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Attenuated total reflectivity of semiconductors with wave-vector-linear band splitting
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We have calculated the attenuated total reflectivity (ATR) of a semiconductor near an excitonic
transition in the presence of wave-vector-linear energy-band splitting. The numerical work corre-
sponds to the B(n =1) exciton of CdS, the light being p(TM) polarized in a plane perpendicular to
the crystal axis. The ATR spectra reveal two minima: One is a broad minimum between ~~ and

coL (the transverse and longitudinal exciton frequencies) and the other is a narrow minimum at
-coT. These resonances are interpreted as corresponding, respectively, to the ordinary (essentially
local) surface-exciton-polariton and to a new ("nonlocal") surface mode.

I. INTRODUCTION

Surface-exciton-polaritons in semiconductors with par-
abolic energy bands have been extensively studied in the
past 10 years. In the present work we study surface polar-
itons in the presence of energy-band splitting which is
linear in the wave vector. We focus on the calculation of
attenuated total reflectvity (ATR) spectra of the B exciton
of CdS, which is the prototype of this kind of nonparabol-
ic dispersion.

Energy bands in direct-gap semiconductors are often
isotropic and the energies of the corresponding excitons
are adequately described by means of a parabolic relation,
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ficoT(q) =ficoT(0)+A' q !2m,
where q is the wave vector and m is the mass of the exci-
ton. In uniaxial crystals, however, a crystal field E, may
exist in the direction of the axis c(~~y). This field is per-
ceived by a moving electron as a magnetic field in the xz
plane and gives rise to a spin-orbit coupling of the form

H'=ctt(q, oy —q„o„) .

Here q„, are the transverse components of the wave vec-
tor, cr„~ are the Pauli matrices (in the usual notation), and
P is a parameter that is proportional to the crystal field
F, The combined effect of the electron in the conduction
band and hole in the valence band leads to the following
eigenvalues for the exciton

Ace (q)=%co (0)+ (q„+q, )+ q, +ct(q +q. )
2m&
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~~
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where m~ and m~ are the transverse and longitudinal
masses and q~ =(q„+q, )'r is the wavevector component
perpendicular to the c axis. This heuristic derivation is
best applicable to the B(n = l) exciton of CdS. This exci-
ton is composed of a hole in the second (out of three)
valence band and an electron in the conduction band, both
with I 7 symmetry.

The last equation for fun+(q) tells us that the spin-orbit
interaction has produced a splitting of the original exciton
band into two bands whose minima are separated in phase
space by b,q=2mzg/A'. As this effect is proportional to

we will refer to P as the "exciton-splitting" or "q-
linear-splitting" parameter. Clearly, there is no effect for
q ~ ~

c and therefore it is simplest to study the case qlc.
This is to say that, in optical studies, the plane of in-
cidence is chosen perpendicular to the c axis, and so, the
crystal must be cleaved in a plane that is parallel to this
axis. If, in addition, the electric field of the incident wave
is polarized in a plane that is perpendicular to c (Elc,
that is p-polarized light), then the perturbation H' couples
a dipole-forbidden to a dipole-allowed optical transition,
and both turn out to have equal oscillator strengths; their
energies are given by the above formula for fico+(q). Qn
the other hand, while coupling between an allowed and a
forbidden transition also exists for E~ ~c, in the case of
CdS this coupling is too weak to cause an appreciable
transfer of oscillator strength from the allowed to the for-
bidden state. For this reason the wave-vector-linear ef-
fects are not observed for E~ ~c, that is, for s-polarized
light.

In 1964 a shoulder detected in the normal-incidence re-
flectivity of the B (n = l) exciton of CdS for qlc with
Eic led Mahan and Hopfield' to develop a theory of this
spectrum that was based on q-linear energy terms permit-
ted by the wurtzite crystal symmetry of CdS. This
pioneering work successfully reproduced the shoulder and,
moreover, accounted for the absence of any effect in CdS
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for q~ ~c and qlc with E~ ~c. However, Mashlyatina
et al. found that P-Agl —another wurtzite crystal —does
exhibit an "anomalous" spectrum for qlc with E~~c. It
seems that for this semiconductor, unlike for CdS, a
strong coupling between an allowed and a forbidden tran-
sition causes a "flareup" of the latter.

The two split-exciton branches introduced in Ref. 1,
when coupled to light, give rise to three transverse-mode
polariton branches, rather than the usual two branches
that exist in the presence of spatial dispersion (in the cases
of the 3- and C-exciton series). The advent of resonant
Brillouin scattering in 1977 led to the attractive possibili-
ty of a direct detection of the additional branch of the B
exciton. Indeed, this was proposed by Allen and Kane
and, independently, Koteles and Winterling observed
acoustic phonon scatterings corresponding to three polari-
ton branches. These authors also raised a doubt about at-
tributing the q-linear splitting to spin-orbit coupling. The
investigation of exciton-polaritons by means of laser tech-
niques has been reviewed by Koteles.

It was thought that q-linear terms may be safely ig-
nored for 3 excitons, because such terms are forbidden by
symmetry for the uppermost valence band (from which
this series derives) and they are known to be negligible for
the conduction band. Nevertheless, recently a very fine
splitting of one of the polariton branches has been ob-
served by Lu et al. The effect is significant only in the
vicinity of the crossing point of two theoretically derived
branches. The splitting parameter P of the 3 exciton was
found to be about thirty times smaller than that of the B
exciton. On the other hand, the q-linear term turned out
to affect in an important way the Brillouin linewidth,
leading to a frequency-dependent damping constant.

Generalizing the treatment of Ref. 1, Thang and Fish-
man' have derived the Hamiltonians of the 3 and B ex-
citons of CdS, taking into account the longitudinal-
transverse splitting and the exchange energy. They were
also able to show that experimentally deduced parameters
for the 2 exciton provide the parameters for the B exci-
tons.

The application of a static magnetic field H0 lowers the
symmetry of the system, and the band-structure calcula-
tion becomes much more complicated. The bands exhibit
Zeemann splitting and the optical spectra display new
features. A detailed study of the 3 and B excitons of CdS
and ZnO for H0&0 (as well as HD ——0) has been undertak-
en by Blattner et al. " These authors derived the Hamil-
tonian, solved the eigenvalue problem and obtained the
exciton-polariton modes. From a comparison with a
variety of experimental results (two-photon Raman
scattering, transmission, and reflection in magnetic fields

up to 20 T) they deduced the numerical values of the 3-
and B-exciton parameters. More recently Rosenzweig'
studied the magnetoreflectance of the B exciton of CdS in
other configurations.

One manifestation of natural optical activity' is a
change in the polarization of the incident wave, observed
in the polarization of the reflected wave. Ivchenko
et al. ' experimented with oblique incidence of light in
the vicinity of the 8 (n =1) exciton of CdS. When the in-

cident light was p (s) polarized the reflected light turned

out to have an s (p)-polarized component, in addition to
the usual p (s)-polarized component. The cross-reflection
coefficients (rz, ——r,z) are peaked at the longitudinal exci-
ton frequency coL and, at the peak value,

r&, /r
&
-r,z/r„-0. 04. The effect is well accounted for'

by superposing all four states that contribute to the B ex-
citon. ' The anisotropic behavior is caused by the appear-
ance of off-diagonal elements in the dielectric tensor;
these elements are proportional to q and q, . The natural
optical activity was also manifest in ellipsometric investi-
gations' and in the luminescence spectrum' of CdS.
Spatial dispersion effects in the exciton resonance region
have been reviewed by Ivchenko. '

In addition to the wurtzite symmetry there are other
uniaxial symmetries that admit wave-vector-linear energy
bands. As pointed out by Bishop and Maradudin, in
crystals of D3 symmetry a band splitting occurs that is
linear in the component q~, rather than in the transverse

components. In crystals of zinc-blende symmetry the q-
linear effect is overshadowed by the valence-band splitting
into light- and heavy-hole bands. '

The present work deals with semiconductors which
have the wurtzite symmetry and is not applicable to crys-
tals of D3 or zinc-blende symmetries. We employ the
original, isotropic model of Mahan and Hopfield, that is,
we neglect the off-diagonal elements of the dielectric ten-
sor' ' on account of their smallness. Our principal in-
terest lies in the attenuated total refiectivity (ATR) spec-
tra of the 8 (n =1) exciton of CdS. In a preliminary
communication we called attention to the existence of
two ATR minima, instead of one, as is usual. The addi-
tional minimum appears in the vicinity of cuz and van-
ishes in the limit $~0. We have suggested that this
minimum corresponds to a new surface polariton mode.
This possibility will be explored in greater detail in the
following sections.

ATR spectroscopy implies p-polarized light, and thus
we must consider longitudinal, as well as transverse
modes. There are three transverse modes, essentially the
same as for normal incidence. ' In addition, now there
are two new, longitudinal modes. The five bulk-polariton
branches are analyzed in Sec. II. In Sec. III we generalize
the additional boundary conditions (ABC' s) employed by
Mahan and Hopfield, to the case of p polarization and we
calculate the surface impedance of the semiconductor,
with allowance for an exciton-free ("dead") layer. This
leads to our final expression for the ATR spectrum in Sec.
IV. An analysis of various spectra is presented in Sec. V
and we summarize our conclusions in Sec. VI.

II. BULK MODES

As stated in the Introduction, the wave-vector-linear
band splitting in wurtzite-type semiconductors is observed
if both the wave vector and the electric field are perpen-
dicular to the uniaxial crystalline axis c, chosen along the

y axis (qlc, Elc). According to the condition qlc the
plane of incidence must be normal to c, which is to say
that the crystal must be cleaved in a plane that is parallel
to c. The condition Elc requires the electric field to be
parallel to the plane of incidence (the xz plane) corre-
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sponding to p(TM)-polarized waves. This, of course, is
just the polarization for which surface polariton modes
may exist in nonmagnetic crystals.

In our geometry q» =0 and E» =0. Therefore the prob-
lem is essentially isotropic and the semiconductor may be
characterized by a scalar dielectric function e(co, q), where
co is the circular frequency and q = (q„+q, )

'~ is the wave
vector. According to the Mahan-Hopfield model' the
oscillator-strength 4m/3 is equally divided among the exci-
tons with eigenvalues Ace+(q) and duo (q), giving rise to
the dielectric function

gies are given by Eq. (2). In the limit $~0 Eq. (1)
reduces to the dielectric function in the Hopfield-Thomas
model, applicable to many direct-gap semiconductors.

The second and third terms in Eq. (2) are very small
compared to the first term and the following is a good ap-
proximation:

co+(q)=coT+Dq +Nq, (3)

where D =AcoT/mz and %=2coTP/h'. The substitution of
Eq. (3) into Eq. (1) simplifies the dielectric function sub-
stantially,

277/3co T 27K/3co T
F.(co,q ) =ep+» +», (1)

co+ (q) co —i vco— co (q) —co i vco—

where

4m/3coT(Q —Dq )
E(co,q) =ep—0 (2DQ +—4& )q +D q

where

(4)

Ra)+(q)=hcuT+fi q /2m»+Pq . (2) =co —coT+l vco

Here ep is the background dielectric constant, 4m/3 is the
oscillator strength of the unsplit exciton, coT=coT(0) is the
resonance frequency of the exciton, v is a phenomenologi-
cal damping frequency, mj is the transverse exciton mass,
and P is the exciton-splitting parameter. The second and
the third terms in Eq. (1) describe, respectively, the contri-
butions of the split "+ " and "—"excitons whose ener-

Because our fields are p polarized, longitudinal as well
as transverse bulk modes will be excited. The transverse
modes must satisfy the equation

e(co,q)=q c lco (6)

The substitution of Eq. (4) in Eq. (6) leads to an equation
that is cubic in q, namely,

D q (2DQ +F—pD qp+0 )q +(0 4'/3coTDq—~+2epDQ q~+epcI» qp)q +(4vrpcoT —epQ )II qp ——0, qp=co/c . (7)

In the limit q~0 and neglecting v there are three solu-
s —1/2tlons: ~ =qcEp ~T/~g, ~ =~T, and ~=~L, where

coL ——cor(1+4'/ep)' is the longitudinal exciton fre-
quency. The three corresponding polariton branches are
well established. The lowest branch first follows the light
line and then, for co) coT, one of the split bare-exciton
parabolas. The minimum of the second branch is located
at cuT, and that of the highest branch at coL.

If we neglect the damping frequency v in Eq. (5) then
the coefficients of the four terms of Eq. (7) are all real.
Then, depending on the sign of the discriminant of the cu-
bic equation, the three solutions for q are either all real
quantities, or else one solution is real and the other two
are complex conjugates of each other. This is still true for

E(co,q) =0 . (8)

Substituting Eq. (4) in Eq. (8) we get a biquadratic equa-
tion,

I

q, because the wave-vector component q„(taken in a
direction parallel to the surface) is real. The sign of the
roots q, is determined by the requirement that the fields
may not diverge as z~+ oo,' therefore we must have
Imq, &0. The conclusion is that, depending on the spec-
tral region, q, may have the form a, or iy, or (in pairs)
+6+iX, where a, y, 6, and A, are positive functions of co.

Next, we turn to the longitudinal bulk modes. Their
dispersion relations are given by

epD q (2epDA 4~/3co—»TD+ep4 —)q +f1 (epQ 4~PcoT—) (9)

From an analysis that is analogous to that for the trans-
verse modes it follows that the two longitudinal solutions
for q, have the same analytic behavior, that is a, or i y, or
+6+iX,. It is easy to show that, for

t

so we have to introduce an auxiliary prism (index n» ). If
the internal angle of incidence is Op then the parallel
wave-vector component is q„=qpnzsinOp, and the normal
component in the semiconductor is

co &coT (ep@ 4'/3corD) /4—epD@— q, =(q —quan»sin 0)'~, Imq, )0 . (10)

q, must have either one of the forms a or i@. In the limit
q~0, Eq. (9) has the solutions co=co&- and co=coL, just
like two of the transverse branches.

In this paper our interest lies in the ATR spectroscopy,

As discussed above, there are three transverse-wave solu-
tions for q, and they are given by Cardan's solution of
Eq. (7). The corresponding values of q„Eq. (10), are la-
beled q&, q2, and q3. The two longitudinal-wave solutions
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for q are calculated from Eq. (9) and substituted in Eq.
(10). The resulting values of q, are denoted by q4 and q, .

We have calculated the real and imaginary parts of the
normal components q; of the five modes for the 8 exciton
of CdS. The parameters used in the calculation are
&0=7-2 ~T =20712.3 cm ', ~I.T=~L, —coT ——10.1 cm
%v=7.5&10 eV, m=1.2mo, where mo is the free-
electron mass, and $ =5.6 X 10 ' eV m. Note that

4~pleo a)——L l~r —1=2cul T lcoT —102 2 —3

and that 1 cm '=1.24&10 eV. We also take nz ——1.5
and 00——70'. The results of the calculation are plotted in
Fig. 1. We see that, except in the vicinity of coT and coL,
the analytic behavior of the q; conforms with the results
of our previous analysis. For cu=~T and cu=cuL our al-
lowance for a finite damping frequency v has an impor-
tant effect, as is also the situation for the 2 excitons. Ig-
noring these regions q& is essentially real, so the partial
mode i =1 is a real, transverse wave. We notice that the
dispersion of this mode is very similar to that of the "non-
local mode" of the 3 exciton. Well below coT the modes
i=2 and 3 exhibit the behavior q2 3

—+6+i A, . The fact
that the mode 3 is outgoing (Req3 & 0) is a result of the
necessary choice Imq3 )0. Clearly, this partial mode (or,
for that matter, any other partial mode) does not have a
separate physical existence; what really matters is that the
total fields (composed of the five partial fields) do not
diverge. Between ~T and ~L mode 2 becomes real, while
mode 3 is evanescent (q3 is pure imaginary). Well above
coL both modes are real. As for the longitudinal modes,
interestingly, the behavior of qq(qq) is qualitatively the

same as that of the transverse wave-vector component q2
(q3).

We also notice from Fig. 1 that, generally speaking, all
the q; are one order of magnitude greater than qo —~T/c.
This explains, partially, the importance of the nonlocal ef-
fects in the present case. The other part of the explana-
tion lies in a study of the amplitudes of the five partial
modes.

III. ADDITIONAL BOUNDARY CONDITIONS
(ABC) AND SURFACE IMPEDANCE

iqiz i i
—iqiz i(q x —cot)

(12)

g(l)( )
qo" (~(+ ) i'vp ~i —) i0i

)rt= „e — ~ e e
qi

(13)

where qi
——(qoeo —q )' is the normal component of the

wave vector in the exciton-free layer and E +' and E'
are undetermined amplitudes. Equation (13) is readily de-
duced from Eq. (12) using Faraday's law.

In the spatially dispersive bulk the fields are expressed
as superpositions of the five partial plane-wave bulk
modes:

Following Mahan and Hopfield' we assume that the
spatially dispersive medium is bounded by an exciton-free
surface layer. This "dead layer, " of width l, is character-
ized by the background dielectric constant eo. The wave
fields are simple superpositions of forward- and
backward-going plane waves:

I 20 720—

20 7lO—

(3
LLj

CL

20 700—

I I !I
3 2 I 0 I 2 3

Im q; (IO cm ) Re q, (IOe cm ')
FIG. 1. Dispersion relations co(q, ) for the five partial bulk modes of the 8 exciton of CdS. Req; and Imq; are plotted, respective-

ly, to the right and to the left of the origin. The modes 1, 2, and 3 are transverse, and the longitudinal modes 4 and 5 arise because

the fields are p polarized (angle of incidence I90——70 ). The dashed lines indicate that, in the corresponding spectral region, Req3 5 are

negative. The parameters (Ref. 6) are listed in Sec. II.
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5

E ( r) y E(k) '&k '~'4

k=1

(k) iq„z i(q„x—~~)3

By(r, t) = E e e

(14)

(15)

impedance, defined as

Z =E„(z=—i+)/B, (z= —i+),p x

where by —l+ we mean "just inside the medium. " By
substituting Eqs. (12) and (13) in Eq. (16) we easily find
that

The last expression is derived from the x component of
Maxwell's equation V XB=(1/c)BD/Bt T.he notation ek
is an abbreviation for e(cu, qk). By Eq. (8) this function
vanishes for the longitudinal modes, that is, e4 ——@5=0.
This is why, in Eq. (15), the summation has been curtailed
at k=3, reflecting the fact that a longitudinal electric
field is not accompanied by a magnetic field.

We choose the plane z =0 as the interface between the
dead layer and the nonlocal bulk (z) 0). Then the crys-
talline surface lies in the plane z = —l. The optical prop-
erties may be conveniently expressed in terms of a surface

qi 1+exp(2iql I )E„' '/E„'+'

qoeo 1 —exp(2iqil )E(-I/E(+) (17)

qi p —i tan(qi1 )z-
qoeo tan(qual ) —ip

where

(18)

The next step is applying the conditions of the continuity
of E„and B» at the interface z=0. Using Eqs. (12)—(15)
we find that

ql k=1 k=1 qk

1 +E(2)/E(1) +E(3)/E(1) +E(4)/E(1)+ E(5)/E (1)

eiqi /q & +e2(qi/q2 )(E„ /E" ')+ e3(qI /q~ )(E„' '/E" ') (19)

We have thus expressed the surface impedance of the
medium in terms of the four amplitudes E(2), E(3), E(4)
and E' ', rationalized to the amplitude E„"'. We need
four ABC's in order to determine these amplitude ratios.
This is as it should be because there are five modes, com-
pared to a single mode in the absence of spatial dispersion.
Mahan and Hopfield, considerin~ only normal incidence,
assumed that the polarizations P +' and P„' ' of the two
split excitons vanish at the interface between the nonlocal
bulk and the exciton-free layer. In the present case of p
polarization these conditions have to be supplemented by
the requirement that P,'+' and P,' ' also vanish at z =0+.
These polarizations are expressed in terms of a superposi-
tion of normal modes, that is, the four ABC's are

ponents of the electric fields in terms of the parallel com-
ponents, as follows:

E(k) —yz Xk x

where

(24)

—qx/qk, k = 1,2, 3
Xk

q, /q, k=4 5. (25)

Then we may rewrite Eqs. (20) and (21) in the compact
form

5

AlkE„' '=0, j= 1,2, 3,4,
k=1

5 5

g x'+'(qk)E„"'=0, g x'-'(qk)E„'"'=0,
k=1 k=1

(20)
with

A 1k &'+'(qk), A2k + (qk)

5 5

g X' '(qk)E,'"'=0, g 7' '(qk)E,'"'=0,
k=1 k=1

(21)

where X' +—(qk) are the susceptibilities of the split modes.
By Eqs. (1), (3), and (11) they are given by

( —, )pcuT
x'+-'(q„) =

CO+(qk ) CO i Va)— —

( eo/4' )co Teal T

D(q„+qk )+4 (q„+qk )
'i

(22)

(23)

The three transverse modes must satisfy the equation
V.E'"'=0, that is, q„E' '+qkE, '=0. For the two longi-
tudinal modes we have V'&& E' '=0, or qxE, '

—qkE' '=0. This allows us to express the normal com-

A 3k 1 k&'+'(qk ) A4k l k&' '(qk ) (27)

5

g qkAJkE„' '=0, j=1,2, 3,4.
k=1

(28)

The four Eqs. (26) determine the unknowns E„' '/E„"',
E„' '/E„' ', E' '/E"', and E„' '/E' '. These quantities,
once expressed in terms of 4&&4 determinants, are substi-
tuted in Eq. (19). This completes the calculation of the
surface impedance of the semiconductor, including a dead
layer, for the generalized Mahan-Hopfield ABC.

Instead of assuming that P„'+, ' and P„', ' vanish at z =0,
one may also work with the ABC's that the normal
derivatives of these polarizations vanish at z =0. Formal-
ly this results only in a minor change, namely, Eq. (26)
must be replaced by
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B(g)( ) (E(+) '
g E( —)

'
g )y

Z~ i—(qg /qo )tan(qgd )

1 —i (q()/qg )stan(qgd )
(37)

Substituting these expressions in Eq. (30) we find that

qg 1+r E'

q 1 r' — E'+' (3&)

This substituted in Eq. (31) gives the ATR in terms of Zz,
nz, d, and Oo.

Because of the continuity of E and By at the interface
z =d the right-hand side of Eq. (29) may be also ex-
pressed in terms of Eqs. (33) and (34), as follows

Zq: E g (d)/Byg (d)

qg 1+r exp( 2iqgd—)
(36)

qo 1 —r exp( 2iqg—d )

By eliminating r from Eqs. (35) and (36) we find the
desired relation,

V. RESULTS AND DISCUSSION

We have calculated the ATR for the B exciton of CdS
using the material parameters listed in Sec. II and a thick-
ness 1=70 A for the dead layer. As a check on our calcu-
lations the prism has been "removed" by taking n&

——1;
then for 0=1 we reproduce the Mahan-Hopfield results
for normal-incidence reflectivity. In all the other calcula-
tions the prism index is n~ =1.5. In Fig. 3 we show the
ATR spectra for an angle of incidence L9O

——70 and a
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FIG. 5. As in Fig. 3, however with a reduced damping frequency, Iiv=7. 5)&10 eV, and d=500 A, The numbers next to each
curve are different values of the splitting parameter P in (10 ' eVm). Note that, for /=1.4&&10 ' eVm only the mini(num corre-
sponding to the ordinary surface polariton appears.
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ready present, and the spectrum is quite similar to the one
for P = 5.6 X 10 ' eV m (the same as in Fig. 4 for
00——70 ); the dip is just a little above coT. If we increase P
further, to 11.2&10 ' eVm, the position of the ordinary
surface-exciton polariton resonance is almost unaffected;
however, the width of the minimum increases consider-
ably. At the same time the new resonance line moves 1

cm ' to lower frequencies and also becomes much wider.
For $ =28 X 10 ' eV m the lower-frequency minimum
has shifted —5 cm ' to the left of coT and its width has
become comparable to that of the higher-frequency
minimum. There is also some additional structure, to
which we do not attach major importance on account of
the unrealistically high value of P for this curve.

We should comment that minima in the ATR spectrum
below cuT are obtained even for the angles well below the
critical angle 0, =42, and even for normal incidence.
These minima certainly do not correspond to surface po-
laritons because, for 0 & 0„ the normal component of the
vacuum wave vector is real. In Figs. 6(a) and 6(b) we
compare spectra for Oo ——30 and Oo ——60 in the region
co &coT. The variation of P has a much stronger effect in
Fig. 6(b). Similar graphs have been also obtained in Ref.
22 (Fig. 3) for A'v=7. 5X 10 ' eV.

We have also done ATR calculations with an angular
scan, selecting a high value of the splitting constant,
P =28 )& 10 ' eV m. In Fig. 7 we observe deep and broad
minima for three values of co, all considerably lower than
coT. For co=coT —5 cm ' the minimum is positioned at
0 =50'. This roughly corresponds to the minima result-
ing from a frequency scan, Fig. 2 of Ref. 22. There, for
the same value of P and three values of 90 (45', 70', and
85'), the lower-frequency minimum was obtained, approx-
imately, at coT —5 cm . Thus the positions of the mini-
ma in the frequency-scan spectra are very insensitive to
Oo. Then we would expect that a small change in ~ would
produce a large change in the position of the angular-scan
minimum. However, curiously, practically the same 0 is
obtained for co —~T ———5 and —7 cm '. For a higher
frequency co —cuT ———2 cm ', we find that 0 =40 &0, .
With realistic values of 0 and v (as in Fig. 3 and Fig. 1 of
Ref. 22) and to —co r ——+ 5 cm ' we find a broad
minimum centered at 0 =54' that obviously corresponds
to the "local surface-exciton polariton. " With the same
parameters and m —coT ———0.5 or 0 cm ' the correspond-
ing minima are both centered at 0 =51'. These minima
seem to describe the "nonlocal surface-exciton polariton".

Figures 3—7 are all based on the ABC's that P„,(z)—
vanish at the interface between the nonlocal bulk and dead
layer. These four conditions are given by Eqs. (20) and
(21) or, more compactly, by Eq. (26). It is interesting to
repeat the calculation with another set of ABC' s, namely
the vanishing of BP—,/Bz at the above-mentioned inter-
face, given by Eq. {28). The results are shown in Fig. 8,
for the same set of parameters as in Fig. 3 and d=500 A.
The dashed curve is the same as the one labeled d =500 A
in Fig. 3 and is given for comparison. We see that the po-
sitions of both minima are almost the same for the two
sets of ABC' s. However the minimum between ~T and
coL is considerably narrower, and the minimum at co&. is
much less deep for the ABC's Eq. (28). This indicates

l.O
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FIG. 8. Comparison of two sets of additional boundary con-
ditions (ABC' s). The solid line is based on the ABC that the

+normal derivatives of the four polarization components P„—,(z)
vanish at the interface between the nonlocal bulk and the
exciton-free surface layer. The dashed curve has been calculated
with the ABC that the polarization components P —,(z) them-
selves vanish at this interface. The parameters are the same as
in Fig. 3 and d=500 A.

that spatial dispersion plays a much more important role
in the case of the generalized Mahan-Hopfield ABC, Eq.
(26).

VI. CONCLUSION

Do the additional ATR minima, obtained for Oo) 0„
describe surface polaritons? For Oo) 0 the wave fields in
the gap between the prism and the surface decrease
(roughly exponentially) away from the surface. The im-
position of the conditions Imqk )0 ensures that the total
wave fields (composed of the five partial modes) decay in
amplitude away from the interface between the bulk medi-
um and the surface layer (except in the case, unlikely for
v&0, that Imqi, vanishes for some k and co). Thus it
seems —almost by definition —that for Oo) 0, any ATR
minimum corresponds to some surface polariton mode.
This is true in simple cases. However, here we are dealing
with a rather complex model. If the decay of the total
wave fields is very slow (on the scale of the vacuum wave-
length, say) then an ATR minimum can hardly represent
bona fide surface modes.

A glance at Fig. 1 reveals that Imq& is smaller than
coT/c over the complete range of interest. So, the partial
bulk mode k=1 is certainly removing energy from the
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surface. However, our numerical calculations show that
the amplitude of the mode k =1 is quite small compared
to the amplitudes of the other four modes. Therefore the
partial mode k =1 is not expected to make an important
contribution. For this reason we believe that the addition-
al ATR minima in Figs. 3—8 (for Ho& 0, and ca &car)
corresond to leaky surface-exciton-polaritons, and they are
certainly a direct consequence of the wave-vector-linear
energy bands. We note that, even for /=0, as a result of
a finite exciton mass, surface-exciton-polaritons are leaky
waves. '

There should be no difficulty in observing experimen-

tally the ATR spectra calculated in this work. As for the
identification of the additional ATR minima with a "non-
local surface polariton, " further theoretical work is need-
ed. Currently the dispersion relation for the semiconduc-
tor vacuum interface is being studied.

ACKNOWLEDGMENTS

This work was supported in part by the cooperative
research program of the United States and Mexico (Con-
sejo Nacional de Ciencia y Tecnologia) through National
Science Foundation Cxrant No. INT83-12955.

'G. D. Mahan and J. J. Hopfield, Phys. Rev. 135, A428 (1964).
2T. M. Mashlyatina, D. S. Nedzvetskii, and A. V. Sel'kin,

Pis'ma Zh. Eksp. Teor. Fiz. 27, 573 (1978) [JETP Lett. 27,
539 (1978)].

3See, for example, S. I. Pekar, Zh. Eksp. Teor. Fiz. 33, 1022
(1958); 34, 1176 (1958) [Sov. Phys. —JETP 6, 785 (1958); 7,
813 (1958)]; J. J. Hopfield and D. CJ. Thomas, Phys. Rev.
132, 563 {1963);A. A. Maradudin and D. L. Mills, Phys. Rev.
B 7, 2787 (1973); P. Halevi and G. Hernandez-Cocoletzi,
Phys. Rev. Lett. 48, 1500 (1982); P. Halevi and R. Fuchs, J.
Phys. C 17, 3869 (1984).

4R. G. Ulbrich and C. Weisbuch, Phys. Rev. Lett. 38, 865
(1977); G. Winterling and E. S. Koteless, Solid State Com-
mun. 23, 95 (1977); G. Winterling, E. S. Koteless, and M.
Cardona, Phys. Rev. Lett. 39, 1286 (1977).

5N. Allen and E. O. Kane, Solid State Commun. 28, 965 (1978).
~E. S. Koteles and G. Winterling, J. Lumin. 18/19, 267 (1979);

Phys. Rev. Lett. 44, 948 (1980).
7E. S. Koteles, in Excitons, edited by E. I. Rashba and M. D.

Sturge (North-Holland, Amsterdam, 1982), p. 83.
~X. Z. Lu, M. Dutta, and H. Z. Cummins, Phys. Rev. B 33,

2945 (1986).
9T. Shinegari, X. Z. Lu, and H. Z. Cummins, Phys. Rev. B 30,

1962 (1984); X. Z. Lu, M. Dutta, T. Shinegari, and H. Z.
Cummins, ibid. 32, 1037 (1985).

' N. T. Thang and G. Fishman, Phys. Rev. B 31, 2404 {1985).
''G. Blattner, G. Kurtze, G. Schmieder, and G. Klingshirn,

Phys. Rev. B 25, 7413 (1982).

' M. Rosenzweig, Phys. Status Solid B 129, 187 (1985).
V. M. Agranovich and V. L. Ginzburg, Spatial Dispersion in
Crystal Optics and the Theory of Excitons (Wiley, New York,
1966).

E. L. Ivchenko, S. A. Permogorov, and A. V. Sel'kin, Pis'ma
Zh. Eksp. Teor. Fiz. 27, (1978) [JETP Lett. 27, 24 (1978)].

' E. L. Ivchenko and A. V. Sel'kin, Zh. Eksp. Teor. Fiz. 76,
1836 (1979) [Sov. Phys. —JETP 49, 933 (1979)].

G. E. Pikus and G. L. Bir, Fiz. Tekh. Poluprovodn. 7, 119
(1973) [Sov. Phys. —Semicond. 7, 81 (1973)].
A. B. Pevtsov and A. V. Sel'kin, Fiz. Tverd. Tela 25, 157
(1983) [Sov. Phys. —Solid State 25, 85 (1983)].
E. L. Ivchenko, A. B. Pevtsov, and A. V. Sel'kin, Solid State
Commun. 39, 453 (1981).
E. L. Ivchenko, in Excitons, Ref. 7, p. 141.

oM. F. Bishop and A. A. Maradudin, Solid State Commun. 23,
507 (1977).

'W. Dreybrodt, K. Cho, S. Suga, F. Willrnan, and Y. Niji,
Phys. Rev. B 21, 4692 (1980); Y. Nozue, M. Itoh, and K.
Cho, J. Phys. Soc. Jpn. 50, 889 (1981); M. S. Brodin, V. M.
Bandura, and M. G. Matsko, Phys. Status Solidi B 125, 613
(1984).
P. Halevi„O. B. M. Hardouin Duparc, A. A. Maradudin„and
R. F. Wallis, Phys. Rev. B 32, 6986 (1985).

See, for example, M. Bishop, A. A. Maradudin, and D. L.
Mills, Phys. Rev. B 14, 4744 (1976); J. Lagois and B. Fischer,
Adv. Solid State Phys. 18, 197 (1978); P. Halevi and R.
Fuchs, J. Phys. C 17, 3889 (1984).


