-

tions between nearest neighbors in a given spatial direction, a
process which electively reduces the dimensionality by 1. It
follows that S cannot decrease in value in lower dimensions.

~~Here, use has been made of the property of low connectivity of
hypercubic lattices: Any two neighboring sites lie on adjacent
hyperplanes and sites within a given hyperplane cannot be
nearest neighbors.
For a proof with complete mathematical rigor and further re-

lated results, see Y. Chow, Disc. Math. (to be published).
This follows from the fact that the number of graphs iso-
morphic to Fig. 1(c), q (q —1)(q —2)(q —3), is finite.


