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Electron gas in channels in strong magnetic fields
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The physics of an electron gas in a strong magnetic field in channel geometries is discussed. For
very narrow channels, the electrons form a one-dimensional (1D) "Fermi sea" with a concomitant
2kF charge-density-wave (CDW) instability. For a 1D spinless electron gas in the absence of a mag-
netic field, there is usually a competition between the "superconducting" and CDW instabilities so
that the CDW instability does not occur. Because of the spatial dependence of the exchange interac-
tion in the eft'ective 1D Hamiltonian in the present case, the conventional cancellation between these
instabilities becomes incomplete and a CDW instability results. The transition from a one-
dimensional "Fermi sea" with a 2k~ CDW instability to a two-dimensional situation which exhibits
the fractional quantized Hall effect as the channel width is increased is investigated. As the width is
increased, except under some special circumstances that correspond to odd-denominator filling fac-
tors when the gap is not changed much, the gap in the excitation spectrum undergoes a damped os-
cillation. We interpret the oscillation in terms of the formation of clusters due to multiparticle ex-
change and its breakup.

I. INTRODUCTION

A strong external magnetic field induces many interest-
ing phenomena. In the fractional quantized Hall effect
(FQHE), ' one studies the physics of a two-dimen-
sional (2D) electron gas. One-dimensional ( 1D) chan-
nel structures as narrow as 100 A on heterojunctions
and on metal-oxide-semiconductor-field-effect-transistors
MOSFET's (Ref. 2) are becoming available experimental-
ly. We have recently investigated the physics in these 1D
channels and found that if the channel width is narrow
enough, a gap exists in the excitation spectrum for even as
well as for odd-denominator filling factors. In the 2D
case, a gap exists in the excitation spectrum only for odd-
denominator filling factors. In this paper we first reexam-
ine the situation when the channel width is very narrow
under the more realistic hard wall boundary conditions;
we then investigate how the 2D limit is approached as the
channel width is increased.

A more precise reinterpretation of our results for very
narrow channels suggest the formation of a 1D "Fermi
sea" of the electrons. In addition, the density autocorrela-
tion function exhibits a peak at momentum transfer 2k+,
indicating a charge-density-wave (CDW) instability. Be-
cause of the resemblence of the ground state to the 1D
"Fermi sea", we investigate the applicability of the 1D
renormalization-group (RG) perturbation calculations.
For a 1D spinless electron gas in the absence of the mag-
netic field, there is usually a competition between the su-
perconducting and CDW instabilities so that the CDW in-
stability does not occur. Because of the momentum
dependence of the e-e interaction in the effective 1D Ham-
iltonian in the present case, the conventional cancellation
between these channels becomes incomplete. The novel
physics of this incomplete cancellation has not been dis-
cussed previously. The FQHE is also thought to be inti-

mately related to the effect of multiparticle exchange. '

The competing diagrams in the RG calculation can be
considered to correspond to exchange processes. In this
sense our results for the narrow channels and the FQHE
are connected.

The single particle states of an electron in a magnetic
field can be characterized by its average x position (y
momentum). The "Fermi sea" which exists for very nar-
row channels consists of a single cluster such that every
contiguous state with neighboring y momenta (x posi-
tions) is occupied. As the width of the channel is in-
creased; if the electrons were to still form a single cluster,
its effective size has to increase. Because of the finite range
of the multiparticle exchange, when the cluster gets large,
the exchange cannot completely counterbalance the direct
Coulomb repulsion; the cluster becomes unstable and
breaks up. This is observed in our finite cluster calcula-
tions. We find that the gap in the excitation spectrum de-
creases to zero because of the fluctuation between
configurations with different number of clusters and then
becomes finite again when the two cluster configuration
becomes stable. Presumably it undergoes a damped oscil-
lation as more and more clusters are formed. We now de-
scribe our calculation in detail.

II. THE HAMII. TOIAN

We first express the Coulomb potential in terms of the
single particle basis states of electrons in a magnetic field
in channels. The single particle wave function can be
characterized by states similar to the Landau orbitals. We
have to incorporate the effect of the boundary conditions
(BC's), however. To impose the hard-wall BC across the
channel it is easier mathematically to pick the y axis along
the channel. The eigenfunctions can then be written as

p (r) =exp(ik y )f (x)I(L )'r
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where kj =(L, /N, )j and

f" (k——x) f+ef =0 (2)

e =2mE/A, N, is the total number of single-particle
basis states in the system. We have imposed periodic
boundary conditions along the channel since it is usually
long compared with the magnetic length. f (0)=f (L ) =0
from the hard-wall BC across the channel. f can be ex-
pressed in terms of the Weber functions. However, it is
computationally more convenient to directly integrate the
differential equation numerically. With a sixth order
Runge-Kutta differential equation solver that adjusts its
step size automatically to satisfy the imposed error condi-
tion, we obtained the eigenvalue e (k) illustrated in Fig. 1

for different channel widths as a function of the distance
k measured with respect to one edge. The eigenvalue of
the dimensionless equation reduces to the free-particle
value (2n + 1) when the channel width, L, is infinite. For
channel widths larger than 3.55, the eigenvalue for
different channel lengths forms a single curve. The effect
of the other edge is exponentially small. When k reaches
the channel edges, the energy E is equal to 1.5%co„ the
energy of the next Landau level. Hence k has to be inside
the channel or the next Landau level will start getting
filled. Thus even though the single particle spectrum is
continuous and we11 defined even for k outside the chan-
nel in the limit that the channel length becomes infinitely
long, the filling factor is still a precisely defined quantity.
In the following we shall thus call the filling factor the
quantity 2/(2rrN) where A is the area of the channel and
N is the total number of electrons.

The Hamiltonian can be written as

orbitals PJ's given by

2

& Ji+j2=J3+J4
2l I.

X (j&
~

exp(iq r)
~
j4)

X (j2 l
exp( —iq r')

l
j3). (4)

The integral (j,
~

exp(iq r)
~
j4) has been carried out nu-

merically. We have picked different mesh sizes r and
found that, except for the constant diagonal term which
does not affect the excitation spectrum, the convergence
is very fast.

We have compared these matrix elements with those
obtained using the free particle Landau wave functions in

place of the PJ. The two types of matrix elements are ap-
proximately the same. When the index j is close to the
wall boundary, the matrix elements for the finite channels
are usually larger than the free results because the "hard-
wall" wave function, squeezed in by the walls, have not
moved away as much.

The matrix element 2 is not a function of the momen-
tum transfer q~ =j2 —j3 alone. This makes the Hamiltoni-
an different from the conventional 1D Hamiltonian
H' =gq V(q» )P(q» )p( —

q» ) where the 1D density opera-

tor p is given by p(q»)=Q. C, +qC, . This momentum

dependence causes an incomplete cancellation of the
"Cooper channel" and the "zero sound channel" dia-
grams.

H = g A (j&j 2,j 3,j4)CJ CJ CJ C~ +pe(k)CkCk.
Ci]

(3)

The 3's are integrals of the Coulomb potential and the
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FIG. 1. The eigenvalues of the electron in a magnetic Geld un-
der hard wall [Eq. (2)] boundary conditions as a function of its y-
momentum k measured from the hard wall for channel widths
L„=2.51, open circles, 3.55, open triangles, 4.76, open squares,
6.73, asterisk. Due to overcrowding, some data points at small x
and large L have not been shown.

III. NARROW CHANNEL REVISITED

The Hamiltonian matrix of four-, six-, and eight-
electron systems have been diagonalized for Ace, /
(e /EI) =r = 1 and 3, approximately the experimental
situation. For the "half-filled" case and I.„=4.76, the two
lowest eigenstates occur with total y- momenta J that
differ by 1 ~ For r =3, the gap in the excitation spectrum
is equal to 0.55, 0.44, and 0.42 for N, =9, 13 and 17 re-
spectively. ( N, is odd so that the two ends are both on
the boundary of the wall. ) From extrapolation, we esti-
mate the gap to be 0.41e /El. We have experimented with
including states with their k's outside the channel for the
case of six electrons and found that they are weakly cou-
pled to the low-lying states; the final results are unaffected
by it. For r =1, the gap is equal to 0.28, 0.24, and 0.26
for N, =9, 13, and 17 respectively.

The ground-state wave function
~

0) turns out to be
very simple. Even though there are many ( 88 for N, = 13
and J=39 ) basis functions, significant contributions to it
comes from only a few states. This is shown in Fig. 2 for
the case with r =1. For N, =9, the lowest state has
J=22 and correspond to [4,5,6,7] occupied. For N, =13,
the lowest energy state has J=39 and corresponds to the
cluster [4,5,6,7,8,9] occupied with small fiuctuations about
it. The ground state is like a "Fermi sea" such that all
states with y momentum from —kF (4) to kF (9) are occu-
pied. This cluster seems to form as a consequence of the
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All these states provide a coherent contribution to the
density autocorrelation function at q =~ and qy 2kF.
Similarly for X, = 13, the ground state wave function at
r=l is
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FIG. 2. The probability density of the ground-state wave
function.

p(qy, q, )=+exp[ —q /2+iq„(j ~qy/2)]
J

)c', CJ-+q C .
V

For N, =9, the ground-state wave function is

combined effects of the attractive multiparticle exchange
caused by the overlap in the x direction and of the
compression caused by the walls. Because the electrons
are Fermions, they cannot occupy states with the same
quantum number. Instead, they try to stay as close to
each other in the x direction as is possible. Normally,
there is a kinetic energy cost in keeping particles close to
each other. Because of the magnetic field, this kinetic en-
ergy cost is absent in the present case.

In addition, all the other significant contribution to the
ground-state wave function corresponds to a CDW densi-
ty modulation with qy=2kF . For example, for N, =13
the state [3,5,6,7,8, 10] corresponds to electrons excited
from 4 to 10 and from 9 to 3 with momentum transfer
+2kF -—6. [3,4,6,7,8, 11] corresponds to 5 to 11 and 9 to
3; [2,5,6,7,9, 10] corresponds to 4 to 10 and 8 to 2;
[3,4,5,7,8, 12] corresponds to 6 to 12 and 8 to 2. This 2k+
density modulation is consistent with our previous calcu-
lation with a different boundary condition. Because of
the indistinguishability of the particles, the above states
also provide a contribution to the density autocorrelation
function at small momentum transfers. Thus 4 to 10 and
9 to 3 can also be interpreted as 4 to 3 and 9 to 10 with a
momentum transfer of 1. These small momenta transfers
are diff'erent for the diff'erent states (1,2,2,3). In contrast
to the 2kF contribution, they do not add coherently.

A similar ground state is also observed at N, =9. Thus
the Fermi sea is [4,5,6,7] whereas the excited state
[3,5,6,8] corresponds to electrons excited from 7 to 3 and
4 to 8; [3,4,6,9] corresponds to 7 to 3 and 5 to 9; [2,5,7,8]
corresponds to 6 to 2 and 4 to 8.

The CDW instability also exhibits a finite q depen-
dence in our numerical calculation. The amplitude of the
different contributions to the wave function is not all of
the same sign. The 2D density operator p is given by

This exhibits a density modulation at q =~ and qy =2k+.
The ratio q /q at which the density autocorrelation func-
tion peaks is approximately equal to 2. The period in r
space of the charge density fluctuation in the x direction is
thus twice as big as that in the y direction. This suggests
the physical picture such that the electron exhibits a ten-
dency to lump at equal y distance along the channel and,
in addition, move up and down to avoid each other as one
goes down the channel.

In addition to the exchange, the influence of the walls
comes in to further stabilize the single cluster con-
figuration. We have performed a finite cluster calculation
for L, =4.7 for 13 sites for which all the single-particle
site energies are the same. The resulting ground-state
wave function exhibits a much larger fluctuation.

Our numerical calculation demonstrates a tendency to-
wards the formation of a CDW. It does not show that
there is true long-range order in the CDW for the ground
state. The fact that we see a gap in the excitation spec-
trum combined with Goldstone's theorem suggests that
the long-range order is at most algebraic.

The excited state is dominated by the configuration that
consists of the ground state but with the boundary site
displaced outward by one unit, i.e., [4,5,6,7,8, 10]. For ex-
ample, for L, =4.76, %, =12, and I=40, the lowest state
has its amplitude concentrated among a few of the 90
basis states. For r =3, 1 this is equal to

0.965
I
4, 5, 6, 7, 8, 10)

—0. 194
I
3, 5, 6, 7, 9, 10)—0. 123

I
3, 5, 6, 7, 8, 11)

I

1 & =0.839
I
4, 5, 6, 7, 8, 10& —0.343

I
3, S, 6, 7, 9, 10&

—0.238
I
3, 5, 6, 7, 8, 11)

+0. 115
I
3,4, 6, 7, 9, 11)

+0. 12
I
3,4, 6, 7, 8, 12)+0.18

I
2, 5, 6, 8, 9, 10&, (6)

respectively. Equations (5) and (6) are approximately re-
lated by

I
1) =P(q~ =1)

I
0). In the limit that the channel

length becomes long, we expect the excited state will con-
sist of density fluctuations of the form P(q) I

0) .
While our wave function shows a connection with the

noninteracting ground state, there are differences. First of
all, the 2k+ instability that we discuss is absent in the
noninteracting ground state. Secondly, as the cluster size
A, is increased, the energy difference between the nonin-
teracting ground and first excited state goes to zero as
1/N, . For X, =8, 12, and 16 this trend is not seen here.
This is especially obvious for the case r =1 where, as we
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discussed in the first paragraph of this section, the gap
remains relatively unchanged.

Since the ground state resembles a filled Fermi sea, it is
reasonable to apply the conventional techniques in 1D
physics, which deals with a perturbation expansion start-
ing from the Fermi sea, to the present problem. The
lowest order diagrams for the two-particle vertex func-
tions at momentum transfer 2k& are illustrated in Fig. 3.
For an ordinary 1D spinless electron gas, there is usually
a cancellation between the Cooper [(a)—(d)] and zero
sound channel [(e)—(h)] instabilities so that the CDW in-
stability does not occur. As we have emphasized in sec-
tion II, the matrix element 3 that enters into these dia-
grams have a more complicated momentum dependence
than the conventional 1D models. The scattering ampli-
tudes corresponding to Figs. 3(a), 3(b) and 3(c), 3(d),
3(e), 3(f) and 3(g), 3(h) are, respectively,

(b)

(e)

4

fdq3A (2kz+q3, q3) A (2k~+q3, q3)B(q3 &0)/(27rvq3),

f dq3 A (2k~+q3, q3) A (q3, q3+2k~)B(q3 & 0)/(2vr vq3),

fdq3 A (q3, 2k++ q3) A (q3, 2k++ q3)B(q3 & 0)/(27rvq3 ),

fdq3 A (2k+ q3)'B(q3 & 0)/(2vrvq3),

f q3A (2kF q3)A (q3, q3+2kz)B(q3 &0)/(2nuq3)»

fdq, A (q, ,2k~) A (q3, 2k~)B(q3 & 0)/(277uq3).

In the conventional 1D RG. calculation, there is a cancel-
1ation of the scattering amplitudes between the Cooper
and the zero sound channel. In the present case because
of the momentum dependence of the matrix elements the
cancellation between these two types of terms becomes in-
complete. However, the incomplete cancellation only pro-
vides for nonlogarithmic correction in the second-order
diagram here. This comes about because the infrared
divergence arises when the energy denominatdr q 3 is zero
and the matrix elements cancel at and only at q 3

——0. Ex-
panding the matrix elements about q 3

——0 by a linear ex-
trapolation as

A (x 2kF+V)=(
l
x

l
Ai+VA, +1)A (0,2k, ),

the sum of 3(d) and 3(h) becomes 2Azg~kz/2mu . In
general, this incomplete cancellation provides for logarith-
mic corrections of the order A "[In(k/k~)]" ' in the nth
order diagram. To illustrate, let us look at the third order
diagrams.

FIG. 3. Second order vertex diagrams (a)—(d) Cooper
channels and (e)—(h), zero-sound channel. An electron near
+k~ ( —k~ ) is denoted by a solid (dashed ) line.

The most important and relevant cancellation involves
only g2 because the initial value of gz is much bigger than
g I . The conventional first-order RG equations are given
by

g', =g, /(2m. u),

gz ——g, /(2~u)»

where the prime denotes differentiation with respect to
x = Into/Ez. The solution is given by g &

(x) =g
&
(0)/

[1—xg, (0)], g2(x)=g, (0)—g, (0)+g&(x). For an initial
g&(0) that is positive, g, (x) scales to zero and g2 scales to
g2(0) —g&(0) as x approaches —oo. There are no terms
on the right-hand side of the RG equations proportional
to only g2. Any new term that involves only g2 will break
this "symmetry". The higher power term that is propor-
tional to g I on the right-hand side will only scale to zero
and will not change the scaling trajectories discovered in
the first-order RG calculation ignoring the cancellation.
The only third-order diagrams that involve g2 alone corre-
sponds to six ladder-type diagrams with different com-
binations of particle or hole intermediate states. Two typi-
cal ones that correspond to all particle-particle and all
particle-hole intermediate states are shown in Fig. 4. The
corresponding scattering amplitudes are:

fdq3dq4 A (q3, 2k&) A ( —q3+q4, 2k~) A (q4, 2k~)B(q3 & 0)B(q4 & 0)/(4m u q3q4),

f dq3dq4A (q3 2kF+q3)A ( q3+q4, 2kp+q3+q4)A (q4, 2kp+q4)B(q3 &Q)B(q4&0)/(4m v q3q4).

The other four involve the same energy denominator but are different in sign. They involve the matrix elements
A (q„2k~+q, —q4) A ( —q, +q4, 2k~+ q, ) A (q4, 2kJ; )B(q4 (q, ),

A (q, , 2k~+q4) A ( —q, +q4, 2k„+q4) A (q4, 2k~+q4)B(q4 & q, ),

A (q3 2k+)A ( —q3+q4, 2kz+q4)A (q4, 2k~+q4 —q3)B(q4&q3),
and

A (q3, 2kF+q3)A ( —q3+q4, 2kF+q3)A (q4, 2kz+q3)B(q4&q3).
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FIG. 4. Third-order vertex diagrams (a) Cooper channels and
(b) zero-sound channel that involve g~ alone. An electron near
+kF ( —kF ) is denoted by a solid (dashed ) line.

We shall approximate the matrix elements by a linear ex-
trapolation as

A(x, 2kF+y)=( lx
l
A, +yA2+1)A(0, 2kF).

The difference between the above scattering elements thus
becomes

—A (0,2kF) A2kFln(to/EF)/(~ v ) .

Different guesses can be made as to the nature of the scal-
ing relationships as a consequence of this incomplete can-
cellation. These guesses lead to different RG equations
even though the results are qualitatively similar. We shall
be guided by the higher-order terms of the perturbation
expansion for the two-particle vertex in picking the scaling
relationship. It is not dificult to see that the nth order
term of the vertex function is equal to

2n [A (0,2kF )/(2~v )]"A2kF ln" '(co/EF ).

We thus expect that gz can be expressed in terms of an
auxiliary coupling f such that g(x)=2A2kFB f, x
=ln(co/EF ) and that f satisfies the RG equation

f' = f /27rv—
with the solution f(x)=f(0)/[1+xf (0)/2vrv]. Hence as
x goes to —oo, f and hence g2 goes to oo.

To understand the significance of our scaling assump-
tion, we have examined another possible guess which is
consistent with the third-order terms but not with the
higher-order term of the expansion for the two particle
vertex. Specifically, we try to incorporate the third-order
result in a second-order RG calculation. The resulting
equation is then integrated numerically. In this calcula-
tion, the effect of the gz term is smaller; the critical value

x, at which gz approaches ao is more negative. Even
though this assumption is inaccurate, the scaling trajecto-
ry is similar to that obtained above. This result illustrates
the "universality" of the extra gz term and the irrelevance
of the gi terms in the presence of the gz term in the RCx

equation.
To gain more confidence on the size dependence of our

result, we have performed self consistent numerical calcu--

lations for the eight electrons with N, =16. To perform
the calculation we have restricted the basis states to those
with less than four clusters. The resulting ground and
low-lying excited states wave function are then examined
and are found to exhibit small fluctuations about the sin-
gle cluster configuration. Hence our calculation is self-
consistent. The case with r =1 exhibits a larger fluctua-
tion; for L =4.76, the gap changes from 0.24 to 0.26.

To gain more insight into the narrow channel situation,
we investigate a limiting case such that the channel width
is much smaller than the magnetic length. The physics is
expected to approach the zero magnetic field limit.
In that case the wave function approaches the
form sin(vrx /d )exp(i ky ) with eigenvalues equal to
(iri /2m)[(m/a) +d /12+k ]. We have looked at a case
with a width equal to —,'. Both the eigenvalue and the
eigenfunction obtained from the numerical solution of the
Schrodinger equation are found to agree well with the ap-
proximate analytic results. Using these, we have diago-
nalized the Hamiltonian with 12 states for r = 1. We do
not find any evidence of a gap. The seperation between
the ground state (1=39) and the first excited state (I=40)
is equal to 0.02. Because the wave function maintains the
same x dependence as k is changed in the present case,
the overlap of the wave function in the x direction does
not decrease as k is increased. The exchange contribution
to the matrix element 3 exhibits a different k dependence
from what we have discussed. The incomplete cancella-
tion between the Cooper and the CDW channel men-
tioned in the preceding section is absent in the present
case. From this point of view, the absence of a gap is
reasonable.

IV. TRANSITION TQ 20 BEHAVIOR

Normally the direct Coulomb interaction keeps the
electrons away from each other. The clustering tendency
in the ground state seems to come from the multiparticle
exchange. The diagonal term of the Hamiltonian in Eq.
(3) is the diff'erence of the direct and the exchange contri-
bution. At small distances k, these two contributions are
comparable in magnitude; the net value of V is reduced, V
is attractive. As k increases, the exchange contribution
dies off exponentially fast and only the direct contribution
remains. The distance l, at which V turns from attrac-
tive to repulsive in units of the magnetic length is fixed.
This is shown in Fig. 5 for N, =16. It is because of the
attractive exchange part of V that the particles form clus-
ters. For L &l„a one-cluster configuration is stable. As

is increased, there will be a competition between the
one- and the two-cluster configurations and eventually the
ground state becomes the two-cluster configuration. In
this way more and more clusters will be formed.

To investigate this, we have performed calculations for
L =4.76, 6.73, 8.237, 9.51, 10.25. The gap as a function
of L is shown in Fig. 6. As L is increased from 4.76,
the gap goes towards zero because of the competition and
fluctuation between the one- and two-cluster con-
figurations. As L is increased further, the gap increases
back up.

For N, =16, the ground state at small L„corresponds
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FIG. 5. The diagonal interaction V(4, k) [Eq. (5)] between the
particles for a system with N, =16. The distance is expressed in

units of the magnetic length.

FIG. 6. The gap as a function of the channel width for six-
particle and eight-particle systems. r = 3.

to the single cluster configuration [5,6,7,8,9,10,11,12] with
J=68. For L„=10.25, the ground state corresponds to
the two cluster configuration [3,4,5,9, 10,11,12,13] with
J=67. The energy difference of these two states as a func-
tion of L is equal to 0418, 0 238, —0027, —0 16,
—0.16 for L„=4.76, 6.73, 8.23,9.51, 10.25 respectively.
This illustrates the crossover from the one-cluster to the

l

two-cluster configuration.
The calculation for the N, = 16 case was carried out un-

der the approximation of retaining those basis states with
less than or equal to four clusters. To get an idea of the
validity of the approximation, consider the worst case of a
small gap situation at L =8.23. The lowest wave func-
tion at J=67 is concentrated at

0 88
l

3 4 5 9 10 11 12 13 ~ +0 355
l

3 4 6 8 10 11 12 13

—0. 149
~

3,4, 7, 8, 9, 11 12 13 ~ 0 203
l

3 5 6 7 10 11 12 13 ~ +0 135
l

2 4 6 9 10 11 12 13

The rest of the amplitudes are much smaller. After one
hop from the two cluster ground-state configuration, the
amplitude has come down by an average of 30%. The
states that we have discarded can be reached from the two
cluster configuration by at least two hops. In addition, its
energy is much higher. Thus our approximation is quite
good. Note that the second state can be obtained from the
first state via the excitation 5 to 8 and 9 to 6. Similarly,
the third corresponds to the excitation 5 to 8 and 10 to 7;
the fourth corresponds to 4 to 7 and 9 to 6, while the last
corresponds to 5 to 2 and 3 to 6. The momentum transfer
of these processes is 3 and is approximately equal to 2k+
for a single cluster. The last one corresponds to an intra-
cluster excitation while the remaining ones correspond te
intercluster excitations. The physical picture in this case
seems to correspond to a triangular "lattice" with two
rows in the x direction. The origin of the commensuration
seems to come from exchange, however.

Because of finite size crossover effects, there is large
Auctuation in the magnitude of the gap as the sample size
is changed at intermediate values of L„. For example, at
L =6.73, the ground state for N, =12 corresponds to a
two cluster configuration [4,5,6,8,9,10] already whereas
for N, = 16 the ground state is still a single cluster
configuration. This is why the gap value is so different for
N, = 12 and 16 for L„=6.73.

From these calculations we estimate the gap to be equal

to 0.16 at L =10.25. For N, =16, the first excited state
occurs at J=64 and is dominated by the configuration
[3,4,5,6, 10,11,12,13] with a bare energy 4.35. The
ground-state configuration [3,4,5,9, 10,11,12,13] has an en-

ergy 4.14. The difference of these two bare energies, 0.16,
is very close to the magnitude of the gap. While we be-
lieve the difference of the diagonal energies provides for
an estimate of the gap, we consider the degree of agree-
ment obtained in this case to be fortuitous because of the
Auctuations about these configurations.

In the calculation that we have performed, the
configurations with different numbers of clusters possess
different total y momenta J and hence are not coupled to
each other. This is characteristic of the even-denominator
situation. As the transverse dimension is increased, the
Auctuation in the number of clusters eventually destroys
the gap. There are situations such that configurations
with different numbers of clusters occur with the same J
and hence are coupled to each other. A gap is produced
due to the hybridization of these local minima. This is
characteristic of the bulk limit odd-denominator situa-
tion. To bring the matter into perspective and to make
our discussion of the FQHE ground state more concrete,
we provide here the explicit ground-state wave function
for the FQHE for a case with X, =12, 1/3 filled, J=10,
and aspect ratio equal to 1, periodic BC was used. This
represents nothing new numerically, but the simplicity of
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the wave function does not seem to have been appreciated
previously. The ground state is dominated by the three
cluster configuration. More precisely, for an aspect ratio
of 1, the ground state is dominated by configurations of
1 cluster of 2 and 2 clusters of 1 with probability density
of 0.568 [0.377(

I
1,4, 8,9)+ 1,5, 6, 10)+

I
2, 3, 7, 10)

—
I
4, 7, 11,12))], of 2 clusters of 2 with probability densi-

ty 0.191 [ 0.3088(
I
5, 6, 11,12) —

I
2, 3, 8, 9)) ], of 4 clus-

ters of 1 equally spaced at distance 2 apart with probabili-
ty density 0.09 [ —0.302

I
1,4, 7, 10)) and 4 clusters of 1

but spaced at distances 3,3, 1,1 with probability density
0.13 [—0. 182(

I
1, 5, 7, 9 ) +

I
2, 4, 6, 10) —

I
4, 8, 10, 12 )

—
I

1, 3, 7, 11))]. ( The total sum of these probability den-

TABLE I. The gap 6 at half filled and one-third filled
as a function of the transverse length L .

4.3 7.1 7.7 8.7

0.31
0.15

0
0.075

0.05
0.08

0.07
0.08

0
0.06

sities adds up to 0.979 ). The first excited state corresponds
to the ground state at J=9. It is approximately equal to
p(qy = l, qx =ir/3)

I
0) after proper normalization.

[0.335(
I

1,5, 6, 9) —
I
2, 3, 6, 10) —

I
3,7, 11,12&+

I
4, 8, 9, 12) )

+ 0 247( —
I

1 3 7 1o) +
I

1 4 6») —
I

1 4 7» —14 7 1o 12) )

+0.23(
I

1,3, 8,9) +
I
2, 3, 7, 9) +

I
4, 6, 11,12)+5,6, 10, 12) )

+0.109( —
I

1,3, 6, 11)+
I

5, 7, 9, 12) —
I
2, 4, 6, 9) )].

For free boundary conditions in a finite channel,
configurations with different clusters may still occur at the
same J at particular filling factors. In general, this will no
longer be exactly —,

' and will be very hard to determine nu-

merically. To illustrate the difference between the odd and
the even denominator situations, we shall thus confine our
interest to the case of periodic boundary conditions where
the commensuration conditions occur exactly at —,'. In that
case the particle can never move outside the channel; if it
goes out on one side, it comes back on the other. Our re-
sults with the y axis across the channel are summarized in
Table I for a 12 site situation. For L~ =4.3,7. 1,7.7, 8.7,
the gap at half-filled oscillates and is equal to 0.31, 0,
0.05, and 0.07 respectively, whereas at one-third-filled, the

gap is equal to 0.15, 0.075, 0.08, and 0.08, respectively,
and is never close to zero. From calculations using the
computer RG technique with systematic truncation that
we have described previously' we get gaps equal to 0.11
and 0 for L~ =8.7, 7. 1 for 24 site clusters at half-filled,
consistent with the 12 site results. For L~ = 8.7 and

N, = 12, the static structure factor S(q, O) for the ground
state possesses a peak of magnitude 1.3 at q =2~/6a
where a is the intersite spacing, indicating the formation

of the "cluster" distribution with three contiguous sites
occupied and then three empty sites next to it. For large
q, S(q, O) approaches 1. For other values of 1, we do not
see any peak in the structure factor. The magnitude of
this peak for the 12 site case is similar to that from finite
cluster calculations at one-third filled.

We next turn our attention to the question of ground-
state degeneracy. For the 2D FQHE under periodic
boundary conditions, states with J's whose difference is
modulo N, are coupled together, there is a v fold center of
mass degeneracy of the ground state at filling factor 1/v.
In the present case, states with J's whose difference is
modulo N, is considered different, we expect this degen-
eracy to be of the order of L .

Experimentally the width of a channel is never uni-
form. Thus there will be regions where there is a gap and
regions where there is no gap if the fluctuation in the
width gets large enough. However p for the whole chan-
nel will still be zero in the idealized situation.
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